1
|
Zhdankin GI, Grivin VP, Plyusnin VF, Tkachenko PA, Vasilchenko DB, Glebov EM. Chain photosolvation of trans,trans,trans-[PtIV(py)2(N3)2(OH)2] complex prospective as a light-activated antitumor agent. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
2
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
3
|
Milner A, Alshammari N, Platts JA. Computational study of copper binding to DAHK peptide. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Wang Z, Fang L, Zhao J, Gou S. Insight into the antitumor actions of sterically hindered platinum(ii) complexes by a combination of STD NMR and LCMS techniques. Metallomics 2021; 12:427-434. [PMID: 32022072 DOI: 10.1039/c9mt00258h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterically hindered platinum(ii) complexes have shown great advantages in overcoming platinum drug resistance. In this study, the antitumor actions of sterically hindered platinum(ii) complex 1 (cis-dichloro[(1R,2R)-N1-(2-fluorobenzyl)-1,2-diaminocyclohexane-N,N']platinum(ii), C13H19FPtCl2) were investigated by using saturation transfer difference nuclear magnetic resonance (STD NMR) and liquid chromatography-mass spectrometry (LCMS) techniques. STD NMR was applied to study the HSA (human serum albumin) binding properties, while the interactions between guanosine 5'-monophosphate (5'-GMP) and complex 1 were studied by LCMS. For HSA binding experiments, strong STD signals were observed for protons of sterically hindered parts of carrier ligands, indicating that the sterically hindered moieties of the carrier ligand could be situated inside the binding pocket of HSA. A 19F NMR experiment indicated that complex 1 could interact with HSA. Furthermore, the binding modes of complex 1 with guanosine 5'-monophosphate (5'-GMP) were studied in the absence and presence of glutathione by LCMS. According to the HPLC profiles, a mono-functional binding mode was observed for complex 1 both in the presence and in the absence of glutathione, while a bi-adduct was observed for Pt(DACH)Cl2, which may be one of the reasons for their different biological activities. Hence, this study demonstrated that the NMR method combined with the LCMS technique could provide valuable information to understand the transport and the underlying anticancer mechanisms of the platinum(ii) complex at the molecular level. Moreover, the results reported here can help to reveal the binding mechanisms of the sterically hindered platinum(ii) compounds with biomolecules, which may shed light on the design of novel platinum(ii) anticancer agents with suitable sterically hindered groups.
Collapse
Affiliation(s)
- Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Fang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
6
|
Alshammari N, Platts JA. Theoretical study of copper binding to GHK peptide. Comput Biol Chem 2020; 86:107265. [PMID: 32371360 DOI: 10.1016/j.compbiolchem.2020.107265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
We report ligand field molecular mechanics, density functional theory and semi-empirical studies on the binding of Cu(II) to GlyHisLys (GHK) peptide. Following exhaustive conformational searching using molecular mechanics, we show that relative energy and geometry of conformations are in good agreement between GFN2-xTB semi-empirical and B3LYP-D DFT levels. Conventional molecular dynamics simulation of Cu-GHK shows the stability of the copper-peptide binding over 100 ps trajectory. Four equatorial bonds in 3N1O coordination remain stable throughout simulation, while a fifth in apical position from C-terminal carboxylate is more fluxional. We also show that the automated conformer and rotamer search algorithm CREST is able to correctly predict the metal binding position from a starting point consisting of separated peptide, copper and water.
Collapse
Affiliation(s)
- Nadiyah Alshammari
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
7
|
|
8
|
Molecular dynamics simulations of copper binding to amyloid-β Glu22 mutants. Heliyon 2019; 6:e03071. [PMID: 31909253 PMCID: PMC6940626 DOI: 10.1016/j.heliyon.2019.e03071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022] Open
Abstract
We report microsecond timescale ligand field molecular dynamics simulations of the copper complexes of three known mutants of the amyloid-β peptide, E22G, E22Q and E22K, alongside the naturally occurring sequence. We find that all three mutants lead to formation of less compact structures than the wild-type: E22Q is the most similar to the native peptide, while E22G and especially E22K are markedly different in size, shape and stability. Turn and coil structures dominate all structures studied but subtle differences in helical and β-sheet distribution are noted, especially in the C-terminal region. The origin of these changes is traced to disruption of key salt bridges: in particular, the Asp23-Lys28 bridge that is prevalent in the wild-type is absent in E22G and E22K, while Lys22 in the latter mutant forms a strong association with Asp23. We surmise that the drastically different pattern of salt bridges in the mutants lead to adoption of a different structural ensemble of the peptide backbone, and speculate that this might affect the ability of the mutant peptides to aggregate in the same manner as known for the wild-type.
Collapse
|
9
|
Shi H, Imberti C, Sadler PJ. Diazido platinum(iv) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00288j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diazido Pt(iv) complexes with a general formula [Pt(N3)2(L)(L′)(OR)(OR′)] are a new generation of anticancer prodrugs designed for use in photoactivated chemotherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
10
|
Tabrizi L, Zouchoune B, Zaiter A. Experimental and theoretical investigation of cyclometallated platinum(ii) complex containing adamantanemethylcyanamide and 1,4-naphthoquinone derivative as ligands: synthesis, characterization, interacting with guanine and cytotoxic activity. RSC Adv 2018; 9:287-300. [PMID: 35521610 PMCID: PMC9059274 DOI: 10.1039/c8ra08739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
A new cyclometallated platinum(ii) complex with 1-adamantanemethylcyanamide (1-ADpcydH) and 2-[amino(2-phenylpyridine)]-1,4-naphthoquinone (1,4-NQ) ligands with the formula cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was synthesized and fully characterized. Cellular uptake, DNA platination, and cytotoxicity against human MCF-7 breast, HepG-2 liver hepatocellular carcinoma, and HT-29 colon cancer cell lines were evaluated. The interaction of guanine (G) with cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) was studied by 195Pt NMR and mass spectroscopy. Furthermore, DFT calculations were performed on the complexes cis-Pt(1,4-NQ)(1-ADpcyd)(H2O) 1 and cis-Pt(1,4-NQ)(1-ADpcyd)(G) 2 using the BP86-D and B3LYP functionals, in order to gain deeper insights into the molecular and electronic structures. Decomposition energy analysis gave a clear understanding of the bonding within both complexes, showing that the interactions were governed by two-third ionic and one-third covalent characters, which were stronger between the guanine and the Pt(ii) center than those between water and the Pt(ii). A new cyclometallated platinum(ii) complex was synthesized and its characterization, interaction with guanine, and cytotoxic activity were investigated by experiment and theoretical calculations.![]()
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland Galway University Road Galway Ireland H91 TK33
| | - Bachir Zouchoune
- Laboratoire de Chimie appliquée et Technologie des Matériaux, Université Larbi Ben M'Hidi - Oum El Bouaghi 04000 Oum El Bouaghi Algeria .,Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| | - Abdallah Zaiter
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine (Mentouri) 25000 Constantine Algeria
| |
Collapse
|
11
|
Mutter ST, Turner M, Deeth RJ, Platts JA. Metal Binding to Amyloid-β 1-42: A Ligand Field Molecular Dynamics Study. ACS Chem Neurosci 2018; 9:2795-2806. [PMID: 29898363 DOI: 10.1021/acschemneuro.8b00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ligand field molecular mechanics simulation has been used to model the interactions of copper(II) and platinum(II) with the amyloid-β1-42 peptide monomer. Molecular dynamics over several microseconds for both metalated systems are compared to analogous results for the free peptide. Significant differences in structural parameters are observed, both between Cu and Pt bound systems as well as between free and metal-bound peptide. Both metals stabilize the formation of helices in the peptide as well as reducing the content of β secondary structural elements compared to the unbound monomer. This is in agreement with experimental reports of metals reducing β-sheet structures, leading to formation of amorphous aggregates over amyloid fibrils. The shape and size of the peptide structures also undergo noteworthy change, with the free peptide exhibiting globular-like structure, platinum(II) system adopting extended structures, and copper(II) system resulting in a mixture of conformations similar to both of these. Salt bridge networks exhibit major differences: the Asp23-Lys28 salt bridge, known to be important in fibril formation, has a differing distance profile within all three systems studied. Salt bridges in the metal binding region of the peptide are strongly altered; in particular, the Arg5-Asp7 salt bridge, which has an occurrence of 71% in the free peptide, is reduced to zero in the presence of both metals.
Collapse
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
12
|
Shi H, Romero-Canelón I, Hreusova M, Novakova O, Venkatesh V, Habtemariam A, Clarkson GJ, Song JI, Brabec V, Sadler PJ. Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorg Chem 2018; 57:14409-14420. [PMID: 30365308 PMCID: PMC6257630 DOI: 10.1021/acs.inorgchem.8b02599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series of dinuclear
octahedral PtIV complexes trans,trans,trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging
dicarboxylate [R = −CH2CH2– (1), trans-1,2-C6H10– (2), p-C6H4– (3), −CH2CH2CH2CH2– (4)] ligands have
been synthesized and characterized, including the X-ray crystal structures
of complexes 1·2MeOH and 4, the first
photoactivatable dinuclear PtIV complexes with azido ligands.
The complexes are highly stable in the dark, but upon photoactivation
with blue light (420 nm), they release the bridging ligand and mononuclear
photoproducts. Upon irradiation with blue light (465 nm), they generate
azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied
by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes
are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with
IC50 values of 8.8–78.3 μM, whereas cisplatin
is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward
cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably,
all of the complexes were relatively nontoxic toward normal cells
(MRC5 lung fibroblasts), with IC50 values >100 μM,
even after irradiation. The introduction of an aromatic bridging ligand
(3) significantly enhanced cellular uptake. The populations
in the stages of the cell cycle remained unchanged upon treatment
with complexes in the dark, while the population of the G2/M phase
increased upon irradiation, suggesting that DNA is a target for these
photoactivated dinuclear PtIV complexes. Liquid chromatography–mass
spectrometry data show that the photodecomposition pathway of the
dinuclear complexes results in the release of two molecules of mononuclear
platinum(II) species. As a consequence, DNA binding of the dinuclear
complexes after photoactivation in cell-free media is, in several
respects, qualitatively similar to that of the photoactivated mononuclear
complex FM-190. After photoactivation, they were 2-fold
more effective in quenching the fluorescence of EtBr bound to DNA,
forming DNA interstrand cross-links and unwinding DNA compared to
the photoactivated FM-190. Novel all-trans dinuclear
PtIV complexes bridged
by a dicarboxylate linker, highly stable in the dark, generate azidyl
and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic
to human cancer cells, whereas cisplatin was inactive under these
conditions and more photoactive toward cisplatin-resistant ovarian
cancer cells compared to wild-type cells. Remarkably, the dinuclear
complexes were relatively nontoxic toward normal human cells. Cell
cycle and DNA binding experiments suggested that DNA is a target.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K.,School of Pharmacy, Institute of Clinical Sciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Monika Hreusova
- Department of Biophysics, Faculty of Science , Palacky University , 17 listopadu 12 , Olomouc CZ-77146 , Czech Republic.,Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Olga Novakova
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Viktor Brabec
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
13
|
Vernooij RR, Joshi T, Horbury MD, Graham B, Izgorodina EI, Stavros VG, Sadler PJ, Spiccia L, Wood BR. Spectroscopic Studies on Photoinduced Reactions of the Anticancer Prodrug, trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (py) 2 ]. Chemistry 2018; 24:5790-5803. [PMID: 29314368 PMCID: PMC5947305 DOI: 10.1002/chem.201705349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 02/05/2023]
Abstract
The photodecomposition mechanism of trans,trans,trans-[Pt(N3 )2 (OH)2 (py)2 ] (1, py=pyridine), an anticancer prodrug candidate, was probed using complementary Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), transient electronic absorption, and UV/Vis spectroscopy. Data fitting using Principal Component Analysis (PCA) and Multi-Curve Resolution Alternating Least Squares, suggests the formation of a trans-[Pt(N3 )(py)2 (OH/H2 O)] intermediate and trans-[Pt(py)2 (OH/H2 O)2 ] as the final product upon 420 nm irradiation of 1 in water. Rapid disappearance of the hydroxido ligand stretching vibration upon irradiation is correlated with a -10 cm-1 shift to the antisymmetric azido vibration, suggesting a possible second intermediate. Experimental proof of subsequent dissociation of azido ligands from platinum is presented, in which at least one hydroxyl radical is formed in the reduction of PtIV to PtII . Additionally, the photoinduced reaction of 1 with the nucleotide 5'-guanosine monophosphate (5'-GMP) was comprehensively studied, and the identity of key photoproducts was assigned with the help of ATR-FTIR spectroscopy, mass spectrometry, and density functional theory calculations. The identification of marker bands for some of these photoproducts (e.g., trans-[Pt(N3 )(py)2 (5'-GMP)] and trans-[Pt(py)2 (5'-GMP)2 ]) will aid elucidation of the chemical and biological mechanism of anticancer action of 1. In general, these studies demonstrate the potential of vibrational spectroscopic techniques as promising tools for studying such metal complexes.
Collapse
Affiliation(s)
- Robbin R. Vernooij
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Michael D. Horbury
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Bim Graham
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | | | - Vasilios G. Stavros
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Leone Spiccia
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
| | - Bayden R. Wood
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
| |
Collapse
|
14
|
Ligand field molecular dynamics simulation of Pt(II)-phenanthroline binding to N-terminal fragment of amyloid-β peptide. PLoS One 2018; 13:e0193668. [PMID: 29509784 PMCID: PMC5839559 DOI: 10.1371/journal.pone.0193668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
We report microsecond timescale molecular dynamics simulation of the complex formed between Pt(II)-phenanthroline and the 16 N-terminal residues of the Aβ peptide that is implicated in the onset of Alzheimer’s disease, along with equivalent simulations of the metal-free peptide. Simulations from a variety of starting points reach equilibrium within 100 ns, as judged by root mean square deviation and radius of gyration. Platinum-bound peptides deviate rather more from starting points, and adopt structures with larger radius of gyration, than their metal-free counterparts. Residues bound directly to Pt show smaller fluctuation, but others actually move more in the Pt-bound peptide. Hydrogen bonding within the peptide is disrupted by binding of Pt, whereas the presence of salt-bridges are enhanced.
Collapse
|
15
|
Turner M, Deeth RJ, Platts JA. Prediction of ligand effects in platinum-amyloid-β coordination. J Inorg Biochem 2017; 173:44-51. [PMID: 28494276 DOI: 10.1016/j.jinorgbio.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six PtII-Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
16
|
Mutter ST, Deeth RJ, Turner M, Platts JA. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides. J Biomol Struct Dyn 2017; 36:1145-1153. [DOI: 10.1080/07391102.2017.1313780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
17
|
Synthesis, characterization, X-ray structural determination and theoretical study of the complexes [RuCp(8MTT-κS)LL′] (8MTT=8-methylthio-theophyllinate; L,L′=PTA, mPTA; L=mPTA, L′=PPh3; PTA=1,3,5-triaza-7-phosphaadamantane, mPTA=N-methyl-1,3,5-triaza-7-phosphaadamantane). Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.05.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Roosta S, Hashemianzadeh SM, Ketabi S. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:98-103. [PMID: 27287103 DOI: 10.1016/j.msec.2016.04.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
Abstract
Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution.
Collapse
Affiliation(s)
- Sara Roosta
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran, Iran
| | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran, Iran.
| | - Sepideh Ketabi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
19
|
Wang Z, Yu H, Gou S, Chen F, Fang L. Design, Synthesis, and Biological Features of Platinum(II) Complexes with Rigid Steric Hindrance. Inorg Chem 2016; 55:4519-28. [PMID: 27074104 DOI: 10.1021/acs.inorgchem.6b00361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of platinum(II) complexes, with N-monosubstituted 1R,2R-diaminocyclohexane bearing methoxy-substituted benzyl groups as carrier ligands, were designed and synthesized. The newly prepared compounds, with chloride anions as leaving groups, were found to be very active against the tested cancer cell lines, including a cisplatin-resistant cell line. Despite their efficacy against tumor cells, they also showed low toxicity to a human normal liver cell line. Among them, complex 1 had superior cytotoxic activity against A549, HCT-116, MCF-7, SGC7901, and SGC7901/CDDP cancer cell lines. The DNA binding assay is of further special interest, as an unusual monofunctional binding mode was found, due to the introduction of a rigid substituted aromatic ring in the 1R,2R-diaminocyclohexane framework as steric hindrance. The linkage of complex 1 with DNA was stable and insensitive to nucleophilic attack. Moreover, studies including cellular uptake, gel electrophoresis, apoptosis and cell cycle, and Western blot analysis have provided insight into the high potency of this compound.
Collapse
Affiliation(s)
- Zhimei Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering and ‡Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Haiyan Yu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering and ‡Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering and ‡Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering and ‡Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Lei Fang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering and ‡Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| |
Collapse
|
20
|
Alzahrani KAH, Deeth RJ. Molecular modeling of zinc paddlewheel molecular complexes and the pores of a flexible metal organic framework. J Mol Model 2016; 22:80. [PMID: 26979608 PMCID: PMC4792333 DOI: 10.1007/s00894-016-2949-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
Abstract
A new all-atom first-principles force field (FF) is constructed for the bimetallic, four-bladed zinc paddlewheel (ZPW) motif. Zinc-ligand interactions are described via Morse functions and the angular geometry at the metal centers is modeled with a pure ligand-ligand repulsion term. The ZPW-FF is principally based on 15 DFT-optimized model systems of general formula ZnPR.nL, where ZnP is the base Zn2(O2CR)4 unit, R = H, CH3 or CF3, L = NH3 or pyridine, and n = 0, 1 or 2. It correctly generates the distorted tetrahedral coordination of the uncapped [Zn2(O2CR)4] species in their ground states as well as giving reasonable structures and energies for the higher symmetry D4h transition state conformations. The zinc-ligand Morse function reference distance, r 0 , is further refined against 30 complexes located in the Cambridge Structural Database and this FF is applied to pore models of the flexible metal-organic framework (MOF) [Zn(bdc)2(dabco)]n (bdc = 1,4-benzendicarboxylate; dabco = 1,4-diazabicyclo(2.2.2)octane). A single pore model reproduces the unit cell of the evacuated MOF system while a 3×3 grid model is necessary to provide good agreement with the observed pronounced structural changes upon adsorption of either dimethylformamide or benzene.
Collapse
Affiliation(s)
- Khalid A H Alzahrani
- Inorganic Computational Chemistry Group, University of Warwick, Coventry, CV4 7AL, UK
| | - Robert J Deeth
- Inorganic Computational Chemistry Group, University of Warwick, Coventry, CV4 7AL, UK.
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| |
Collapse
|
21
|
Gandioso A, Shaili E, Massaguer A, Artigas G, González-Cantó A, Woods JA, Sadler PJ, Marchán V. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem Commun (Camb) 2016; 51:9169-72. [PMID: 25947177 DOI: 10.1039/c5cc03180j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new anticancer agent based on the conjugation of a photoactivatable Pt(IV) pro-drug to a cyclic RGD-containing peptide is described. Upon visible light irradiation, phototoxicity was induced preferentially in SK-MEL-28 melanoma cancer cells overexpressing αVβ3 integrin compared to control DU-145 human prostate carcinoma cells.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Turner M, Platts JA, Deeth RJ. Modeling of Platinum-Aryl Interaction with Amyloid-β Peptide. J Chem Theory Comput 2016; 12:1385-92. [PMID: 26756469 DOI: 10.1021/acs.jctc.5b01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ligand field molecular mechanics (LFMM), density functional theory (DFT), and semiempirical PM7 methods are used to study the binding of two Pt(II)-L systems to an N-terminal fragment of the amyloid-β peptide, where L = 2,2-bipyridyl or 1,10-phenanthroline. Molecular dynamics simulations are used to explore the conformational freedom of the peptide using LFMM combined with AMBER molecular mechanics parameters. We establish a modeling protocol, allowing for identification and analysis of favorable platinum-binding modes and peptide conformations. Preferred binding modes are identified for each ligand investigated; metal coordination occurs via Nε in His residues for both ligands--His6ε-His13ε and His6ε-His14ε for the bipyridyl and phenanthroline ligands, respectively. The observed change in binding mode for the different ligands suggests that the binding mode of these platinum-based structures can be controlled by the choice of ligand. In the bipy systems, Boltzmann population at 310 K is dominated by a single conformer, while in the phenanthroline case, three conformations make significant contributions to the ensemble. The relative stability of these conformations is due to the inherent stability of binding platinum via Nε in addition to subtle H-bonding effects.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - James A Platts
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Robert J Deeth
- Department of Chemistry, University of Warwick , Gibbet Hill, Coventry CV4 7AL, U.K
| |
Collapse
|
23
|
Shaili E, Fernández-Giménez M, Rodríguez-Astor S, Gandioso A, Sandín L, García-Vélez C, Massaguer A, Clarkson GJ, Woods JA, Sadler PJ, Marchán V. A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin. Chemistry 2015; 21:18474-86. [PMID: 26616265 DOI: 10.1002/chem.201502373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/07/2022]
Abstract
A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Marta Fernández-Giménez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Savina Rodríguez-Astor
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Lluís Sandín
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Carlos García-Vélez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Campus Montilivi, 17071, Girona (Spain)
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, Ninewells Hospital, Dundee, DD1 9SY (UK)
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK).
| | - Vicente Marchán
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain).
| |
Collapse
|
24
|
Target-selective delivery and activation of platinum-based anticancer agents. Future Med Chem 2015; 7:911-27. [DOI: 10.4155/fmc.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Foscato M, Deeth RJ, Jensen VR. Integration of Ligand Field Molecular Mechanics in Tinker. J Chem Inf Model 2015; 55:1282-90. [DOI: 10.1021/acs.jcim.5b00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Robert J. Deeth
- Inorganic Computational
Chemistry Group, Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, Great Britain
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
26
|
Margiotta N, Petruzzella E, Platts JA, Mutter ST, Deeth RJ, Ranaldo R, Papadia P, Marzilli PA, Marzilli LG, Hoeschele JD, Natile G. DNA fragment conformations in adducts with Kiteplatin. Dalton Trans 2015; 44:3544-56. [DOI: 10.1039/c4dt01796j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anticancer-active platinum complex with cis-1,4-diaminocyclohexane has proved to be very valuable in detecting multiple conformers in adducts with oligonucleotides.
Collapse
Affiliation(s)
- Nicola Margiotta
- Dipartimento di Chimica
- Università degli Studi di Bari A. Moro
- 70125 Bari
- Italy
| | | | | | | | | | - Rosa Ranaldo
- Dipartimento di Chimica
- Università degli Studi di Bari A. Moro
- 70125 Bari
- Italy
- Department of Chemistry
| | - Paride Papadia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- 73100 Lecce
- Italy
| | | | | | | | - Giovanni Natile
- Dipartimento di Chimica
- Università degli Studi di Bari A. Moro
- 70125 Bari
- Italy
| |
Collapse
|
27
|
Hajji L, Saraiba-Bello C, Serrano-Ruiz M, Romerosa A. Binuclear ruthenium complexes containing mPTA and alkyl-bis(8-thiotheophylline) derivatives (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane). J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.947970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lazhar Hajji
- Facultad de Ciencias Experimentales, Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| | - Cristobal Saraiba-Bello
- Facultad de Ciencias Experimentales, Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| | - Manuel Serrano-Ruiz
- Facultad de Ciencias Experimentales, Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| | - Antonio Romerosa
- Facultad de Ciencias Experimentales, Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| |
Collapse
|
28
|
Affiliation(s)
- Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
29
|
Lauria A, Bonsignore R, Terenzi A, Spinello A, Giannici F, Longo A, Almerico AM, Barone G. Nickel(ii), copper(ii) and zinc(ii) metallo-intercalators: structural details of the DNA-binding by a combined experimental and computational investigation. Dalton Trans 2014; 43:6108-19. [DOI: 10.1039/c3dt53066c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Hu W, Deng S, Huang J, Lu Y, Le X, Zheng W. Intercalative interaction of asymmetric copper(II) complex with DNA: Experimental, molecular docking, molecular dynamics and TDDFT studies. J Inorg Biochem 2013; 127:90-8. [DOI: 10.1016/j.jinorgbio.2013.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
|
31
|
Ćendić M, Matović ZD, Deeth RJ. Molecular modeling for Cu(II)-aminopolycarboxylate complexes: Structures, conformational energies, and ligand binding affinities. J Comput Chem 2013; 34:2687-96. [DOI: 10.1002/jcc.23437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Marina Ćendić
- Department of Chemistry, Faculty of Science; University of Kragujevac; Kragujevac SRB-34000 Serbia
| | - Zoran D. Matović
- Department of Chemistry, Faculty of Science; University of Kragujevac; Kragujevac SRB-34000 Serbia
| | - Robert J. Deeth
- Department of Chemistry, Inorganic Computational Chemistry Group; University of Warwick; Coventry CV4 7AL United Kingdom
| |
Collapse
|
32
|
Smith NA, Sadler PJ. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120519. [PMID: 23776303 PMCID: PMC3685452 DOI: 10.1098/rsta.2012.0519] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal-carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)--a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.
Collapse
|
33
|
Do H, Deeth RJ, Besley NA. Computational study of the structure and electronic circular dichroism spectroscopy of blue copper proteins. J Phys Chem B 2013; 117:8105-12. [PMID: 23773120 DOI: 10.1021/jp404107j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of the electronic circular dichroism (CD) spectra of the oxidized form of the blue copper proteins plastocyanin and cucumber basic protein and the relationship between the observed spectral features and the structure of the active site of the protein is investigated. Excitation energies and transition strengths are computed using multireference configuration interaction, and it is shown that computed spectra based on coordinates from the crystal structure or a single structure optimized in quantum mechanics/molecular mechanics (QM/MM) or ligand field molecular mechanics (LFMM) are qualitatively incorrect. In particular, the rotational strength of the ligand to metal charge transfer band is predicted to be too small or have the incorrect sign. By considering calculations on active site models with modified structures, it is shown that the intensity of this band is sensitive to the nonplanarity of the histidine and cysteine ligands coordinated to copper. Calculation of the ultraviolet absorption and CD spectra based upon averaging over many structures drawn from a LFMM molecular dynamics simulation are in good agreement with experiment, and superior to analogous calculations based upon structures from a classical molecular dynamics simulation. This provides evidence that the LFMM force field provides an accurate description of the molecular dynamics of these proteins.
Collapse
Affiliation(s)
- Hainam Do
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
34
|
Guerrero E, Miranda S, Lüttenberg S, Fröhlich N, Koenen JM, Mohr F, Cerrada E, Laguna M, Mendía A. trans-Thionate Derivatives of Pt(II) and Pd(II) with Water-Soluble Phosphane PTA and DAPTA Ligands: Antiproliferative Activity against Human Ovarian Cancer Cell Lines. Inorg Chem 2013; 52:6635-47. [DOI: 10.1021/ic4006746] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Guerrero
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Susana Miranda
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Sebastian Lüttenberg
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Fachbereich C Anorganiche Chemie, Bergische Univesität Wuppertal, 42119 Wuppertal,
Germany
| | - Nils Fröhlich
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Fachbereich C Anorganiche Chemie, Bergische Univesität Wuppertal, 42119 Wuppertal,
Germany
| | - Jan-Moritz Koenen
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Fachbereich C Anorganiche Chemie, Bergische Univesität Wuppertal, 42119 Wuppertal,
Germany
| | - Fabian Mohr
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
- Fachbereich C Anorganiche Chemie, Bergische Univesität Wuppertal, 42119 Wuppertal,
Germany
| | - Elena Cerrada
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Mariano Laguna
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Aránzazu Mendía
- Departamento de Química,
Área de Química Inorgánica, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| |
Collapse
|
35
|
Sgarbossa P, Sbovata SM, Bertani R, Mozzon M, Benetollo F, Marzano C, Gandin V, Michelin RA. Novel imino thioether complexes of platinum(II): synthesis, structural investigation, and biological activity. Inorg Chem 2013; 52:5729-41. [PMID: 23647564 DOI: 10.1021/ic3024452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reactions of the nitrile complexes cis- and trans-[PtCl2(NCR)2] (R = Me, Et, CH2Ph, Ph) with an excess of ethanethiol, EtSH, in the presence of a catalytic amount of n-BuLi in tetrahydrofuran (THF), afforded in good yield the bis-imino thioether derivatives cis-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (1), Et (2), CH2Ph (3), Ph (4)) and trans-[PtCl2{E-N(H)═C(SEt)R}2] (R = Me (5), Et (6), CH2Ph (7), Ph (8)). The imino thioether ligands assumed the E configuration corresponding to a cis addition of the thiol to the nitrile triple bond. The spectroscopic properties of these complexes have been reported along with the molecular structures of 1, 2, and 7 as established by X-ray crystallography which indicated that these compounds exhibit square-planar coordination geometry around the platinum center. Four N-H···Cl intermolecular contacts (N-H···Cl ca. 2.5-2.7 Å) between each chlorine atom and the N-H proton of the imino thioether ligand gave rise to "dimers" Pt2Cl4L4 (L = imino thioether) formed by two PtCl2L2 units. The cytotoxic properties of these new platinum(II) complexes were evaluated against various human cancer cell lines. Among all derivatives, trans-[PtCl2{E-N(H)═C(SEt)CH2Ph}2] showed the greatest in vitro cytotoxic activity being able to decrease cancer cell viability roughly 3-fold more effectively than cisplatin.
Collapse
Affiliation(s)
- Paolo Sgarbossa
- Department of Industrial Engineering, University of Padua, Via F. Marzolo, 9, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li H, Bu X, Lu J, Xu C, Wang X, Yang X. Interaction study of ciprofloxacin with human telomeric DNA by spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:227-234. [PMID: 23434548 DOI: 10.1016/j.saa.2013.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
The interaction of ciprofloxacin (CIP) with human telomeric DNA was studied in vitro using multi-spectroscopy and molecular modeling methods. The hypochromic effect with a red shift in ultraviolet (UV) absorption indicated the occurrence of the interaction between CIP and DNA. The fluorescence quenching of CIP was observed with the addition of DNA and was proved to be the static quenching. The binding constant was found to be 9.62×10(4) L mol(-1). Electrospray ionization mass spectrometry (ESI-MS) result further confirmed the formation of 1:1 non-covalent complex between DNA and CIP. Combined with the UV melting results, circular dichroism (CD) results confirmed the existence of groove binding mode, as well as conformational changes of DNA. Molecular docking studies illustrated the visual display of the CIP binding to the GC region in the minor groove of DNA. Specific hydrogen bonds and van der Waals forces were demonstrated as main acting forces between CIP and guanine bases of DNA.
Collapse
Affiliation(s)
- Huihui Li
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| | | | | | | | | | | |
Collapse
|
37
|
Lindahl SE, Park H, Pink M, Zaleski JM. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics. J Am Chem Soc 2013; 135:3826-33. [PMID: 23432635 DOI: 10.1021/ja308190q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and resulting cisplatin-like byproduct represents an intriguing new strategy for potential dual-threat metalloenediyne therapeutics.
Collapse
Affiliation(s)
- Sarah E Lindahl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Butler JS, Woods JA, Farrer NJ, Newton ME, Sadler PJ. Tryptophan Switch for a Photoactivated Platinum Anticancer Complex. J Am Chem Soc 2012; 134:16508-11. [DOI: 10.1021/ja3074159] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Julie A. Woods
- Photobiology Unit, Department
of Dermatology, Ninewells Hospital, Dundee
DD1 9SY, U.K
| | | | | | | |
Collapse
|