1
|
Shimizu T, Wang H, Wakamatsu K, Ohkata S, Tanifuji N, Yoshikawa H. Electrochemically driven physical properties of solid-state materials: action mechanisms and control schemes. Dalton Trans 2024; 53:16772-16796. [PMID: 39041779 DOI: 10.1039/d4dt01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The various physical properties recently induced by solid-state electrochemical reactions must be comprehensively understood, and their mechanisms of action should be elucidated. Reversible changes in conductivity, magnetism, and colour have been achieved by combining the redox reactions of d metal ions and organic materials, as well as the molecular and crystal structures of solids. This review describes the electrochemically driven physical properties of conductors, magnetic materials, and electrochromic materials using various electrochemical devices.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Heng Wang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Katsuhiro Wakamatsu
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Shunsuke Ohkata
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Naoki Tanifuji
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Hirofumi Yoshikawa
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| |
Collapse
|
2
|
Verma P, Bannon MS, Kuenen MK, Raj S, Dhakal A, Stone K, Nichols AW, Machan CW, Colón YJ, Letteri RA, Giri G. Expanding the Design Space of Polymer-Metal Organic Framework (MOF) Gels by Understanding Polymer-MOF Interactions. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9356-9369. [PMID: 39398372 PMCID: PMC11467831 DOI: 10.1021/acs.chemmater.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024]
Abstract
The fabrication of polymer-MOF composite gels holds great potential to provide emergent properties for drug delivery, environmental remediation, and catalysis. To leverage the full potential of these composites, we investigated how the presence and chemistry of polymers impact MOF formation within the composites and, in turn, how MOFs impact polymer gelation. We show that polymers with a high density of strongly metal-binding carboxylic acids inhibit MOF formation; however, reducing the density of carboxylic acids or substituting them with weaker metal-binding hydroxyl groups permits both MOF formation and gelation within composites. Preparing composites with poly(ethylene glycol) (PEG), which does not bind MOF zirconium (Zr)-oxo clusters, and observing gelation suggests that MOFs can entrap polymer chains to create cross-links in addition to cross-linking them through polymer-Zr-oxo interactions. Both simulations and experiments show composite hydrogels formed with poly(vinyl alcohol) (PVA) to be more stable than those made with PEG, which can reptate through MOF pores upon heating. We demonstrate the generalizability of this composite formation process across different Zr-based MOFs (UiO-66, NU-901, UiO-67, and MOF-525) and by spin-coating gels into conformable films. PVA-UiO-66 composite hydrogels demonstrated high sorption and sustained release of methylene blue relative to the polymer alone (3× loading, 28× slower release), and PVA-MOF-525 composite hydrogels capably sorb the therapeutic peptide Angiotensin 1-7. By understanding the influence of polymer-MOF interactions on the structure and properties of composite gels, this work informs and expands the design space of this emerging class of materials.
Collapse
Affiliation(s)
- Prince Verma
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark S. Bannon
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mara K. Kuenen
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Sanoj Raj
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame ,Indiana46556, United States
| | - Ankit Dhakal
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kevin Stone
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Asa W. Nichols
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W. Machan
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yamil J. Colón
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame ,Indiana46556, United States
| | - Rachel A. Letteri
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Gaurav Giri
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
3
|
Gao P, Hussain MZ, Zhou Z, Warnan J, Elsner M, Fischer RA. Zr-based metalloporphyrin MOF probe for electrochemical detection of parathion-methyl. Biosens Bioelectron 2024; 261:116515. [PMID: 38909444 DOI: 10.1016/j.bios.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
An electrochemical (EC) sensor based on metalloporphyrin metal-organic framework (MOF) for the detection of parathion-methyl (PM) has been developed. The prepared MOF-525(Fe) exhibits great signal enhancement toward the electrochemical detection of PM owing to its unique structural properties and electrochemical activities. Under optimal experimental conditions, the as-prepared MOF-525(Fe) based EC sensor exhibited excellent PM sensing performance with a wide linear detection range (0.1 μM-100 μM) and low limit of detection (LOD, 1.4 nM). Compared to its corresponding Fe metalloporphyrin (linker), MOF-525(Fe) exhibited a superior sensitivity (28.31 μA cm-2·μM-1), which is 3.7 times higher than the sensitivity of FeTCPP linker (7.56 μA cm-2·μM-1) towards PM. The improved performance is associated with the high specific surface area and the large pore channels of MOF-525(Fe) facilitating a better interaction between PM and the Fe metalloporphyrin active sites, especially in the lower concentration range. Moreover, a possible affinity of the PM molecules toward Zr6 clusters may also contribute to the selective enrichment of PM on MOF-525(Fe). This EC sensor further demonstrated high selectivity in the presence of interfering molecules. The recovery results further confirm accurate PM sensing in actual samples, which suggests promising applications for the rapid detection of environmental organophosphates by metalloporphyrin MOFs.
Collapse
Affiliation(s)
- Pan Gao
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Mian Zahid Hussain
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Julien Warnan
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Roland A Fischer
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
4
|
Ficarra G, Sciortino A, Barbata LG, Ettlinger R, De Michele V, Marin E, Cannas M, Morris RE, Buscarino G. Unveiling MOF-808 photocycle and its interaction with luminescent guests. Phys Chem Chem Phys 2024; 26:22269-22277. [PMID: 39136117 DOI: 10.1039/d4cp02279c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The world of metal-organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet-singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.
Collapse
Affiliation(s)
- G Ficarra
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - A Sciortino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - L G Barbata
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R Ettlinger
- TUM School of Natural Sciences, Technical University of Munich Lichtenbergstr. 4, 85748 Garching b. München, Germany
| | - V De Michele
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - E Marin
- Université Jean Monnet, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, 42000 Saint-Etienne, France
| | - M Cannas
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - R E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, UK
| | - G Buscarino
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| |
Collapse
|
5
|
Wei Z, Zhu J, He Y, Lai J, Pan B, Feng K, Chen L, Cao L, Wang Y, Qian K. Improving the efficiency and environmental safety of emamectin benzoate through a pH-responsive metal-organic framework microencapsulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134847. [PMID: 38885583 DOI: 10.1016/j.jhazmat.2024.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.
Collapse
Affiliation(s)
- Zheng Wei
- College of Plant Protection, Southwest University, Chongqing 400715, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China
| | - Jingxuan Zhu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jie Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Bingjie Pan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kaiyang Feng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lihan Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lidong Cao
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China.
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, China.
| |
Collapse
|
6
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
7
|
Liu Z, Xing C, Wu S, Ma M, Tian J. Biphenyl tetracarboxylic acid-based metal-organic frameworks: a case of topology-dependent thermal expansion. MATERIALS HORIZONS 2024; 11:3345-3351. [PMID: 38683199 DOI: 10.1039/d3mh02185h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The large inherent flexibility and highly modular nature of metal-organic frameworks (MOFs) make them ideal candidates for the study of negative thermal expansion (NTE). Among diverse organic ligands, the biphenyl unit, which can unrestrictedly rotate along its C-C single bond, can largely enhance the structural flexibility. Herein, we explored the thermal expansion behaviors of four indium biphenyl tetracarboxylates (BPTCs). Owing to the different dihedral angles of BPTC ligands and coordination mode of In3+, they show distinct topologies: InOF-1 (nti), InOF-2 (unc), InOF-12 (pts) and InOF-13 (nou). Intriguingly, it is found that the thermal expansion is highly dependent on the specific topology. The MOFs featuring mononuclear nodes show normal positive thermal expansion (PTE), and the magnitudes of coefficients follow the trend of InOF-2 < InOF-12 < InOF-13, inversely related to averaged molecular volumes. In contrast, the InOF-1, composed of a 1D chain of corner-shared InO6 octahedrons, shows pronounced NTE. Detailed high-resolution synchrotron powder X-ray diffraction and lattice dynamic analyses shed light on the fact that NTE in the InOF-1 is a synergy effect of the spring-like distortion of the inorganic 1D helical chain and twisting of the BPTC ligands. The present work shows how the topological arrangement of building blocks governs the thermal expansion behaviors.
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Shaowen Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Min Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
8
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
9
|
Wu W, Qin Z, Duan X, Qiu Y, Tang W, Xiong C, Shao ZW, Xiong L, Dai Z, Liu C. Structural Diversity in Ga/In-Hydroxamate Metal-Organic Materials. Inorg Chem 2024; 63:10414-10422. [PMID: 38772007 DOI: 10.1021/acs.inorgchem.4c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Developing metal-organic materials (MOMs) with chemical robustness is a prerequisite to exploring their intriguing properties and applications. As part of a continuing effort to construct robust MOMs featuring chelated building units, here we introduce a "bent" thiophene-2,5-dihydroxamate ligand with multiple intrinsic conformations when it is used as a chelating linkage. This approach should further diversify the coordination chemistry in hydroxamate-based MOM structures without compromising the stability. In combination with Group 13 metals Ga/In to ensure homoleptic metal vertices, we report the successful crystallization of four MOMs with diverse structures and dimensionalities: SUM-81 as a 0D metal-organic polyhedron (MOP), SUM-82 as a 2D MOF with an fes topology, SUM-83 and SUM-84 as distinct 1D coordination polymers with shapes mimic stairs and mesh tubes, respectively. As these structures indeed contain the aforementioned different ligand conformations and combinations thereof, these results expand our understanding of the coordination chemistry of hydroxamates. To demonstrate the potential applicability of hydroxamate-chelated robust MOMs, the permanently porous SUM-81 MOP was successfully incorporated in a series of mixed matrix membranes for CO2/N2 separation, showing impressive performances.
Collapse
Affiliation(s)
- Wenjing Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zikang Qin
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Xiangping Duan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuqing Qiu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenlei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaozhi Xiong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen-Wu Shao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Li Xiong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongde Dai
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Cheng Z, He G, Liao R, Tan Y, Deng W. A sensitive immunosensing platform based on the high cathodic photoelectrochemical activity of Zr-MOF and dual-signal amplification of peroxidase-mimetic Fe-MOF. Bioelectrochemistry 2024; 157:108677. [PMID: 38430576 DOI: 10.1016/j.bioelechem.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Cathodic photoelectrochemical (PEC) analysis has received special concerns because of its outstanding anti-interference capability toward reductive substances in samples, so it is highly desirable to develop high-performance photocathodic materials for PEC analysis. Herein, a Zr-based metal-organic framework (Zr-MOF), MOF-525, is explored as a photoactive material in aqueous solution for the first time, which shows a narrow band-gap of 1.82 eV, excellent visible-light absorption, and high cathodic PEC activity. A sandwiched-type PEC immunosensor for detecting prostate-specific antigen (PSA) is fabricated by using MIL-101-NH2(Fe) label and MOF-525 photoactive material. MIL-101-NH2(Fe) as a typical Fe-MOF can serve as a peroxidase mimic to catalyze the production of precipitates on the photoelectrode. Both the produced precipitates and the MIL-101-NH2(Fe) labels can quench the photocathodic current, enabling "signal-off" immunosensing of PSA. The detection limit is 3 fg mL-1, and the linear range is between 10 fg mL-1 and 100 ng mL-1 for detecting PSA. The present study not only develops a high-performance Zr-MOF photoactive material for cathodic PEC analysis but also constructs a sensitive PEC immunosensing platform based on the dual-signal amplification of peroxidase-mimetic Fe-MOF.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
11
|
Romero-Angel M, Amrine R, Ávila-Bolívar B, Almora-Barrios N, Ganivet CR, Padial NM, Montiel V, Solla-Gullón J, Tatay S, Martí-Gastaldo C. Tailoring the efficiency of porphyrin molecular frameworks for the electroactivation of molecular N 2. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:10956-10964. [PMID: 38725524 PMCID: PMC11077505 DOI: 10.1039/d3ta07004b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
The combination of compositional versatility and topological diversity for the integration of electroactive species into high-porosity molecular architectures is perhaps one of the main appeals of metal-organic frameworks (MOFs) in the field of electrocatalysis. This premise has attracted much interest in recent years, and the results generated have also revealed one of the main limitations of molecular materials in this context: low stability under electrocatalytic conditions. Using zirconium MOFs as a starting point, in this work, we use this stability as a variable to discriminate between the most suitable electrocatalytic reaction and specific topologies within this family. Our results revealed that the PCN-224 family is particularly suitable for the electroreduction of molecular nitrogen for the formation of ammonia with faradaic efficiencies above 30% in the presence of Ni2+ sites, an activity that improves most of the catalysts described. We also introduce the fluorination of porphyrin at the meso position as a good alternative to improve both the activity and stability of this material under electrocatalytic conditions.
Collapse
Affiliation(s)
- María Romero-Angel
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Roumayssa Amrine
- Institute of Electrochemistry, University of Alicante Apdo. 99 E-03080 Alicante Spain
| | - Beatriz Ávila-Bolívar
- Institute of Electrochemistry, University of Alicante Apdo. 99 E-03080 Alicante Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Carolina R Ganivet
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Vicente Montiel
- Institute of Electrochemistry, University of Alicante Apdo. 99 E-03080 Alicante Spain
| | - José Solla-Gullón
- Institute of Electrochemistry, University of Alicante Apdo. 99 E-03080 Alicante Spain
| | - Sergio Tatay
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de València c/Catedrático José Beltrán, 2 46980 Paterna Spain
| |
Collapse
|
12
|
Boström HLB, Emmerling S, Heck F, Koschnick C, Jones AJ, Cliffe MJ, Al Natour R, Bonneau M, Guillerm V, Shekhah O, Eddaoudi M, Lopez-Cabrelles J, Furukawa S, Romero-Angel M, Martí-Gastaldo C, Yan M, Morris AJ, Romero-Muñiz I, Xiong Y, Platero-Prats AE, Roth J, Queen WL, Mertin KS, Schier DE, Champness NR, Yeung HHM, Lotsch BV. How Reproducible is the Synthesis of Zr-Porphyrin Metal-Organic Frameworks? An Interlaboratory Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304832. [PMID: 37669645 DOI: 10.1002/adma.202304832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Present address: Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Sebastian Emmerling
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Fabian Heck
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Andrew J Jones
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rawan Al Natour
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mickaële Bonneau
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Javier Lopez-Cabrelles
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - María Romero-Angel
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Minliang Yan
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda J Morris
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ignacio Romero-Muñiz
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ying Xiong
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jocelyn Roth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Kalle S Mertin
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Haus D, 81377, Munich, Germany
| |
Collapse
|
13
|
Heaney MP, Johnson HM, Knapp JG, Bang S, Seifert S, Yaw NS, Li J, Farha OK, Zhang Q, Moreau LM. Uranyl uptake into metal-organic frameworks: a detailed X-ray structural analysis. Dalton Trans 2024; 53:5495-5506. [PMID: 38415508 DOI: 10.1039/d3dt04284g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.
Collapse
Affiliation(s)
- Matthew P Heaney
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Shinhyo Bang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Soenke Seifert
- X-ray sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Natalie S Yaw
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Jiahong Li
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| |
Collapse
|
14
|
Lin H, Yang Y, Hsu YC, Zhang J, Welton C, Afolabi I, Loo M, Zhou HC. Metal-Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209073. [PMID: 36693232 DOI: 10.1002/adma.202209073] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.
Collapse
Affiliation(s)
- Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Welton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ibukun Afolabi
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Marshal Loo
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
15
|
Koschnick C, Terban MW, Canossa S, Etter M, Dinnebier RE, Lotsch BV. Influence of Water Content on Speciation and Phase Formation in Zr-Porphyrin-Based MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210613. [PMID: 36930851 DOI: 10.1002/adma.202210613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Controlled synthesis of phase-pure metal-organic frameworks (MOFs) is essential for their application in technological areas such as catalysis or gas sorption. Yet, knowledge of their phase formation and growth remain rather limited, particularly with respect to species such as water whose vital role in MOF synthesis is often neglected. As a consequence, synthetic protocols often lack reproducibility when multiple MOFs can form from the same metal source and linker, and phase mixtures are obtained with little or no control over their composition. In this work, the role of water in the formation of the Zr-porphyrin MOF disordered PCN-224 (dPCN-224) is investigated. Through X-ray total scattering and scanning electron microscopy, it is observed that dPCN-224 forms via a metal-organic intermediate that consists of Zr6O4(OH)4 clusters linked by tetrakis(4-carboxy-phenyl)porphyrin molecules. Importantly, water is not only essential to the formation of Zr6O4(OH)4 clusters, but it also plays a primary role in dictating the formation kinetics of dPCN-224. This multidisciplinary approach to studying the speciation of dPCN-224 provides a blueprint for how Zr-MOF synthesis protocols can be assessed and their reproducibility increased, and highlights the importance of understanding the role of water as a decisive component in Zr-MOF formation.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| | - Maxwell W Terban
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Stefano Canossa
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Martin Etter
- German Electron Synchrotron (DESY), Notkestraße 85, D-22607, Hamburg, Germany
| | - Robert E Dinnebier
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| |
Collapse
|
16
|
Geng X, Li Y, Wang R, Jiang S, Liang Y, Li T, Li C, Tao J, Li Z. Enhanced High-Fructose Corn Syrup Production: Immobilizing Serratia marcescens Glucose Isomerase on MOF (Co)-525 Reduces Co 2+ Dependency in Glucose Isomerization to Fructose. Foods 2024; 13:527. [PMID: 38397503 PMCID: PMC10888103 DOI: 10.3390/foods13040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating demand for processed foods has led to the widespread industrial use of glucose isomerase (GI) for high-fructose corn syrup (HFCS) production. This reliance on GIs necessitates continual Co2+ supplementation to sustain high catalytic activity across multiple reaction cycles. In this study, Serratia marcescens GI (SmGI) was immobilized onto surfaces of the metal-organic framework (MOF) material MOF (Co)-525 to generate MOF (Co)-525-GI for use in catalyzing glucose isomerization to generate fructose. Examination of MOF (Co)-525-GI structural features using scanning electron microscopy-energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and ultraviolet spectroscopy revealed no structural changes after SmGI immobilization and the addition of Co2+. Notably, MOF (Co)-525-GI exhibited optimal catalytic activity at pH 7.5 and 70 °C, with a maximum reaction rate (Vmax) of 37.24 ± 1.91 μM/min and Km value of 46.25 ± 3.03 mM observed. Remarkably, immobilized SmGI exhibited sustained high catalytic activity over multiple cycles without continuous Co2+ infusion, retaining its molecular structure and 96.38% of its initial activity after six reaction cycles. These results underscore the potential of MOF (Co)-525-GI to serve as a safer and more efficient immobilized enzyme technology compared to traditional GI-based food-processing technologies.
Collapse
Affiliation(s)
- Xu Geng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Ruizhe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.W.); (C.L.)
| | - Song Jiang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Yingchao Liang
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| | - Chen Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.W.); (C.L.)
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co., Ltd., Changchun 130033, China; (Y.L.); (Y.L.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (X.G.); (S.J.); (T.L.)
| |
Collapse
|
17
|
Wang D, Wang J, Gao XJ, Ding H, Yang M, He Z, Xie J, Zhang Z, Huang H, Nie G, Yan X, Fan K. Employing Noble Metal-Porphyrins to Engineer Robust and Highly Active Single-Atom Nanozymes for Targeted Catalytic Therapy in Nasopharyngeal Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310033. [PMID: 37994246 DOI: 10.1002/adma.202310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Single-atom nanozymes (SANzymes) emerge as promising alternatives to conventional enzymes. However, chemical instability limits their application. Here, a systematic synthesis of highly active and stable SANzymes is presented by leveraging noble metal-porphyrins. Four noble metal-porphyrins are successfully synthesized to mimic the active site of natural peroxidases through atomic metal-N coordination anchored to the porphyrin center. These noble metal-porphyrins are integrated into a stable and biocompatible Zr-based metal-organic framework (MxP, x denoting Ir, Ru, Pt, and Pd). Among these, MIrP demonstrates superior peroxidase-like activity (685.61 U mg-1 ), catalytic efficiency, and selectivity compared to horseradish peroxidase (267.71 U mg-1 ). Mechanistic investigations unveil heightened catalytic activity of MIrP arises from its robust H2 O2 adsorption capacity, unique rate-determining step, and low energy threshold. Crucially, MIrP exhibits remarkable chemical stability under both room temperature and high H2 O2 concentrations. Further, through modification with (-)-Epigallocatechin-3-Gallate, a natural ligand for Epstein-Barr virus (EBV)-encoded latent membrane protein 1, targeted SANzyme (MIrPHE) tailored for EBV-associated nasopharyngeal carcinoma is engineered. This study not only presents an innovative strategy for augmenting the catalytic activity and chemical stability of SANzymes but also highlights the substantial potential of MIrP as a potent nanomedicine for targeted catalytic tumor therapy.
Collapse
Affiliation(s)
- Daji Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Hui Ding
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Ming Yang
- Department of Otolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haibing Huang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xiyun Yan
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kelong Fan
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
18
|
Hemmer K, Kronawitter SM, Grover N, Twamley B, Cokoja M, Fischer RA, Kieslich G, Senge MO. Understanding and Controlling Molecular Compositions and Properties in Mixed-Linker Porphyrin Metal-Organic Frameworks. Inorg Chem 2024; 63:2122-2130. [PMID: 38205788 DOI: 10.1021/acs.inorgchem.3c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Porphyrin-based metal-organic frameworks (MOFs) are attractive materials for photo- and thermally activated catalysis due to their unique structural features related to the porphyrin moiety, guest-accessible porosity, and high chemical tunability. In this study, we report the synthetic incorporation of nonplanar β-ethyl-functionalized porphyrin linkers into the framework structure of PCN-222, obtaining a solid-solution series of materials with different modified linker contents. Comprehensive analysis by a combination of characterization techniques, such as NMR, UV-vis and IR spectroscopy, powder X-ray diffraction, and N2 sorption analysis, allows for the confirmation of linker incorporation. A detailed structural analysis of intrinsic material properties, such as the thermal response of the different materials, underlines the complexity of synthesizing and understanding such materials. This study presents a blueprint for synthesizing and analyzing porphyrin-based mixed-linker MOF systems and highlights the hurdles of characterizing such materials.
Collapse
Affiliation(s)
- Karina Hemmer
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Silva M Kronawitter
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin D02R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Mirza Cokoja
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Roland A Fischer
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Gregor Kieslich
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
19
|
Shiraishi K, Otsubo K, Kato K, Sadakiyo M. A novel threefold interpenetrated zirconium metal-organic framework exhibiting separation ability for strong acids. Chem Sci 2024; 15:1441-1448. [PMID: 38274054 PMCID: PMC10806781 DOI: 10.1039/d3sc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We report on the synthesis and selective adsorption property of a novel threefold interpenetrated Zr-based metal-organic framework (MOF), [Zr12O8(OH)8(HCOO)15(BPT)3] (BPT3- = [1,1'-biphenyl]-3,4',5-tricarboxylate) (abbreviated as Zr-BPT). This MOF shows a high tolerance to acidic conditions and has permanent pores, the size of which (approx. <5.6 Å) is the smallest ever reported among porous Zr-based MOFs with high acid tolerance. Zr-BPT selectively adsorbs aryl acids due to its strong affinity for them and exhibits separation ability, even between strong acid molecules, such as sulfonic and phosphonic acids. This is the first demonstration of a MOF exhibiting selective adsorption and separation ability for strong acids.
Collapse
Affiliation(s)
- Kyoko Shiraishi
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Kazuya Otsubo
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Kenichi Kato
- RIKEN SPring-8 Center Sayo-gun Hyogo 679-5148 Japan
| | - Masaaki Sadakiyo
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
20
|
Zheng HL, Zhao JQ, Sun YY, Zhang AA, Cheng YJ, He L, Bu X, Zhang J, Lin Q. Multilevel-Regulated Metal-Organic Framework Platform Integrating Pore Space Partition and Open-Metal Sites for Enhanced CO 2 Photoreduction to CO with Nearly 100% Selectivity. J Am Chem Soc 2023; 145:27728-27739. [PMID: 38055725 PMCID: PMC10739999 DOI: 10.1021/jacs.3c10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Rational design and regulation of atomically precise photocatalysts are essential for constructing efficient photocatalytic systems tunable at both the atomic and molecular levels. Herein, we propose a platform-based strategy capable of integrating both pore space partition (PSP) and open-metal sites (OMSs) as foundational features for constructing high-performance photocatalysts. We demonstrate the first structural prototype obtained from this strategy: pore-partitioned NiTCPE-pstp (TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene, pstp = partitioned stp topology). Nonpartitioned NiTCPE-stp is constructed from six-connected [Ni3(μ3-OH)(COO)6] trimer and TCPE linker to form 1D hexagonal channels with six coplanar OMSs directed at channel centers. After introducing triangular pore-partitioning ligands, half of the OMSs were retained, while the other half were used for PSP, leading to unprecedented microenvironment regulation of the pore structure. The resulting material integrates multiple advanced properties, including robustness, wider absorption range, enhanced electronic conductivity, and high CO2 adsorption, all of which are highly desirable for photocatalytic applications. Remarkably, NiTCPE-pstp exhibits excellent CO2 photoreduction activity with a high CO generation rate of 3353.6 μmol g-1 h-1 and nearly 100% selectivity. Theoretical and experimental studies show that the introduction of partitioning ligands not only optimizes the electronic structure to promote the separation and transfer of photogenerated carriers but also reduces the energy barrier for the formation of *COOH intermediates while promoting CO2 activation and CO desorption. This work is believed to be the first example to integrate PSP strategies and OMSs within metal-organic framework (MOF) photocatalysts, which provides new insight as well as new structural prototype for the design and performance optimization of MOF-based photocatalysts.
Collapse
Affiliation(s)
- Hui-Li Zheng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Yong Sun
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - An-An Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Yu-Jia Cheng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Liang He
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Xianhui Bu
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, California 90840, United States
| | - Jian Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| | - Qipu Lin
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
21
|
Xia J, Si J, Zhou K, Xia HL, Zhang J, Xu Y, Wang L, Liu XY. Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Trans 2023; 52:17679-17683. [PMID: 37997636 DOI: 10.1039/d3dt03348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.
Collapse
Affiliation(s)
- Jun Xia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Yingqian Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| |
Collapse
|
22
|
De S, Mouchaham G, Liu F, Affram M, Abeykoon B, Guillou N, Jeanneau E, Grenèche JM, Khrouz L, Martineau-Corcos C, Boudjema L, Salles F, Salcedo-Abraira P, Valente G, Souto M, Fateeva A, Devic T. Expanding the horizons of porphyrin metal-organic frameworks via catecholate coordination: exploring structural diversity, material stability and redox properties. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25465-25483. [PMID: 38037625 PMCID: PMC10683559 DOI: 10.1039/d3ta04490d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.
Collapse
Affiliation(s)
- Siddhartha De
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Georges Mouchaham
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Fangbing Liu
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Maame Affram
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Brian Abeykoon
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Nathalie Guillou
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université Le Mans Cedex 9 F-72085 France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 F-69342 Lyon France
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | | | | | - Pablo Salcedo-Abraira
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| | - Gonçalo Valente
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Alexandra Fateeva
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| |
Collapse
|
23
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
24
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Chan CH, Wong HH, Huang B. Progress on Single-Atom Photocatalysts for H 2 Generation: Material Design, Catalytic Mechanism, and Perspectives. SMALL METHODS 2023; 7:e2300430. [PMID: 37653620 DOI: 10.1002/smtd.202300430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Solar energy utilization is of great significance to current challenges of the energy crisis and environmental pollution, which benefit the development of the global community to achieve carbon neutrality goals. Hydrogen energy is also treated as a good candidate for future energy supply since its combustion not only supplies high-density energy but also shows no pollution gas. In particular, photocatalytic water splitting has attracted increasing research as a promising method for H2 production. Recently, single-atom (SA) photocatalysts have been proposed as a potential solution to improve catalytic efficiency and lower the costs of photocatalytic water splitting for H2 generation. Owing to the maximized atom utilization rate, abundant surface active sites, and tunable coordination environment, SA photocatalysts have achieved significant progress. This review reviews developments of advanced SA photocatalysts for H2 generation regarding the different support materials. The recent progress of titanium dioxide, metal-organic frameworks, two-dimensional carbon materials, and red phosphorus supported SA photocatalysts are carefully discussed. In particular, the material designs, reaction mechanisms, modulation strategies, and perspectives are highlighted for realizing improved solar-to-energy efficiency and H2 generation rate. This work will supply significant references for future design and synthesis of advanced SA photocatalysts.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Cheuk Hei Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Hon Ho Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Research Centre for Carbon-Strategic Catalysis (RC-CSC), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
26
|
Attallah AG, Bon V, Maity K, Hirschmann E, Butterling M, Wagner A, Kaskel S. Unravelling the Water Adsorption Mechanism in Hierarchical MOFs: Insights from In Situ Positron Annihilation Lifetime Studies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48264-48276. [PMID: 37796977 PMCID: PMC10591278 DOI: 10.1021/acsami.3c10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Atmospheric water harvesting with metal-organic frameworks (MOFs) is a new technology providing a clean, long-term water supply in arid areas. In-situ positron annihilation lifetime spectroscopy (PALS) is proposed as a valid methodology for the mechanistic understanding of water sorption in MOFs and the selection of prospective candidates for desired applications. DUT-67-Zr and DUT-67-Hf frameworks are used as model systems for method validation because of their hierarchical pore structure, high adsorption capacity, and chemical stability. Both frameworks are characterized using complementary techniques, such as nitrogen (77 K) and water vapor (298 K) physisorption, SEM, and PXRD. DUT-67-Zr and DUT-67-Hf are investigated by PALS upon exposure to humidity for the first time, demonstrating the stepwise pore filling mechanism by water molecules for both MOFs. In addition to exploring the potential of PALS as a tool for probing MOFs during in situ water loading, this work offers perspectives on the design and use of MOFs for water harvesting.
Collapse
Affiliation(s)
- Ahmed G. Attallah
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
- Physics
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
| | - Kartik Maity
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
| | - Eric Hirschmann
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Maik Butterling
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Andreas Wagner
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiation Physics, Dresden 01328, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstrasse 66, Dresden D-01062, Germany
- Fraunhofer
Institute for Material and Beam Technology IWS, Winterbergstraße 28, Dresden D01277, Germany
| |
Collapse
|
27
|
Chen C, Mo Q, Wang Y, Zhang L. Cooperative Catalytic Alkyne Hydrosilylation by a Porphyrinic Metal-Organic Framework Composite. Inorg Chem 2023; 62:16882-16889. [PMID: 37796722 DOI: 10.1021/acs.inorgchem.3c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Vinylsilanes are valuable building blocks and important structural units in organic chemistry. Herein, catalytic alkyne hydrosilylation was reported to be promoted by a porphyrin metal-organic framework with the incorporation of Pd nanoparticles (Pd@Ir-PCN-222). Catalytic results showed that Pd@Ir-PCN-222 displayed high catalytic efficiency, giving rise to the E isomer vinylsilane with an excellent turnover frequency (TOF) of 2564 h-1. The mechanism studies revealed that the enhancement of the catalytic activity originated from the cooperation between iridium porphyrin and the Pd nanoparticle in confined spaces. The iridium porphyrin was prone to absorb and condense the hydrosilane and alkyne in the inner cavities of Ir-PCN-222, not only accelerating the reaction but also promoting the Pd nanoparticle to activate the Si-H and C≡C bonds of hydrosilane and alkyne, respectively.
Collapse
Affiliation(s)
- Chunying Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yufei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Liu J, Liu X, Liu Q, Cao J, Lv X, Wang S, Tian T, Zhou X, Deng H. Mesoporous Metal-Organic Frameworks for Catalytic RNA Deprotection and Activation. Angew Chem Int Ed Engl 2023; 62:e202302649. [PMID: 37338989 DOI: 10.1002/anie.202302649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
A metal-organic framework (MOF) with mespores (2 to 50 nm) allows the inclusion of large biomolecules, such as nucleic acids. However, chemical reaction on the nucleic acids, to further regulate their bioactivity, is yet to be demonstrated within MOF pores. Here, we report the deprotection of carbonate protected RNA molecules (21 to 102 nt) to restore their original activity using a MOF as a heterogeneous catalyst. Two MOFs, MOF-626 and MOF-636 are designed and synthesized, with mesopores of 2.2 and 2.8 nm, respectively, carrying isolated metal sites (Ni, Co, Cu, Pd, Rh and Ru). The pores favor the entrance of RNA, while the metal sites catalyze C-O bond cleavage at the carbonate group. Complete conversion of RNA is achieved by Pd-MOF-626, 90 times more efficiently than Pd(NO3 )2 . MOF crystals are also removable from the aqueous reaction media, leaving a negligible metal footprint, 3.9 ppb, only 1/55 of that using homogeneous Pd catalysts. These features make MOF potentially suited for bioorthogonal chemistry.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jing Cao
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinheng Lv
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shaoru Wang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan, 430071, China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Yangtze Memory Laboratories, Wuhan, 430075, China
| |
Collapse
|
29
|
Huynh RPS, Evans DR, Lian JX, Spasyuk D, Siahrostrami S, Shimizu GKH. Creating Order in Ultrastable Phosphonate Metal-Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. J Am Chem Soc 2023; 145:21263-21272. [PMID: 37738111 DOI: 10.1021/jacs.3c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.
Collapse
Affiliation(s)
- Racheal P S Huynh
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David R Evans
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jian Xiang Lian
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Denis Spasyuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostrami
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
30
|
Shao Z, Cheng H, Wei Y, Chen J, Gao K, Fang Z, Yan Y, Mi L, Hou H. Cationic metal-organic framework with charge separation effect as a high output triboelectric nanogenerator material for self-powered anticorrosion. Dalton Trans 2023; 52:13316-13323. [PMID: 37668663 DOI: 10.1039/d3dt02185h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
New stable frictional materials based on metal-organic frameworks (MOFs) are greatly desired for applications in self-powered systems. This work reports an ionic MOF material with efficient charge separation mediated by charge induction. ZUT-iMOF-1(Cu) is chemically stable and its triboelectric output performance surpasses those of traditional MOF materials. The short-circuit current of the iMOF triboelectric nanogenerator is 73.79 μA at 5 Hz. The output performance remains stable over 50 000 cycles of continuous operation. The charge and power densities peak at 123.20 μC m-2 and 3133.23 mW m-2. Owing to its high output performance, ZUT-iMOF-1(Cu) effectively prevents metal corrosion in cathodic-protection systems. Theoretical calculations show that increasing the charge-separation effect promotes the frictional electricity generation behaviour. This study provides research suggestions for ionic MOF frictional materials and will promote their application in self-powered electrochemical cathodic-protection systems.
Collapse
Affiliation(s)
- Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Haoran Cheng
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Yi Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Junshuai Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Kexin Gao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Zhe Fang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Yangshuang Yan
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Liwei Mi
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
31
|
Yang G, Shi W, Qian Y, Zheng X, Meng Z, Jiang HL. Turning on Asymmetric Catalysis of Achiral Metal-Organic Frameworks by Imparting Chiral Microenvironment. Angew Chem Int Ed Engl 2023; 62:e202308089. [PMID: 37551837 DOI: 10.1002/anie.202308089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal-organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral -OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.
Collapse
Affiliation(s)
- Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Wenwen Shi
- CAS Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Xiao Zheng
- CAS Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- Department of Chemistry, Fudan University, 200433, Shanghai, P. R. China
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| |
Collapse
|
32
|
Vujević L, Karadeniz B, Cindro N, Krajnc A, Mali G, Mazaj M, Avdoshenko SM, Popov AA, Žilić D, Užarević K, Kveder M. Improving the molecular spin qubit performance in zirconium MOF composites by mechanochemical dilution and fullerene encapsulation. Chem Sci 2023; 14:9389-9399. [PMID: 37712041 PMCID: PMC10498684 DOI: 10.1039/d3sc03089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
Enlarging the quantum coherence times and gaining control over quantum effects in real systems are fundamental for developing quantum technologies. Molecular electron spin qubits are particularly promising candidates for realizing quantum information processing due to their modularity and tunability. Still, there is a constant search for tools to increase their quantum coherence times. Here we present how the mechanochemical introduction of active spin qubits in the form of 10% diluted copper(ii)-porphyrins in the diamagnetic PCN-223 and MOF-525 zirconium-MOF polymorph pair can be achieved. Furthermore, the encapsulation of fullerene during the MOF synthesis directs the process exclusively toward the rare PCN-223 framework with a controllable amount of fullerene in the framework channels. In addition to the templating role, the incorporation of fullerene increases the electron spin-lattice and phase-memory relaxation times, T1 and Tm. Besides decreasing the amount of nuclear spin-bearing solvent guests in the non-activated qubit frameworks, the observed improved relaxation times can be rationalized by modulating the phonon density of states upon fullerene encapsulation.
Collapse
Affiliation(s)
- Lucija Vujević
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Bahar Karadeniz
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Nikola Cindro
- Department of Chemistry, University of Zagreb 10000 Zagreb Croatia
| | - Andraž Krajnc
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Gregor Mali
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | - Matjaž Mazaj
- National Institute of Chemistry Hajdrihova 19 SI-1001 Ljubljana Slovenia
| | | | - Alexey A Popov
- Leibniz IFW Dresden Helmholtzstrasse 20 D-01069 Dresden Germany
| | - Dijana Žilić
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | | | - Marina Kveder
- Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| |
Collapse
|
33
|
Zhou Z, Wang J, Hou S, Mukherjee S, Fischer RA. Room Temperature Synthesis Mediated Porphyrinic NanoMOF Enables Benchmark Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301933. [PMID: 37140098 DOI: 10.1002/smll.202301933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/05/2023]
Abstract
Leveraging size effects, nanoparticles of metal-organic frameworks, nanoMOFs, have recently gained traction, amplifying their scopes in electrochemical sensing. However, their synthesis, especially under eco-friendly ambient conditions remains an unmet challenge. Herein, an ambient and fast secondary building unit (SBU)-assisted synthesis (SAS) route to afford a prototypal porphyrinic MOF, Fe-MOF-525 is introduced. Albeit the benign room temperature conditions, Fe-MOF-525(SAS) nanocrystallites obtained are of ≈30 nm size, relatively smaller than the ones conventional solvothermal methods elicit. Integrating Fe-MOF-525(SAS) as a thin film on a conductive indium tin oxide (ITO) surface affords Fe-MOF-525(SAS)/ITO, an electrochemical biosensor. Synergistic confluence of modular MOF composition, analyte-specific redox metalloporphyrin sites, and crystal downsizing contribute to its benchmark voltammetric uric acid (UA) sensing. Showcasing a wide linear range of UA detection with high sensitivity and low detection limit, this SAS strategy coalesces ambient condition synthesis and nanoparticle size control, paving a green way to advanced sensors.
Collapse
Affiliation(s)
- Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Shujin Hou
- Physics of Energy Conversion and Storage, Physic-Department, Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching b. München, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching b. München, Germany
| |
Collapse
|
34
|
Murali M, Bijani C, Daran JC, Manoury E, Poli R. Acetate exchange mechanism on a Zr 12 oxo hydroxo cluster: relevance for reshaping Zr-carboxylate coordination adaptable networks. Chem Sci 2023; 14:8152-8163. [PMID: 37538814 PMCID: PMC10395313 DOI: 10.1039/d3sc02204h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12-n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol-1, ΔS‡ = 8 ± 1 cal mol-1 K-1 (-30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol-1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol-1 K-1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.
Collapse
Affiliation(s)
- Meenu Murali
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | - Christian Bijani
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | - Jean-Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
- Institut Universitaire de France 1, rue Descartes 75231 Paris Cedex 05 France
| |
Collapse
|
35
|
Prasetya N, Wöll C. Removal of diclofenac by adsorption process studied in free-base porphyrin Zr-metal organic frameworks (Zr-MOFs). RSC Adv 2023; 13:22998-23009. [PMID: 37529358 PMCID: PMC10388161 DOI: 10.1039/d3ra03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
As the world population continues to grow, there is also a rising concern regarding water pollution since this condition could negatively impact the supply of clean water. One of the most recent concerns is related to the pollution that comes from various pharmaceuticals, in particular non-steroidal anti-inflammatory drugs (NSAIDs) since they have been industrially produced at large scale and can be easily purchased as an over-the-counter medicine. Diclofenac is one of the most popular NSAIDs because of its high-effectiveness, which leads to its excessive consumption. Consequently, its presence in water bodies is also continuously increasing. An adsorption process could then be employed as a highly effective method to address this issue. In comparison to other conventional adsorbents such as activated carbon, the use of metal-organic frameworks (MOFs) as an alternative adsorbent is very attractive since it can offer various advantages such as tailorability and high adsorption capacity. In this study, the performance of three water-stable, free-base porphyrin MOFs assembled using zirconia-based nodes, namely MOF-525, MOF-545, and NU-902, for diclofenac adsorption was thoroughly investigated. Interestingly, although all three free-base porphyrin MOFs are assembled using the same building block and have a similar specific surface area (based on the experimental argon physisorption and calculation based on non-localized density functional theory), their diclofenac adsorption capacity is substantially different from one another. It is found that the highest diclofenac adsorption capacity is shown by MOF-525, which has maximum capacity around 792 mg g-1. This is then followed by MOF-545 and NU-902 that have adsorption capacities around 591 and 486 mg g-1, respectively. Some possible adsorption mechanisms are then thoroughly discussed that might contribute to this phenomenon. Lastly, their performance is also compared with other MOFs that are also studied for this purpose to show their performance superiority not only in terms of adsorption capacity but also their affinity towards the diclofenac molecule, which might be useful as an adsorption performance indicator in the real condition where the contaminant concentration is considerably low.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Institute of Functional Interface (IFG), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopolshafen Germany
| | - Christof Wöll
- Institute of Functional Interface (IFG), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopolshafen Germany
| |
Collapse
|
36
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
37
|
Li X, Anderson R, Fry HC, Pratik SM, Xu W, Goswami S, Allen TG, Yu J, Rajasree SS, Cramer CJ, Rumbles G, Gómez-Gualdrón DA, Deria P. Metal-Carbodithioate-Based 3D Semiconducting Metal-Organic Framework: Porous Optoelectronic Material for Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37256818 DOI: 10.1021/acsami.3c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Solar energy conversion requires the working compositions to generate photoinduced charges with high potential and the ability to deliver charges to the catalytic sites and/or external electrode. These two properties are typically at odds with each other and call for new molecular materials with sufficient conjugation to improve charge conductivity but not as much conjugation as to overly compromise the optical band gap. In this work, we developed a semiconducting metal-organic framework (MOF) prepared explicitly through metal-carbodithioate "(-CS2)nM" linkage chemistry, entailing augmented metal-linker electronic communication. The stronger ligand field and higher covalent character of metal-carbodithioate linkages─when combined with spirofluorene-derived organic struts and nickel(II) ion-based nodes─provided a stable, semiconducting 3D-porous MOF, Spiro-CS2Ni. This MOF lacks long-range ordering and is defined by a flexible structure with non-aggregated building units, as suggested by reverse Monte Carlo simulations of the pair distribution function obtained from total scattering experiments. The solvent-removed "closed pore" material recorded a Brunauer-Emmett-Teller area of ∼400 m2/g, where the "open pore" form possesses 90 wt % solvent-accessible porosity. Electrochemical measurements suggest that Spiro-CS2Ni possesses a band gap of 1.57 eV (σ = 10-7 S/cm at -1.3 V bias potential), which can be further improved by manipulating the d-electron configuration through an axial coordination (ligand/substrate), the latter of which indicates usefulness as an electrocatalyst and/or a photoelectrocatalyst (upon substrate binding). Transient-absorption spectroscopy reveals a long-lived photo-generated charge-transfer state (τCR = 6.5 μs) capable of chemical transformation under a biased voltage. Spiro-CS2Ni can endure a compelling range of pH (1-12 for weeks) and hours of electrochemical and photoelectrochemical conditions in the presence of water and organic acids. We believe this work provides crucial design principles for low-density, porous, light-energy-conversion materials.
Collapse
Affiliation(s)
- Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Ryther Anderson
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1601 Illinois Street, Golden, Colorado 80401, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Saied Md Pratik
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Taylor G Allen
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Christopher J Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Garry Rumbles
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute, Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Diego A Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines, 1601 Illinois Street, Golden, Colorado 80401, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
38
|
Xin Z, Dong X, Wang YR, Wang Q, Shen K, Shi JW, Chen Y, Lan YQ. Electronic Tuning of CO 2 Interaction by Oriented Coordination of N-Rich Auxiliary in Porphyrin Metal-Organic Frameworks for Light-Assisted CO 2 Electroreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301261. [PMID: 37127898 PMCID: PMC10375083 DOI: 10.1002/advs.202301261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The efficient CO2 electroreduction into high-value products largely relies on the CO2 adsorption/activation or electron-transfer of electrocatalysts, thus site-specific functionalization methods that enable boosted related interactions of electrocatalysts are much desired. Here, an oriented coordination strategy is reported to introduce N-rich auxiliary (i.e., hexamethylenetetramine, HMTA) into metalloporphyrin metal organic frameworks (MOFs) to synthesize a series of site-specific functionalized electrocatalysts (HMTA@MOF-545-M, M = Fe, Co, and Ni) and they are successfully applied in light-assisted CO2 electroreduction. Noteworthy, thus-obtained HMTA@MOF-545-Co presents approximately two times enhanced CO2 adsorption-enthalpy and electrochemical active surface-area with largely decreased impedance-value after modification, resulting in almost twice higher CO2 electroreduction performance than its unmodified counterpart. Besides, its CO2 electroreduction performance can be further improved under light-illumination and displays superior FECO (≈100%), high CO generation rate (≈5.11 mol m-2 h-1 at -1.1 V) and energy efficiency (≈70% at -0.7 V). Theoretical calculations verify that the oriented coordination of HMTA can increase the charge density of active sites, almost doubly enhance the CO2 adsorption energy, and largely reduce the energy barrier of rate determining step for the boosted performance improvement. This work might promote the development of modifiable porous crystalline electrocatalysts in high-efficiency CO2 electroreduction.
Collapse
Affiliation(s)
- Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Xue Dong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yi-Rong Wang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Laboratory of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qian Wang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Kejing Shen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Jing-Wen Shi
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Laboratory of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Laboratory of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Laboratory of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
39
|
Zhang X, Liu Z, Shao B, Wu T, Pan Y, Luo S, He M, Ge L, Sun J, Cheng C, Huang J. Construction of ZnIn 2S 4/MOF-525 heterojunction system to enhance photocatalytic degradation of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67647-67661. [PMID: 37118391 DOI: 10.1007/s11356-023-27282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
Zirconium-based porphyrin metal organic frameworks (Zr-PMOFs) had attracted attention in the field of photocatalysis in recent years. However, the recombination of photogenerated carriers of monomer PMOF limits its performance of photocatalytic organic pollutants degradation. Metal sulfide has a suitable visible band gap, which can form a heterojunction with MOF materials to enhance the photocatalytic efficiency of MOF. Therefore, a typical metal sulfide semiconductor ZnIn2S4 (ZIS) was introduced into a Zr-MOF (MOF-525) by solvothermal method to prepare a series of ZIS/MOF-525 (ZIS/MOF-525-1, ZIS/MOF-525-2, ZIS/MOF-525-3 and ZIS/MOF-525-4) composite photocatalysts in this work. The results of characterization analysis, optical analysis and electrochemical analysis showed that the interface of ZIS/MOF-525 formed a typical type-II heterojunction, which accelerated the electron transport rate and effectively inhibited the recombination of photogenerated e- and h+ in MOF-525. The optimal removal efficiency of tetracycline (TC) by ZIS/MOF-525-3 (the mass of MOF-525 is 30 mg) reached 93.8% under 60 min visible light illumination, which was greater than that of pure MOF-525 (37.2%) and ZnIn2S4 (70.0%), and it still maintained good stability after five cycles reusing experiment. This work provides feasible insight for the preparation of novel and efficient PMOF-based photocatalysts in the future.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jingwen Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chunyun Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jian Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| |
Collapse
|
40
|
Koschnick C, Terban MW, Frison R, Etter M, Böhm FA, Proserpio DM, Krause S, Dinnebier RE, Canossa S, Lotsch BV. Unlocking New Topologies in Zr-Based Metal-Organic Frameworks by Combining Linker Flexibility and Building Block Disorder. J Am Chem Soc 2023; 145:10051-10060. [PMID: 37125876 PMCID: PMC10176567 DOI: 10.1021/jacs.2c13731] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Ruggero Frison
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg 22607, Germany
| | - Felix A Böhm
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Davide M Proserpio
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, Milano 20133, Italy
| | - Simon Krause
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Robert E Dinnebier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Stefano Canossa
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, Munich 81377, Germany
| |
Collapse
|
41
|
Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water. J Colloid Interface Sci 2023; 636:459-469. [PMID: 36641821 DOI: 10.1016/j.jcis.2023.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Bo Zhong
- Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an, Shaanxi 710075, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Shungui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
42
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
43
|
Xia Q, Yang J, Zhang S, Zhang J, Li Z, Wang J, Chen X. Bodipy-Based Metal-Organic Frameworks Transformed in Solid States from 1D Chains to 2D Layer Structures as Efficient Visible Light Heterogeneous Photocatalysts for Forging C-B and C-C Bonds. J Am Chem Soc 2023; 145:6123-6134. [PMID: 36912066 DOI: 10.1021/jacs.2c11647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Boron dipyrromethene (also known as bodipy), as a class of versatile and robust fluorophores and a structural analogue of porphyrins, has received a great deal of interests in the field of light-harvesting and energy-transfer processes. However, the fabrication of bodipy monomers into metal-organic frameworks (MOFs) and the exploitation of their potential still lags behind the porphyrin MOFs. In this work, two bodipy-based MOFs, BMOF 1D with 1D chain structure and BMOF 2D with 2D layer structure, were assembled by using dicarboxyl-functionalized bodipy ligands. BMOF 1D can also be converted to BMOF 2D by inserting additional ligands into BMOF 1D to cross-link the adjacent chains into the rhombic grid layer. During this process, spontaneous exfoliation occurred simultaneously and resulted in the formation of several hundred nanometer thickness BMOF 2D (nBMOF 2D), which can be further exfoliated into one-layer MOF nanosheets (BMON 2D) by using the ultrasonic liquid exfoliation method in a high yield. Featuring the distinct bodipy scaffolds in the porous frameworks, both BMOF 2D and BMON 2D displayed high reactivity and recyclability in the photocatalytic inverse hydroboration and cross-dehydrogenative coupling reactions to afford α-amino organoborons and α-amino amides in moderate to high yields. This work not only highlights the cascade utilization of ligand installation and ultrasonic liquid exfoliation methods to provide the single-layer MOF sheets in high yields but also advances the bodipy-based MOFs as a new type of heterogeneous photocatalysts in the forging of C-B and C-C bonds driven by visible light.
Collapse
Affiliation(s)
- Qingchun Xia
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingli Yang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Suzhen Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiyong Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jianji Wang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
44
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
45
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
46
|
Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
47
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
48
|
Smith MR, Martin CB, Arumuganainar S, Gilman A, Koel BE, Sarazen ML. Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metal-Organic Framework Catalysts for CO 2 Electroreduction. Angew Chem Int Ed Engl 2023; 62:e202218208. [PMID: 36584349 DOI: 10.1002/anie.202218208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Immobilization of porphyrin complexes into crystalline metal-organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from -0.6 V to -1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Clare B Martin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sonia Arumuganainar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ari Gilman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bruce E Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
49
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|