1
|
Lázaro A, Bosque R, Marín S, Pérez-León R, Badia J, Baldomà L, Rodríguez L, Crespo M, Cascante M. Exploring the effect of the axial ligands on the anticancer activity of [C,N,N'] Pt(IV) cyclometallated compounds. Dalton Trans 2024; 53:13030-13043. [PMID: 39028273 DOI: 10.1039/d4dt01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of three novel [C,N,N'] Pt(IV) cyclometallated compounds containing hydroxo, dichloroacetato or trifluoroacetato axial ligands is reported. Compound [PtCl(OH)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (3) was prepared by the oxidative addition of hydrogen peroxide to [C,N,N'] Pt(II) cyclometallated compound [PtCl{(CH3)2N(CH2)2NCH(4-FC6H3)}] (1) and further the reaction of compound 3 with dichloroacetate or trifluoroacetate anhydrides led to the formation of the corresponding compounds [PtCl(CHCl2COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (4) and [PtCl(CF3COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (5). The properties of the new compounds along with those of the compound [PtCl3{(CH3)2N(CH2)2NCH(4-FC6H3)}] (2), including stability in aqueous media, reduction potential using cyclic voltammetry, cytotoxic activity against the HCT116 CRC cell line, DNA interaction, topoisomerase I and cathepsin inhibition, and computational studies involving reduction of the Pt(IV) compounds and molecular docking studies, are presented. Interestingly, the antiproliferative activity of these compounds against the HCT116 CRC cell line, which is in all cases higher than that of cisplatin, follows the same trend as the reduction potentials so that the most easily reduced compound 2 is the most potent. In contrast, according to the electrophoretic mobility and molecular docking studies, the efficacy of these compounds in binding to DNA is not related to their cytotoxicity. The most active compound 2 does not modify the DNA electrophoretic mobility while the less potent compound 3 is the most efficient in binding to DNA. Although compounds 2 and 3 have only a slight effect on cell cycle distribution and apoptosis induction, generation of ROS to a higher extent for the most easily reduced compound 2 was observed.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ramón Bosque
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
| | - Silvia Marín
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raúl Pérez-León
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
| | - Josefa Badia
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Marta Cascante
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
3
|
Vigna V, Cova TFGG, Nunes SCC, Pais AACC, Sicilia E. Machine Learning-Based Prediction of Reduction Potentials for Pt IV Complexes. J Chem Inf Model 2024; 64:3733-3743. [PMID: 38683970 DOI: 10.1021/acs.jcim.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Some of the well-known drawbacks of clinically approved PtII complexes can be overcome using six-coordinate PtIV complexes as inert prodrugs, which release the corresponding four-coordinate active PtII species upon reduction by cellular reducing agents. Therefore, the key factor of PtIV prodrug mechanism of action is their tendency to be reduced which, when the involved mechanism is of outer-sphere type, is measured by the value of the reduction potential. Machine learning (ML) models can be used to effectively capture intricate relationships within PtIV complex data, leading to highly accurate predictions of reduction potentials and other properties, and offering significant insights into their electrochemical behavior and potential applications. In this study, a machine learning-based approach for predicting the reduction potentials of PtIV complexes based on relevant molecular descriptors is presented. Leveraging a data set of experimentally determined reduction potentials and a diverse range of molecular descriptors, the proposed model demonstrates remarkable predictive accuracy (MSE = 0.016 V2, RMSE = 0.13 V, R2 = 0.92). Ab initio calculations and a set of different machine learning algorithms and feature engineering techniques have been employed to systematically explore the relationship between molecular structure and similarity and reduction potential. Specifically, it has been investigated whether the reduction potential of these compounds can be described by combining ML models across different combinations of constitutional, topological, and electronic molecular descriptors. Our results not only provide insights into the crucial factors influencing reduction potentials but also offer a rapid and effective tool for the rational design of PtIV complexes with tailored electrochemical properties for pharmaceutical applications. This approach has the potential to significantly expedite the development and screening of novel PtIV prodrug candidates. The analysis of principal components and key features extracted from the model highlights the significance of structural descriptors of the 2D Atom Pairs type and the lowest unoccupied molecular orbital energy. Specifically, with just 20 appropriately selected descriptors, a notable separation of complexes based on their reduction potential value is achieved.
Collapse
Affiliation(s)
- V Vigna
- PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende87036,Italy
| | - T F G G Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535,Portugal
| | - S C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535,Portugal
| | - A A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, Coimbra 3004-535,Portugal
| | - E Sicilia
- PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende87036,Italy
| |
Collapse
|
4
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
5
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Ojha R, Junk PC, Bond AM, Deacon GB. Oxidation of the Platinum(II) Anticancer Agent [Pt{( p-BrC 6F 4)NCH 2CH 2NEt 2}Cl(py)] to Platinum(IV) Complexes by Hydrogen Peroxide. Molecules 2023; 28:6402. [PMID: 37687231 PMCID: PMC10490441 DOI: 10.3390/molecules28176402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
PtIV coordination complexes are of interest as prodrugs of PtII anticancer agents, as they can avoid deactivation pathways owing to their inert nature. Here, we report the oxidation of the antitumor agent [PtII(p-BrC6F4)NCH2CH2NEt2}Cl(py)], 1 (py = pyridine) to dihydroxidoplatinum(IV) solvate complexes [PtIV{(p-BrC6F4)NCH2CH2NEt2}Cl(OH)2(py)].H2O, 2·H2O with hydrogen peroxide (H2O2) at room temperature. To optimize the yield, 1 was oxidized in the presence of added lithium chloride with H2O2 in a 1:2 ratio of Pt: H2O2, in CH2Cl2 producing complex 2·H2O in higher yields in both gold and red forms. Despite the color difference, red and yellow 2·H2O have the same structure as determined by single-crystal and X-ray powder diffraction, namely, an octahedral ligand array with a chelating organoamide, pyridine and chloride ligands in the equatorial plane, and axial hydroxido ligands. When tetrabutylammonium chloride was used as a chloride source, in CH2Cl2, another solvate, [PtIV{(p-BrC6F4)NCH2CH2NEt2}Cl(OH)2(py)].0.5CH2Cl2,3·0.5CH2Cl2, was obtained. These PtIV compounds show reductive dehydration into PtII [Pt{(p-BrC6F4)NCH=CHNEt2}Cl(py)], 1H over time in the solid state, as determined by X-ray powder diffraction, and in solution, as determined by 1H and 19F NMR spectroscopy and mass spectrometry. 1H contains an oxidized coordinating ligand and was previously obtained by oxidation of 1 under more vigorous conditions. Experimental data suggest that oxidation of the ligand is favored in the presence of excess H2O2 and elevated temperatures. In contrast, a smaller amount (1Pt:2H2O2) of H2O2 at room temperature favors the oxidation of the metal and yields platinum(IV) complexes.
Collapse
Affiliation(s)
- Ruchika Ojha
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (R.O.); (A.M.B.); (G.B.D.)
| | - Peter C. Junk
- College of Science, Technology & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Alan M. Bond
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (R.O.); (A.M.B.); (G.B.D.)
| | - Glen B. Deacon
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (R.O.); (A.M.B.); (G.B.D.)
| |
Collapse
|
7
|
Barman R, Bej R, Dey P, Ghosh S. Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25193-25200. [PMID: 36745598 DOI: 10.1021/acsami.2c22146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes the synthesis of a polymer-prodrug conjugate, its aqueous self-assembly, noncovalent encapsulation of a second drug, and stimuli-responsive intracellular dual drug delivery. Condensation polymerization between a functionalized diol and a commercially available diisocyanate in the presence of poly(ethylene glycol) hydroxide (PEG-OH) as the chain stopper produces an ABA-type amphiphilic block copolymer (PU-1) in one pot, with the middle hydrophobic block being a polyurethane containing a pendant tert-butyloxycarbonyl (Boc)-protected amine in every repeating unit. Deprotection of the Boc group, followed by covalent attachment of the Pt(IV) prodrug using the pendant amine groups, produces the polymer-prodrug conjugate PU-Pt-1, which aggregates to nanocapsule-like structures in water with a hydrophilic interior. In the presence of sodium ascorbate, the Pt(IV) prodrug can be detached from the polymer backbone, producing the active Pt(II) drug. Cell culture studies show appreciable cell viability by the parent polymer. However, the polymer-prodrug conjugate nanocapsules exhibit cellular uptake and intracellular release of the active drug under a reducing environment. The capsule-like aggregates of the polymer-prodrug conjugate were used for noncovalent encapsulation of a second drug, doxorubicin (Dox), and Dox-loaded PU-Pt-1 aggregate showed a significantly superior cell killing efficiency compared to either of the individual drugs, highlighting the promising application of such a dual-drug-delivery approach.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
8
|
Zajda J, Borowiecki P, Matczuk M. Effective monitoring of Platinum-DNA adducts formation under simulated physiological conditions by CE-ICP-MS/MS. Talanta 2023; 264:124749. [PMID: 37290334 DOI: 10.1016/j.talanta.2023.124749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The leading Pt(II)-based anticancer drugs have been used for decades; however, chemotherapy with their application is burdened with severe side effects. The administration of compounds capable of DNA platination in the form of prodrugs has the potential to overcome the drawbacks associated with their use. Progress toward their clinical application depends on establishing proper methodologies that would allow assessing their ability to bind to DNA in the biological environment. Herein, we propose implementing the approach based on the hyphenation of capillary electrophoresis with inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) for studying Pt-DNA adduct formation. The presented methodology opens the possibility to employ the multielement monitoring for studying the differences in the behavior of Pt(II) and Pt(IV) complexes and, interestingly, revealed the formation of various adducts with DNA and cytosol components for the latter one.
Collapse
Affiliation(s)
- Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664 Warsaw, Poland.
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
9
|
Wang Y, Ma D, Sun J, Song C, Huo S. Reduction of an asymmetric Pt(IV) prodrug fac-[Pt(dach)Cl3(OC(=O)CH3)] by biological thiol compounds: kinetic and mechanistic characterizations. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Leal J, Santos L, Fernández-Aroca DM, Cuevas JV, Martínez MA, Massaguer A, Jalón FA, Ruiz-Hidalgo MJ, Sánchez-Prieto R, Rodríguez AM, Castañeda G, Durá G, Carrión MC, Barrabés S, Manzano BR. Effect of the aniline fragment in Pt(II) and Pt(IV) complexes as anti-proliferative agents. Standard reduction potential as a more reliable parameter for Pt(IV) compounds than peak reduction potential. J Inorg Biochem 2021; 218:111403. [PMID: 33730639 DOI: 10.1016/j.jinorgbio.2021.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.
Collapse
Affiliation(s)
- Jorge Leal
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Lucia Santos
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Universidad de Castilla-La Mancha, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - J Vicente Cuevas
- Universidad de Burgos, Department of Chemistry, Pza. Misael Bañuelos S/N, 09001 Burgos, Spain
| | - M Angeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Anna Massaguer
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Felix A Jalón
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M José Ruiz-Hidalgo
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Albacete, Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas De Madrid Alberto Sols (CSIC-UAM), Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gregorio Castañeda
- Universidad de Castilla-La Mancha, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela s/n, 13071 Ciudad Real, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - M Carmen Carrión
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Sílvia Barrabés
- Departamento de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
12
|
Janiszek D, Karpińska MM, Niewiadomy A, Kośmider A, Girstun A, Elzanowska H, Kulesza PJ. Differences in electrochemical response of prospective anticancer drugs IPBD and Cl-IPBD, doxorubicin and Vitamin C at plasmid modified glassy carbon. Bioelectrochemistry 2020; 137:107682. [PMID: 33160181 DOI: 10.1016/j.bioelechem.2020.107682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For the comparison of the DNA interactions with drugs, two newly synthesized prospective anticancer drugs, 6-(1H-imidazo[4,5-b]phenasine-2-yl)benzene-1,3-diol (IPBD) and, its -Cl derivative (Cl-IPBD) have been compared with doxorubicin, a drug widely used in medicine, and with Vitamin C. These compounds were accumulated at a supercoiled scpUC19 plasmid layer formed on a glassy carbon electrode (GCE). Stability of the drug-plasmid/GCE layer was achieved by initial plasmid accumulation using prolonged potential cycling for ca. 200 min. from highly diluted scpUC19 solutions (8 pg/mL), followed by accumulation of the drugs from 1 µM - 50 µM. Electrochemical properties in terms of the redox potentials of the compounds and capacitative/resistive characteristics of the layers have been tested using, in sequence, four voltammetric methods: Square Wave (SWV), Differential Pulse (DPV) and Alternating Current (ACV) with phase detection 0° and 90°. Importantly, with progressive drug accumulation in the plasmid, for Cl-IPBD, but not for IPBD, an increase in peak (I) at -0.42 V vs. SCE was observed, while biological tests revealed a higher cytotoxic activity for Cl-IPBD vs. IPBD. Moreover, an additional redox signal of Cl-IPBD was observed with the compound reductive accumulation at the plasmid layer in the presence of Vitamin C.
Collapse
Affiliation(s)
- Dominika Janiszek
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Monika M Karpińska
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
| | - Andrzej Niewiadomy
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
| | - Anita Kośmider
- Maria Skłodowska-Curie Institute-Oncology Centre, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - Agnieszka Girstun
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Hanna Elzanowska
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| | - Pawel J Kulesza
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
13
|
Raghavan S, Baskin DS, Sharpe MA. MP-Pt(IV): A MAOB-Sensitive Mitochondrial-Specific Prodrug for Treating Glioblastoma. Mol Cancer Ther 2020; 19:2445-2453. [PMID: 33033175 DOI: 10.1158/1535-7163.mct-20-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
We have previously reported the in vitro and in vivo efficacy of N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propenamide (MP-MUS), a prodrug that targeted the mitochondria of glioblastoma (GBM). The mitochondrial enzyme, monoamine oxidase B (MAOB), is highly expressed in GBM and oxidizes an uncharged methyl-tetrahydropyridine (MP-) moiety into the mitochondrially targeted cationic form, methyl-pyridinium (P+-). Coupling this MAOB-sensitive group to a nitrogen mustard produced a prodrug that damaged GBM mitochondria and killed GBM cells. Unfortunately, the intrinsic reactivity of the nitrogen mustard group and low solubility of MP-MUS precluded clinical development. In our second-generation prodrug, MP-Pt(IV), we coupled the MP group to an unreactive cisplatin precursor. The enzymatic conversion of MP-Pt(IV) to P+-Pt(IV) was tested using recombinant human MAOA and rhMAOB. The generation of cisplatin from Pt(IV) by ascorbate was studied optically and using mass spectroscopy. Efficacy toward primary GBM cells and tumors was studied in vitro and in an intracranial patient-derived xenograft mice GBM model. Our studies demonstrate that MP-Pt(IV) is selectively activated by MAOB. MP-Pt(IV) is highly toxic toward GBM cells in vitro MP-Pt(IV) toxicity against GBM is potentiated by elevating mitochondrial ascorbate and can be arrested by MAOB inhibition. In in vitro studies, sublethal MP-Pt(IV) doses elevated mitochondrial MAOB levels in surviving GBM cells. MP-Pt(IV) is a potent chemotherapeutic in intracranial patient-derived xenograft mouse models of primary GBM and potentiates both temozolomide and temozolomide-chemoradiation therapies. MP-Pt(IV) was well tolerated and is highly effective against GBM in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Sudhir Raghavan
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Research Institute, Houston, Texas
| | - David S Baskin
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| | - Martyn A Sharpe
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
14
|
Chen S, Yao H, Zhou Q, Tse MK, Gunawan YF, Zhu G. Stability, Reduction, and Cytotoxicity of Platinum(IV) Anticancer Prodrugs Bearing Carbamate Axial Ligands: Comparison with Their Carboxylate Analogues. Inorg Chem 2020; 59:11676-11687. [PMID: 32799457 DOI: 10.1021/acs.inorgchem.0c01541] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum(IV) complexes containing carboxylate and carbamate ligands at the axial position have been reported previously. A better understanding of the similarity and difference between the two types of ligands will provide us with new insights and more choices to design novel Pt(IV) complexes. In this study, we systematically investigated and compared the properties of Pt(IV) complexes bearing the two types of ligands. Ten pairs of unsymmetric Pt(IV) complexes bearing axial carbamate or carboxylate ligands were synthesized and characterized. The stability of these Pt(IV) complexes in a PBS buffer with or without a reducing agent was investigated, and most of these complexes exhibited good stability. Besides, most Pt(IV) prodrugs with carbamate axial ligands were reduced faster than the corresponding ones with carboxylate ligands. Furthermore, the aqueous solubilities and lipophilicities of these Pt(IV) complexes were tested. All the carbamate complexes showed better aqueous solubility and decreased lipophilicity as compared to those of the corresponding carboxylate complexes, due to the increased polarity of carbamate ligands. Biological properties of these complexes were also evaluated. Many carbamate complexes showed cytotoxicity similar to that of the carboxylate complexes, which may derive from the lower cellular accumulation but faster reduction of the former. Our research highlights the differences between the Pt(IV) prodrugs containing carbamate and carboxylate axial ligands and may contribute to the future rational design of Pt-based anticancer prodrugs.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Qiyuan Zhou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Yuliana F Gunawan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| |
Collapse
|
15
|
Corinti D, Crestoni ME, Fornarini S, Dabbish E, Sicilia E, Gabano E, Perin E, Osella D. A multi-methodological inquiry of the behavior of cisplatin-based Pt(IV) derivatives in the presence of bioreductants with a focus on the isolated encounter complexes. J Biol Inorg Chem 2020; 25:655-670. [PMID: 32296997 DOI: 10.1007/s00775-020-01789-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
The study of Pt(IV) antitumor prodrugs able to circumvent some drawbacks of the conventional Pt(II) chemotherapeutics is the focus of a lot of attention. This paper reports a thorough study based on experimental methods (reduction kinetics, electrochemistry, tandem mass spectrometry and IR ion spectroscopy) and quantum-mechanical DFT calculations on the reduction mechanism of cisplatin-based Pt(IV) derivatives having two hydroxido (1), one hydroxido and one acetato (2), or two acetato ligands (3) in axial position. The biological reductants glutathione and ascorbic acid were taken into consideration. The presence of a hydroxido ligand resulted to play an important role in the chemical reduction with ascorbic acid, as verified by 15N-NMR kinetic analysis using 15N-enriched complexes. The reactivity trend (1 > 2 > 3) does not reflect the respective reduction peak potentials (1 < 2 < 3), an inverse relationship already documented in similar systems. Turning to a simplified environment, the Pt(IV) complexes associated with a single reductant molecule (corresponding to the encounter complex occurring along the reaction coordinate in bimolecular reactions in solution) were characterized by IR ion spectroscopy and sampled for their reactivity under collision-induced dissociation (CID) conditions. The complexes display a comparable reduction reactivity ordering as that observed in solution. DFT calculations of the free energy pathways for the observed fragmentation reactions provide theoretical support for the CID patterns and the mechanistic hypotheses on the reduction process are corroborated by the observed reaction paths. The bulk of these data offers a clue of the intricate pathways occurring in solution.Graphic abstract.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
16
|
Investigations of the Kinetics and Mechanism of Reduction of a Carboplatin Pt(IV) Prodrug by the Major Small-Molecule Reductants in Human Plasma. Int J Mol Sci 2019; 20:ijms20225660. [PMID: 31726728 PMCID: PMC6888404 DOI: 10.3390/ijms20225660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
The development of Pt(IV) anticancer prodrugs to overcome the detrimental side effects of Pt(II)-based anticancer drugs is of current interest. The kinetics and reaction mechanisms of the reductive activation of the carboplatin Pt(IV) prodrug cis,trans-[Pt(cbdca)(NH3)2Cl2] (cbdca = cyclobutane-1,1-dicarboxylate) by the major small-molecule reductants in human plasma were analyzed in this work. The reductants included ascorbate (Asc), the thiol-containing molecules L-cysteine (Cys), DL-homocysteine (Hcy), and glutathione (GSH), and the dipeptide Cys–Gly. Overall second-order kinetics were established in all cases. At the physiological pH of 7.4, the observed second-order rate constants k′ followed the order Asc << Cys–Gly ~ Hcy < GSH < Cys. This reactivity order together with the abundances of the reductants in human plasma indicated Cys as the major small-molecule reductant in vivo, followed by GSH and ascorbate, whereas Hcy is much less important. In the cases of Cys and GSH, detailed reaction mechanisms and the reactivity of the various protolytic species at physiological pH were derived. The rate constants of the rate-determining steps were evaluated, allowing the construction of reactivity-versus-pH distribution diagrams for Cys and GSH. The diagrams unraveled that species III of Cys (−SCH2CH(NH3+)COO−) and species IV of GSH (−OOCCH(NH3+)CH2CH2CONHCH(CH2S−)- CONHCH2COO−) were exclusively dominant in the reduction process. These two species are anticipated to be of pivotal importance in the reduction of other types of Pt(IV) prodrugs as well.
Collapse
|
17
|
Gurruchaga-Pereda J, Martínez Á, Terenzi A, Salassa L. Anticancer platinum agents and light. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Reductions of the cisplatin-based platinum(IV) prodrug cis,cis,trans-[Pt(NH3)2Cl2Br2] by predominant biological thiols: kinetic and mechanistic studies. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Dabbish E, Ponte F, Russo N, Sicilia E. Antitumor Platinium(IV) Prodrugs: A Systematic Computational Exploration of Their Reduction Mechanism by l-Ascorbic Acid. Inorg Chem 2019; 58:3851-3860. [DOI: 10.1021/acs.inorgchem.8b03486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
21
|
Crespo M, Font-Bardia M, Hamidizadeh P, Martínez M, Nabavizadeh SM. Kinetico-mechanistic study on the reduction/complexation sequence of PtIV/PtII organometallic complexes by thiol-containing biological molecules. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
|
23
|
Norman DJ, González-Fernández E, Clavadetscher J, Tucker L, Staderini M, Mount AR, Murray AF, Bradley M. Electrodrugs: an electrochemical prodrug activation strategy. Chem Commun (Camb) 2018; 54:9242-9245. [PMID: 30066701 DOI: 10.1039/c8cc04151b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The term electroceutical has been used to describe implanted devices that deliver electrical stimuli to modify biological function. Herein, we describe a new concept in electroceuticals, demonstrating for the first time the electrochemical activation of metal-based prodrugs. This is illustrated by the controlled activation of Pt(iv) prodrugs into their active Pt(ii) forms within a cellular context allowing selectivity and control of where, when and how much active drug is generated.
Collapse
Affiliation(s)
- Daniel J Norman
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Solé M, Balcells C, Crespo M, Quirante J, Badia J, Baldomà L, Font-Bardia M, Cascante M. Synthesis, characterization and biological activity of new cyclometallated platinum(iv) complexes containing a para-tolyl ligand. Dalton Trans 2018; 47:8956-8971. [PMID: 29922789 DOI: 10.1039/c8dt01124a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of three new cyclometallated platinum(ii) compounds containing a para-tolyl ligand and a tridentate [C,N,N'] (cm1) or a bidentate [C,N] ligand and an additional ligand such as SEt2 (cm2) or PPh3 (cm3) is reported. The X-ray molecular structure of platinum(ii) compound cm3 is also presented. Intermolecular oxidative addition of methyl iodide or iodine upon cm1, cm2 and cm3 produced six novel cyclometallated platinum(iv) compounds. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), DNA interaction, topoisomerase I, IIα, and cathepsin B inhibition, and cell cycle arrest, apoptosis and ROS generation of the investigated complexes are presented. The best results for antiproliferative activity were obtained for platinum(iv) compounds cm1MeI and cm1I2 arising from oxidative addition of methyl iodide and iodine, respectively, to cm1. Cyclometallated platinum(iv) compounds cm1MeI and cm3MeI induce significant changes in the mobility of DNA and, in addition, cm1MeI, cm3MeI and cm1I2, showed considerable topoisomerase IIα inhibitory activity. Moreover, the compounds exhibiting the higher antiproliferative activity (cm1MeI and cm1I2) were found to generate ROS and to supress HCT-116 colon cancer cell growth by a mixture of cell cycle arrest and apoptosis induction. 1H NMR experiments carried out in a buffered aqueous medium (pH 7.40) indicate that compound cm1MeI is not reduced by common biologically relevant reducing agents such as ascorbic acid, glutathione or cysteine.
Collapse
Affiliation(s)
- Mònica Solé
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028-Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ponte F, Russo N, Sicilia E. Insights from Computations on the Mechanism of Reduction by Ascorbic Acid of PtIV
Prodrugs with Asplatin and Its Chlorido and Bromido Analogues as Model Systems. Chemistry 2018; 24:9572-9580. [DOI: 10.1002/chem.201800488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Fortuna Ponte
- Department of Chemistry and Chemical Technologies; Università della Calabria; Ponte P. Bucci Cubo 14 c 87035 Arcavacata di Rende CS Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies; Università della Calabria; Ponte P. Bucci Cubo 14 c 87035 Arcavacata di Rende CS Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies; Università della Calabria; Ponte P. Bucci Cubo 14 c 87035 Arcavacata di Rende CS Italy
| |
Collapse
|
26
|
Reduction of platinum(IV) prodrug model complex trans-[PtCl2(CN)4]2− by a peptide containing cysteine and methionine groups: HPLC and MS studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
In this manuscript we focus on Pt(iv) anticancer prodrugs. We explore the main working hypotheses for the design of effective Pt(iv) prodrugs and note the exceptions to the common assumptions that are prevalent in the field. Special attention was devoted to the emerging class of "dual action" Pt(iv) prodrugs, where bioactive ligands are conjugated to the axial positions of platinum in order to obtain orthogonal or complementary effects that will increase the efficacy of killing the cancer cells. We discuss the rationale behind the design of the "dual action" prodrugs and the results of the pharmacological studies obtained. Simultaneous release of two bioactive moieties inside the cancer cells often triggers several processes that together determine the fate of the cell. Pt(iv) complexes provide many opportunities for applying new concepts in targeting, synergistic cell killing and exploiting novel nanodelivery systems.
Collapse
Affiliation(s)
- Dan Gibson
- Institute of Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
28
|
Dong J, Tian H, Song C, Shi T, Elding LI. Reduction of ormaplatin by an extended series of thiols unravels a remarkable correlation. Dalton Trans 2018; 47:5548-5552. [DOI: 10.1039/c8dt00852c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reduction of the Pt(iv) anticancer active prodrug ormaplatin by an extended series of thiols has been studied, revealing a remarkable linear free-energy correlation.
Collapse
Affiliation(s)
- Jingran Dong
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Hongwu Tian
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Changying Song
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Tiesheng Shi
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Lars I. Elding
- Center for Analysis and Synthesis
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
29
|
Göschl S, Schreiber-Brynzak E, Pichler V, Cseh K, Heffeter P, Jungwirth U, Jakupec MA, Berger W, Keppler BK. Comparative studies of oxaliplatin-based platinum(iv) complexes in different in vitro and in vivo tumor models. Metallomics 2017; 9:309-322. [PMID: 28205649 DOI: 10.1039/c6mt00226a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using platinum(iv) prodrugs of clinically established platinum(ii) compounds is a strategy to overcome side effects and acquired resistances. We studied four oxaliplatin-derived platinum(iv) complexes with varying axial ligands in various in vitro and in vivo settings. The ability to interfere with DNA (pUC19) in the presence and absence of a reducing agent (ascorbic acid) was investigated in cell-free experiments. Cytotoxicity was compared under normoxic and hypoxic conditions in monolayer cultures and multicellular spheroids of colon carcinoma cell lines. Effects on the cell cycle were investigated by flow cytometry, and the capacity of inducing apoptosis was confirmed by flow cytometry and Western blotting. The anti-cancer activity of one complex was studied in vivo in immunodeficient and immunocompetent mice, and the platinum levels in various organs and the tumor after treatment were quantified. The results demonstrate that modification of the axial ligands can improve the cytotoxic potency. The complexes are able to interfere with plasmid DNA, which is enhanced by co-incubation with a reducing agent, and cause cell cycle perturbations. At higher concentrations, they induce apoptosis, but generate only low levels of reactive oxygen species. Two of the complexes increase the life span of leukemia (L1210) bearing mice, and one showed effects similar to oxaliplatin in a CT26 solid tumor model, despite the low platinum levels in the tumor. As in the case of oxaliplatin, activity in the latter model depends on an intact immune system. These findings show new perspectives for the development of platinum(iv) prodrugs of the anticancer agent oxaliplatin, combining bioreductive properties and immunogenic aspects.
Collapse
Affiliation(s)
- Simone Göschl
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | | | - Verena Pichler
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria. and University of Vienna, Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Klaudia Cseh
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Petra Heffeter
- University of Vienna, Research Platform "Translational Cancer Therapy Research", Vienna, Austria and Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Vienna, Austria and Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Ute Jungwirth
- Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Vienna, Austria and The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Michael A Jakupec
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria. and University of Vienna, Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Walter Berger
- University of Vienna, Research Platform "Translational Cancer Therapy Research", Vienna, Austria and Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Vienna, Austria and Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Bernhard K Keppler
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria. and University of Vienna, Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| |
Collapse
|
30
|
Zhao J, Xu Z, Lin J, Gou S. Exploring the Hydrolytic Behavior of the Platinum(IV) Complexes with Axial Acetato Ligands. Inorg Chem 2017; 56:9851-9859. [PMID: 28771338 DOI: 10.1021/acs.inorgchem.7b01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platinum(IV) complexes are generally thought to be kinetically inert, and are expected to be stable enough to resist premature aquation before entering the cancer cells. Nevertheless, in this work, complex 2 with axial acetato ligands can hydrolyze relatively quickly under biologically relevant conditions with a half-life of 91.7 min, resulting in the loss of the equatorial chlorido ligand. Further study indicated that the fast hydrolysis of complex 2 may be attributed to the strong σ-donor ability of N-isopropyl-1R,2R-diaminocyclohexane, and an increasing σ-donor ability of the amine group can promote the hydrolysis rate of the corresponding platinum(IV) complex. The experiment results were proven by the corresponding DFT calculation. Our study can help to re-evaluate the aqueous properties of the platinum(IV) complexes with axial acetate, which may be less inert to hydrolysis than expected under biologically relevant conditions.
Collapse
Affiliation(s)
- Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Zichen Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Jing Lin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University , Nanjing 211189, China
| |
Collapse
|
31
|
Tsipis AC, Karapetsas IN. 195 Pt NMR parameters as strong descriptors in one-parameter QSAR models for platinum-based antitumor compounds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:662-669. [PMID: 28002879 DOI: 10.1002/mrc.4570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Highly predictive one-parameter quantitative structure-activity relationship models have been developed for platinum-based anticancer drugs using the 195 Pt NMR parameters as strong descriptors. The developed quantitative structure-activity relationship models were applied in diverse homogeneous sets of antiproliferative Pt(II) and Pt(IV) compounds. These observations form the basis for making predictions of cytotoxicity for a broad range of platinum-based antitumor compounds just from inspection of calculated or experimentally determined 195 Pt NMR parameters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | - Ioannis N Karapetsas
- Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
32
|
Synthesis, characterization, and cytotoxicity of Pt(IV) complexes containing 1,10-phenanthroline and 2,2′-bipyridine and diaminocyclohexane ligands. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0125-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Kenny RG, Chuah SW, Crawford A, Marmion CJ. Platinum(IV) Prodrugs - A Step Closer to Ehrlich's Vision? Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601278] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Reece G. Kenny
- Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green 2 Dublin Ireland
| | - Su Wen Chuah
- Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green 2 Dublin Ireland
| | - Alanna Crawford
- Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green 2 Dublin Ireland
| | - Celine J. Marmion
- Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; 123 St. Stephen's Green 2 Dublin Ireland
| |
Collapse
|
34
|
Ejehi Z, Ariafard A. A computational mechanistic investigation into the reduction of Pt(iv) prodrugs with two axial chlorides by biological reductants. Chem Commun (Camb) 2017; 53:1413-1416. [DOI: 10.1039/c6cc07834f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of the Pt(iv) prodrugs with two axial chlorido ligands by biological reductants does not always proceed via the chloride-bridge inner-sphere mechanism.
Collapse
Affiliation(s)
- Zeinab Ejehi
- Department of Chemistry
- Islamic Azad University
- Central Tehran Branch
- Shahrak Gharb
- Iran
| | - Alireza Ariafard
- Department of Chemistry
- Islamic Azad University
- Central Tehran Branch
- Shahrak Gharb
- Iran
| |
Collapse
|
35
|
Barnes JC, Bruno PM, Nguyen HVT, Liao L, Liu J, Hemann MT, Johnson JA. Using an RNAi Signature Assay To Guide the Design of Three-Drug-Conjugated Nanoparticles with Validated Mechanisms, In Vivo Efficacy, and Low Toxicity. J Am Chem Soc 2016; 138:12494-501. [PMID: 27626288 PMCID: PMC5597434 DOI: 10.1021/jacs.6b06321] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-nanoparticle (NP) combination chemotherapeutics are quickly emerging as attractive alternatives to traditional chemotherapy due to their ability to increase drug solubility, reduce off-target toxicity, enhance blood circulation lifetime, and increase the amount of drug delivered to tumors. In the case of NP-bound drugs, that is, NP-prodrugs, the current standard of practice is to assume that the subcellular mechanism of action for each drug released from the NP mirrors that of the unbound, free-drug. Here, we use an RNAi signature assay for the first time to examine the mechanism of action of multidrug-conjugated NP prodrugs relative to their small molecule prodrugs and native drug mechanisms of action. Additionally, the effective additive contribution of three different drugs in a single-NP platform is characterized. The results indicate that some platinum(IV) cisplatin prodrugs, although cytotoxic, may not have the expected mechanism of action for cisplatin. This insight was utilized to develop a novel platinum(IV) oxaliplatin prodrug and incorporate it into a three-drug-conjugated NP, where each drug's mechanism of action is preserved, to treat tumor-bearing mice with otherwise lethal levels of chemotherapy.
Collapse
Affiliation(s)
- Jonathan C. Barnes
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter M. Bruno
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Longyan Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jenny Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T. Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Escolà A, Crespo M, López C, Quirante J, Jayaraman A, Polat IH, Badía J, Baldomà L, Cascante M. On the stability and biological behavior of cyclometallated Pt(IV) complexes with halido and aryl ligands in the axial positions. Bioorg Med Chem 2016; 24:5804-5815. [PMID: 27670096 DOI: 10.1016/j.bmc.2016.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
A series of cyclometallated platinum(IV) compounds (3a, 3a' and 3b') with a meridional [C,N,N'] terdentate ligand, featuring an halido and an aryl group in the axial positions has been evaluated for electrochemical reduction and preliminary biological behavior against a panel of human adenocarcinoma (A-549 lung, HCT-116 colon, and MCF-7 breast) cell lines and the normal bronquial epithelial BEAS-2B cells. Cathodic reduction potentials (shifting from -1.463 to -1.570V) reveal that the platinum(IV) compounds under study would be highly reluctant to be reduced in a biological environment. Actually ascorbic acid was not able to reduce complex 3a', the most prone to be reduced according its reduction potential, over a period of one week. These results suggest an intrinsic activity for the investigated platinum(IV) complexes (3a, 3a' and 3b'), which exhibit a remarkable cytotoxicity effectiveness (with IC50 values in the low micromolar range), even greater than that of cisplatin. The IC50 for A-549 lung cells and clog P values were found to follow the same trend: 3b'>3a'>3a. However, no correlation was observed between reduction potential and in vitro activity. As a representative example, cyclometallated platinum(IV) compound 3a', exercise its antiproliferative activity directly over non-microcytic A-549 lung cancer cells through a mixture of cell cycle arrest (13% arrest at G1 phase and 46% arrest at G2 phase) and apoptosis induction (increase of early apoptosis by 30 times with regard to control). To gain further insights into the mode of action of the investigated platinum(IV) complexes, drug uptake, cathepsin B inhibition and ROS generation were also evaluated. Interestingly an increased ROS generation could be related with the antiproliferative activity of the cyclometallated platinum(IV) series under study in the cisplatin-resistant A-549 lung and HCT-116 cancer cell lines.
Collapse
Affiliation(s)
- Anna Escolà
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain.
| | - Concepción López
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Josefina Quirante
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain; Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Anusha Jayaraman
- Department of Biochemistry and Molecular Biology, Faculty of Biology and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| | - Ibrahim H Polat
- Department of Biochemistry and Molecular Biology, Faculty of Biology and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| | - Josefa Badía
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain; Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain; Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Marta Cascante
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Biology and IDIBAPS, Unit Associated with CSIC, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
37
|
Lorenzo J, Montaña ÁM. The molecular shape and the field similarities as criteria to interpret SAR studies for fragment-based design of platinum(IV) anticancer agents. Correlation of physicochemical properties with cytotoxicity. J Mol Graph Model 2016; 69:39-60. [PMID: 27567201 DOI: 10.1016/j.jmgm.2016.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Molecular shape similarity and field similarity have been used to interpret, in a qualitative way, the structure-activity relationships in a selected series of platinum(IV) complexes with anticancer activity. MM and QM calculations have been used to estimate the electron density, electrostatic potential maps, partial charges, dipolar moments and other parameters to correlate the stereo-electronic properties with the differential biological activity of complexes. Extended Electron Distribution (XED) field similarity has been also evaluated for the free 1,4-diamino carrier ligands, in a fragment-based drug design approach, comparing Connolly solvent excluded surface, hydrophobicity field surface, Van der Waals field surface, nucleophilicity field surface, electrophilicity field surface and the extended electron-distribution maxima field points. A consistency has been found when comparing the stereo-electronic properties of the studied series of platinum(IV) complexes and/or the free ligands evaluated and their in vitro anticancer activity.
Collapse
Affiliation(s)
- Julia Lorenzo
- Instituto de Biotecnología y Biomedicina Vicent Villar Palasí, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ángel M Montaña
- Unidad de Química Orgánica Industrial y Aplicada, Departamento de Química Orgánica, Universidad de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
38
|
Lasorsa A, Stuchlíková O, Brabec V, Natile G, Arnesano F. Activation of Platinum(IV) Prodrugs by Cytochrome c and Characterization of the Protein Binding Sites. Mol Pharm 2016; 13:3216-23. [PMID: 27505350 DOI: 10.1021/acs.molpharmaceut.6b00438] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platinum(IV) complexes generally require reduction to reactive Pt(II) species to exert their chemotherapeutic activity. The process of reductive activation of (15)N-labeled (OC-6-43)-bis(acetato)diamminedichloridoplatinum(IV), in the presence of nicotinamide adenine dinucleotide (NADH) and horse heart cytochrome c (cyt c), was monitored by (1)H,(15)N-HSQC NMR spectroscopy and protein digestion experiments. It has been shown that cyt c plays a catalytic role in the transfer of two reducing equivalents from NADH to Pt(IV) species. Noncovalent interactions between reduced monoaqua cisplatin (cis-[PtCl((15)NH3)2(H2O)](+)) and the protein, in the proximity of the heme cofactor, and also covalent binding of platinum to the protein region around Met65 and Met80 take place.
Collapse
Affiliation(s)
- Alessia Lasorsa
- Department of Chemistry, University of Bari "A. Moro" , via E. Orabona, 4, 70125 Bari, Italy
| | - Olga Stuchlíková
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i, Královopolská 135, CZ-61265 Brno, Czech Republic.,Department of Biophysics, Faculty of Science, Palacky University , 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic , v.v.i, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro" , via E. Orabona, 4, 70125 Bari, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro" , via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
39
|
A kinetic analysis of oxidation of the antioxidant N-acetyl-l-cysteine (NAC) by Pt(IV) complexes. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ritacco I, Mazzone G, Russo N, Sicilia E. Investigation of the Inertness to Hydrolysis of Platinum(IV) Prodrugs. Inorg Chem 2016; 55:1580-6. [PMID: 26812023 DOI: 10.1021/acs.inorgchem.5b02484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Platinum(IV) complexes are an important class of compounds that can act as prodrugs, and due to their inertness, if correctly designed, they could have low toxicity outside the cancer cell and improve the pharmacological properties of the platinum(II) anticancer agents that are currently used in the clinic. Because of the efforts that are concentrated on the use of axial ligands able to control the reduction potentials, lipophilicity, charge, selectivity, targeting, and cell uptake of the Pt(IV) complexes, we considered to be of interest to probe the inertness of such complexes that is assumed to be a fulfilled prerequisite. To this aim, a density functional theory computational analysis of the hydrolysis mechanism and the corresponding energy profiles for a series of Pt(IV) derivatives of cisplatin, carboplatin, and oxaliplatin with acetato, haloacetato, and chlorido ligands was performed to probe their stability in biological fluids. The heights of the barriers calculated along the hydrolysis pathways for the associative displacement of ligands both in axial and equatorial positions confirm that Pt(IV) complexes are, in general, more inert than the corresponding Pt(II) drugs even if inertness is lower than expected. Some exceptions exist, such as derivatives of oxaliplatin for the hydrolysis in equatorial position. The nature of the axial ligands influences the course of the hydrolysis reaction even if a decisive role is played by the ligands in equatorial positions. The mechanism of the aquation in axial position of cisplatin Pt(IV) derivative with two chlorido axial ligands assisted by Pt(II) cisplatin was elucidated, and the calculated activation energy confirms the catalytic role played by the Pt(II) complex.
Collapse
Affiliation(s)
- Ida Ritacco
- Department of Chemistry and Chemical Technologies, Università della Calabria , 87036 Arcavacata di Rende, CS, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, Università della Calabria , 87036 Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria , 87036 Arcavacata di Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria , 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
41
|
Zhang XP, Liu FQ, Lai JC, Li CH, Li AM, You XZ. Novel redox responsive chiral cyclometalated platinum(ii) complexes with pinene functionalized C^N^N ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj02932e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A couple of unprecedented platinum(iv) complexes have been facilely prepared, and distinct chiroptical performances are exhibited.
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- Nanjing 210046
- People’s Republic of China
| | - Fu-Qiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- Nanjing 210046
- People’s Republic of China
| | - Jian-Cheng Lai
- State Key laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing university
- Nanjing 210093
| | - Cheng-Hui Li
- State Key laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing university
- Nanjing 210093
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- Nanjing 210046
- People’s Republic of China
| | - Xiao-Zeng You
- State Key laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing university
- Nanjing 210093
| |
Collapse
|
42
|
Dong J, Ren Y, Huo S, Shen S, Xu J, Tian H, Shi T. Reduction of ormaplatin and cis-diamminetetrachloroplatinum(iv) by ascorbic acid and dominant thiols in human plasma: kinetic and mechanistic analyses. Dalton Trans 2016; 45:11326-37. [DOI: 10.1039/c6dt01804a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reductions of Pt(iv) anticancer prodrugs [Pt(dach)Cl4] (ormaplatin/tetraplatin) and cis-[Pt(NH3)2Cl4] by several dominant reductants in human plasma have been characterized and analyzed kinetically and mechanistically.
Collapse
Affiliation(s)
- Jingran Dong
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Yanli Ren
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Shuying Huo
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Shigang Shen
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Hongwu Tian
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| | - Tiesheng Shi
- College of Chemistry and Environmental Science
- and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics
- Hebei University
- Baoding 071002
- People's Republic of China
| |
Collapse
|
43
|
Characterization of the mechanism of reduction of trans-diamminetetrachloroplatinum(IV) by l-cysteine and dl-homocysteine. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9983-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Huo S, Dong J, Shen S, Ren Y, Song C, Xu J, Shi T. L-selenomethionine reduces platinum(IV) anticancer model compounds at strikingly faster rates than L-methionine. Dalton Trans 2015; 43:15328-36. [PMID: 25075569 DOI: 10.1039/c4dt01528b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-Selenomethionine (SeMet), the predominant form of selenium acquired from the diet by humans, has been used as a supplement, and exhibit some important functions like cancer prevention and antioxidative defense. Its interactions with Pt(II) anticancer drugs have been characterized, but its redox reactions with platinum(IV) anticancer prodrugs have not been exploited. In this work, the oxidation of SeMet by Pt(IV) anticancer model compounds trans-[PtX2(CN)4](2-) (X = Cl, Br) was characterized. A stopped-flow spectrometer was used to record the rapid scan spectra and to follow the reaction kinetics over a wide pH range. An overall second-order rate law was derived: -d[Pt(IV)]/dt = k'[Pt(IV)][SeMet], where k' pertains to the observed second-order rate constants. The k'-pH profiles showed that k' increased only about 6 times even though the solution pH was varied from 0.25 to 10.5. The redox stoichiometry was determined as Δ[Pt(IV)]/Δ[SeMet] = 1 : (1.07 ± 0.07), suggesting that SeMet was oxidized to selenomethionine selenoxide. The selenoxide together with its hydrated form was identified explicitly by high resolution mass spectral analysis. A reaction mechanism was proposed which encompassed three parallel rate-determining steps relying on the protolytic species of SeMet. Rate constants of the rate-determining steps were obtained from the simulations of the k'-pH profiles. Activation parameters were determined for the reactions of the zwitterionic form of SeMet with the Pt(IV) complexes. A bridged electron transfer process is delineated in the rate-determining steps and several lines of evidence support the bridged electron transfer mode. Strikingly, reduction of [PtX2(CN)4](2-) by SeMet is 3.7 × 10(3)-5.7 × 10(4) times faster than that by L-methionine. Some potential biological consequences resulting from the strikingly fast reduction are discussed.
Collapse
Affiliation(s)
- Shuying Huo
- College of Chemistry and Environmental Science, and the MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Reduction of ormaplatin by a dithiol model compound for the active site of thioredoxin: stopped-flow kinetic analysis. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9923-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Platinum(IV) cisplatin derivative trans, cis, cis-bis(heptanoato)amine(cyclohexylamine)dichloridoplatinum(IV) has an enhanced therapeutic index compared to cisplatin for the treatment of non-small cell lung cancer. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Lamey D, Prokopyeva I, Cárdenas-Lizana F, Kiwi-Minsker L. Impact of organic-ligand shell on catalytic performance of colloidal Pd nanoparticles for alkyne gas-phase hydrogenation. Catal Today 2014. [DOI: 10.1016/j.cattod.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Liang B, Huo S, Ren Y, Sun S, Cao Z, Shen S. A platinum(IV)-based metallointercalator: synthesis, cytotoxicity, and redox reactions with thiol-containing compounds. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9886-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Ravera M, Gabano E, Pelosi G, Fregonese F, Tinello S, Osella D. A new entry to asymmetric platinum(IV) complexes via oxidative chlorination. Inorg Chem 2014; 53:9326-35. [PMID: 25121398 DOI: 10.1021/ic501446b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pt(IV) complexes are usually prepared by oxidation of the corresponding Pt(II) counterparts, typically using hydrogen peroxide or chlorine. A different way to synthesize asymmetrical Pt(IV) compounds is the oxidative chlorination of Pt(II) counterparts with N-chlorosuccinimide. The reaction between cisplatin cis-[PtCl2(NH3)2], carboplatin, cis-[PtCl2(dach)] and cis-[Pt(cbdc)(dach)] (cbdc = cyclobutane-1,1'-dicarboxylato; dach = cyclohexane-1R,2R-diamine) with N-chlorosuccinimide in ethane-1,2-diol was optimized to produce the asymmetric Pt(IV) octahedral complexes [PtA2Cl(glyc)X2] (A2 = 2 NH3 or dach; glyc = 2-hydroxyethanolato; X2 = 2 Cl or cbdc) in high yield and purity. The X-ray crystal structure of the [Pt(cbdc)Cl(dach)(glyc)] complex is also reported. Moreover, the oxidation method proved to be versatile enough to produce other mixed Pt(IV) derivatives varying the reaction medium. The two trichlorido complexes easily undergo a pH-dependent hydrolysis reaction, whereas the dicarboxylato compounds are stable enough to allow further coupling reactions for drug targeting and delivery via the glyc reactive pendant. Therefore, the coupling reaction between the [Pt(cbdc)Cl(dach)(glyc)] and a model carboxylic acid, a model amine, and selectively protected amino acids is reported.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, I-15121 Alessandria, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Thiabaud G, Arambula JF, Siddik ZH, Sessler JL. Photoinduced reduction of Pt(IV) within an anti-proliferative Pt(IV)-texaphyrin conjugate. Chemistry 2014; 20:8942-7. [PMID: 24961491 DOI: 10.1002/chem.201403094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 11/06/2022]
Abstract
In an effort to increase the stability and control the platinum reactivity of platinum-texaphyrin conjugates, two Pt(IV) conjugates were designed, synthesized, and studied for their ability to form DNA adducts. They were also tested for their anti-proliferative effects using wild-type and platinum-resistant human ovarian cancer cell lines (A2780 and 2780CP, respectively). In comparison to an analogous first-generation Pt(II) chimera, one of the new conjugates provided increased stability in aqueous environments. Using a combination of (1) H NMR spectroscopy and FAAS (flameless atomic-absorption spectrometry), it was found that the Pt(IV) center within this conjugate undergoes photoinduced reduction to Pt(II) upon exposure to glass-filtered daylight, resulting in an entity that binds DNA in a controlled manner. Under conditions in which the Pt(IV) complex is reduced to the corresponding Pt(II) species, these new conjugates demonstrated potent anti-proliferative activity in both test ovarian cancer cell lines.
Collapse
Affiliation(s)
- Grégory Thiabaud
- Department of Chemistry and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 105 E. 24th Street- Stop A5300, Austin, Texas 78712-1224 (USA)
| | | | | | | |
Collapse
|