1
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural basis for expanded substrate specificities of human long chain acyl-CoA dehydrogenase and related acyl-CoA dehydrogenases. Sci Rep 2024; 14:12976. [PMID: 38839792 PMCID: PMC11153573 DOI: 10.1038/s41598-024-63027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the catalytically inactive Glu291Gln mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43 kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
Affiliation(s)
- Beena Narayanan
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Chuanwu Xia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of North Florida, Jacksonville, FL, 32224, USA
| | - Ryan McAndrew
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94740, USA
| | - Anna L Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Li X, Zhang R, Li J, Liu N, Chen X, Liu Y, Zhao G, Ding K, Yao P, Feng J, Wu Q, Zhu D, Ma Y. Chemo-Enzymatic Strategy for the Efficient Synthesis of Steroidal Drugs with 10α-Methyl Group and a Side Chain at C17-Position from Biorenewable Phytosterols. JACS AU 2024; 4:1356-1364. [PMID: 38665665 PMCID: PMC11040700 DOI: 10.1021/jacsau.3c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Steroidal pharmaceuticals with a 10α-methyl group or without the methyl group at C10-position are important medicines, but their synthesis is quite challenging, due to that the natural steroidal starting materials usually have a 10β-methyl group which is difficult to be inverted to 10α-methyl group. In this study, 3-((1R,3aS,4S,7aR)-1-((S)-1-hydroxypropan-2-yl)-7a-methyl-5-oxooctahydro-1H-inden-4-yl) propanoic acid (HIP-IPA, 2e) was demonstrated as a valuable intermediate for the synthesis of this kind of active pharmaceutical ingredients (APIs) with a side chain at C17-position. Knockout of a β-hydroxyacyl-CoA dehydrogenase gene and introduction of a sterol aldolase gene into the genetically modified strains of Mycobacterium fortuitum (ATCC 6841) resulted in strains N13Δhsd4AΩthl and N33Δhsd4AΩthl, respectively. Both strains transformed phytosterols into 2e. Compound 2e was produced in 62% isolated yield (25 g) using strain N13Δhsd4AΩthl, and further converted to (3S,3aS,9aS,9bS)-3-acetyl-3a,6-dimethyl-1,2,3,3a,4,5,8,9,9a,9b-decahydro-7H-cyclopenta[a]naphthalen-7-one, which is the key intermediate for the synthesis of dydrogesterone. This study not only overcomes a challenging synthetic problem by enabling an efficient synthesis of dydrogesterone-like steroidal APIs from phytosterols, the well-recognized cheap and readily available biobased raw materials, but also provides insights for redesigning the metabolic pathway of phytosterols to produce other new compounds of relevance to the steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Xuemei Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Rui Zhang
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Jianjiong Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Na Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Xi Chen
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Yiyin Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Gang Zhao
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, China
| | - Kai Ding
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai
Institute of Organic Chemistry, Chinese
Academy of Sciences, Shanghai 200032, China
| | - Peiyuan Yao
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Jinhui Feng
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Qiaqing Wu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Dunming Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| | - Yanhe Ma
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Key Laboratory of Engineering Biology for Low-carbon Manufacturing,
National Center of Technology Innovation for Synthetic Biology, and
Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
| |
Collapse
|
4
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems. WATER RESEARCH 2024; 253:121331. [PMID: 38377929 DOI: 10.1016/j.watres.2024.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In practical drinking water treatment, chlorine and chloramine disinfection exhibit different mechanisms that affect biofilm growth. This study focused on the influence of biofilm composition changes, especially extracellular polymeric substance (EPS) fractions, on the potential formation and toxicity of nitrogenous disinfection by-products (N-DBP). Significant differences in microbial diversity and community structure were observed between the chlorine and chloramine treatments. Notably, the biofilms from the chloramine-treated group had higher microbial dominance and greater accumulation of organic precursors, as evidenced by the semi-quantitative confocal laser-scanning microscopy assay of more concentrated microbial aggregates and polysaccharide proteins in the samples. Additionally, the chloramine-treated group compared with chlorine had a higher EPS matrix content, with a 13.5 % increase in protein. Furthermore, the protein distribution within the biofilm differed; in the chlorine group, proteins were concentrated in the central region, whereas in the chloramine group, proteins were primarily located at the water-biofilm interface. Notably, functional prediction analyses of protein fractions in biofilms revealed specific functional regulation patterns and increased metabolism-related abundance of proteins in the chlorine-treated group. This increase was particularly pronounced for proteins such as dehydrogenases, reductases, transcription factors, and acyl-CoA dehydrogenases. By combining the Fukui function and density functional calculations to further analyse the effect of biofilm component changes on N-DBP production under chlorine/chloramine and by assessing the toxicity risk potential of N-DBP, it was determined that chloramine disinfection is detrimental to biofilm control and the accumulation of protein precursors has a higher formation potential of N-DBPs and toxicity risk, increasing the health risk of drinking water.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|
5
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural Basis for Expanded Substrate Speci ficities of Human Long Chain Acyl-CoA Dehydrogenase and Related Acyl- CoA Dehydrogenases. RESEARCH SQUARE 2024:rs.3.rs-3980524. [PMID: 38464032 PMCID: PMC10925408 DOI: 10.21203/rs.3.rs-3980524/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the E291Q mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
|
6
|
Yuan C, Li Y, Han S, He B, Zhai X, Lin W, Shi J, Sun J, Zhang B. Functional analysis of acyl-CoA dehydrogenases and their application to C22 steroid production. Appl Microbiol Biotechnol 2023; 107:3419-3428. [PMID: 37093308 DOI: 10.1007/s00253-023-12541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Acyl-CoA dehydrogenase (ChsE) is involved in the steroid side-chain degradation process. However, their function in vivo remains unclear. In this study, three ChsE, ChsE1-ChsE2, ChsE3, and ChsE4-ChsE5, were identified in Mycolicibacterium neoaurum, and their functions in vivo are studied and compared with those from Mycobacterium tuberculosis in vitro. By gene knockout, complementation, and the bioconversion of phytosterols, the function of ChsE was elucidated that ChsE4-ChsE5 could utilize C27, C24, and C22 steroids in vivo. ChsE3 could utilize C27 and C24 steroids in vivo. ChsE1-ChsE2 could utilize C27, C24, and C22 steroids in vivo. What is more, the production strain of a C22 steroid, 3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (PDCE), is constructed with ChsE overexpression. This study improved the understanding of the steroid bioconversion pathway and proposed a method of the production of a new C22 steroid. KEY POINTS: • Three ChsE paralogs from M. neoaurum are identified and studied. • The function of ChsE is overlapped in vivo. • A C22 steroid (PDCE) producer was constructed with ChsE overexpression.
Collapse
Affiliation(s)
- Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Department of Biology, Colby College, Waterville, ME, 04901, USA
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beiru He
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinghui Zhai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weichao Lin
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Cheng Y, Yi X, Zhang Y, He Q, Chen D, Cao W, Fang P, Liu W. Oxidase Heterotetramer Completes 1-Azabicyclo[3.1.0]hexane Formation with the Association of a Nonribosomal Peptide Synthetase. J Am Chem Soc 2023; 145:8896-8907. [PMID: 37043819 DOI: 10.1021/jacs.2c12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ficellomycin, azinomycins, and vazabitide A are nonribosomal peptide natural products characterized by an amino acid unit that contains a similar 1-azabicyclo[3.1.0]hexane (ABCH) pharmacophore. This unit is derived from diamino-dihydroxy-heptanic acid (DADH); however, the process through which linear DADH is cyclized to furnish an ABCH ring system remains poorly understood. Based on the reconstitution of the route of the ABCH-containing unit by blending genes/enzymes involved in the biosynthesis of ficellomycin and azinomycins, we report that ABCH formation is completed by an oxidase heterotetramer with the association of a nonribosomal peptide synthetase (NRPS). The DADH precursor was prepared in Escherichia coli to produce a conjugate subjected to in vitro enzymatic hydrolysis for offloading from an amino-group carrier protein. To furnish an aziridine ring, DADH was processed by C7-hydroxyl sulfonation and sulfate elimination-coupled cyclization. Further cyclization leading to an azabicyclic hexane pharmacophore was proved to occur in the NRPS, where the oxidase heterotetramer functions in trans and catalyzes α,β-dehydrogenation to initiate the formation of a fused five-membered nitrogen heterocycle. The identity of ABCH was validated by utilization of the resultant ABCH-containing unit in the total biosynthesis of ficellomycin. Biochemical characterization, crystal structure, and site-specific mutagenesis rationalize the catalytic mechanism of the unusual oxidase heterotetramer.
Collapse
Affiliation(s)
- Yiyuan Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuan Yi
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingli He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Shanghai University, 99 Shangda Rd, Baoshan, Shanghai 200444, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Moopanar K, Nyide ANG, Senzani S, Mvubu NE. Clinical strains of Mycobacterium tuberculosis exhibit differential lipid metabolism-associated transcriptome changes in in vitro cholesterol and infection models. Pathog Dis 2022; 81:6889515. [PMID: 36509392 PMCID: PMC9936260 DOI: 10.1093/femspd/ftac046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Many studies have identified host-derived lipids, characterised by the abundance of cholesterol, as a major source of carbon nutrition for Mycobacterium tuberculosis during infection. Members of the Mycobacterium tuberculosis complex are biologically different with regards to degree of disease, host range, pathogenicity and transmission. Therefore, the current study aimed at elucidating transcriptome changes during early infection of pulmonary epithelial cells and on an in vitro cholesterol-rich minimal media, in M. tuberculosis clinical strains F15/LAM4/KZN and Beijing, and the laboratory H37Rv strain. Infection of pulmonary epithelial cells elicited the upregulation of fadD28 and hsaC in both the F15/LAM4/KZN and Beijing strains and the downregulation of several other lipid-associated genes. Growth curve analysis revealed F15/LAM4/KZN and Beijing to be slow growers in 7H9 medium and cholesterol-supplemented media. RNA-seq analysis revealed strain-specific transcriptomic changes, thereby affecting different metabolic processes in an in vitro cholesterol model. The differential expression of these genes suggests that the genetically diverse M. tuberculosis clinical strains exhibit strain-specific behaviour that may influence their ability to metabolise lipids, specifically cholesterol, which may account for phenotypic differences observed during infection.
Collapse
Affiliation(s)
- Kynesha Moopanar
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Asanda Nomfundo Graduate Nyide
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Sibusiso Senzani
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st floor, Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa
| | - Nontobeko Eunice Mvubu
- Corresponding author. Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.Tel: +27 31 260 7404; E-mail:
| |
Collapse
|
9
|
Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum. Appl Environ Microbiol 2022; 88:e0130322. [PMID: 36286498 PMCID: PMC9680642 DOI: 10.1128/aem.01303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C22 steroids are valuable precursors for steroid drug synthesis, but the development of C22 steroids remains unsatisfactory. This study presented a strategy for the one-step bioconversion of phytosterols to a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), by 3-ketosteroid-Δ
1
-dehydrogenase and enoyl-CoA hydratase deficiency with overexpression of 17β-hydroxysteroid dehydrogenase acyl-CoA dehydrogenase in
Mycolicibacterium
.
Collapse
|
10
|
Han Y, Zhu X, Wang X, Zhang J. Oxygen Bioavailability is a Rate-Limited Factor in Phytosterols Bioconversion Using a Cyclodextrin-Resting Cell System. Catal Letters 2022. [DOI: 10.1007/s10562-022-04090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Steroid Metabolism in Thermophilic Actinobacterium Saccharopolyspora hirsuta VKM Ac-666 T. Microorganisms 2021; 9:microorganisms9122554. [PMID: 34946155 PMCID: PMC8708139 DOI: 10.3390/microorganisms9122554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.
Collapse
|
12
|
Kung JW, Meier AK, Willistein M, Weidenweber S, Demmer U, Ermler U, Boll M. Structural Basis of Cyclic 1,3-Diene Forming Acyl-Coenzyme A Dehydrogenases. Chembiochem 2021; 22:3173-3177. [PMID: 34555236 PMCID: PMC9293079 DOI: 10.1002/cbic.202100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The biologically important, FAD‐containing acyl‐coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti‐1,2‐elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4‐elimination at C3 and C6 of cyclohex‐1‐ene‐1‐carboxyl‐CoA (Ch1CoA) to cyclohex‐1,5‐diene‐1‐carboxyl‐CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl‐CoA. Based on high‐resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD‐N5 to favor the biologically relevant C3,C6‐ over the C3,C4‐dehydrogenation activity. The C1,C2‐dehydrogenation activity was regained by structure‐inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3‐diene building blocks.
Collapse
Affiliation(s)
- Johannes W Kung
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Anne-Katrin Meier
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Sina Weidenweber
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
13
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
14
|
Comparative Analysis of Bile-Salt Degradation in Sphingobium sp. Strain Chol11 and Pseudomonas stutzeri Strain Chol1 Reveals Functional Diversity of Proteobacterial Steroid Degradation Enzymes and Suggests a Novel Pathway for Side Chain Degradation. Appl Environ Microbiol 2021; 87:e0145321. [PMID: 34469190 DOI: 10.1128/aem.01453-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The reaction sequence for aerobic degradation of bile salts by environmental bacteria resembles degradation of other steroid compounds. Recent findings show that bacteria belonging to the Sphingomonadaceae use a pathway variant for bile-salt degradation. This study addresses this so-called Δ4,6-variant by comparative analysis of unknown degradation steps in Sphingobium sp. strain Chol11 with known reactions found in Pseudomonas stutzeri Chol1. Investigations of strain Chol11 revealed an essential function of the acyl-CoA dehydrogenase (ACAD) Scd4AB for growth with bile salts. Growth of the scd4AB deletion mutant was restored with a metabolite containing a double bond within the side chain which was produced by the Δ22-ACAD Scd1AB from P. stutzeri Chol1. Expression of scd1AB in the scd4AB deletion mutant fully restored growth with bile salts, while expression of scd4AB only enabled constricted growth in P. stutzeri Chol1 scd1A or scd1B deletion mutants. Strain Chol11 Δscd4A accumulated hydroxylated steroid metabolites which were degraded and activated with coenzyme A by the wild type. Activities of five Rieske type monooxygenases of strain Chol11 were screened by heterologous expression and compared to the B-ring cleaving KshABChol1 from P. stutzeri Chol1. Three of the Chol11 enzymes catalyzed B-ring cleavage of only Δ4,6-steroids, while KshABChol1 was more versatile. Expression of a fourth KshA homolog, Nov2c228, led to production of metabolites with hydroxylations at an unknown position. These results indicate functional diversity of proteobacterial enzymes for bile-salt degradation and suggest a novel side chain degradation pathway involving an essential ACAD reaction and a steroid hydroxylation step. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds in different aspects. First, it further elucidates an unexplored variant in the degradation of bile-salt side chains by sphingomonads, a group of environmental bacteria that is well-known for their broad metabolic capabilities. Moreover, it adds a so far unknown hydroxylation of steroids to the reactions Rieske monooxygenases can catalyze with steroids. Additionally, it analyzes a proteobacterial ketosteroid-9α-hydroxylase and shows that this enzyme is able to catalyze side reactions with nonnative substrates.
Collapse
|
15
|
Feller FM, Wöhlbrand L, Holert J, Schnaars V, Elsner L, Mohn WW, Rabus R, Philipp B. Proteome, Bioinformatic, and Functional Analyses Reveal a Distinct and Conserved Metabolic Pathway for Bile Salt Degradation in the Sphingomonadaceae. Appl Environ Microbiol 2021; 87:e0098721. [PMID: 34260303 PMCID: PMC8432579 DOI: 10.1128/aem.00987-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Bile salts are amphiphilic steroids with digestive functions in vertebrates. Upon excretion, bile salts are degraded by environmental bacteria. Degradation of the bile salt steroid skeleton resembles the well-studied pathway for other steroids, like testosterone, while specific differences occur during side chain degradation and the initiating transformations of the steroid skeleton. Of the latter, two variants via either Δ1,4- or Δ4,6-3-ketostructures of the steroid skeleton exist for 7-hydroxy bile salts. While the Δ1,4 variant is well known from many model organisms, the Δ4,6 variant involving a 7-hydroxysteroid dehydratase as a key enzyme has not been systematically studied. Here, combined proteomic, bioinformatic, and functional analyses of the Δ4,6 variant in Sphingobium sp. strain Chol11 were performed. They revealed a degradation of the steroid rings similar to that of the Δ1,4 variant except for the elimination of the 7-OH as a key difference. In contrast, differential production of the respective proteins revealed a putative gene cluster for the degradation of the C5 carboxylic side chain encoding a CoA ligase, an acyl-CoA dehydrogenase, a Rieske monooxygenase, and an amidase but lacking most canonical genes known from other steroid-degrading bacteria. Bioinformatic analyses predicted the Δ4,6 variant to be widespread among the Sphingomonadaceae, which was verified for three type strains which also have the predicted side chain degradation cluster. A second amidase in the side chain degradation gene cluster of strain Chol11 was shown to cleave conjugated bile salts while having low similarity to known bile salt hydrolases. This study identifies members of the Sphingomonadaceae that are remarkably well adapted to the utilization of bile salts via a partially distinct metabolic pathway. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds, in particular bile salts. Furthermore, it substantiates and advances knowledge of a variant pathway for degradation of steroids by sphingomonads, a group of environmental bacteria that are well known for their broad metabolic capabilities. Biodegradation of bile salts is a critical process due to the high input of these compounds from manure into agricultural soils and wastewater treatment plants. In addition, these results may also be relevant for the biotechnological production of bile salts or other steroid compounds with pharmaceutical functions.
Collapse
Affiliation(s)
- Franziska M. Feller
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Johannes Holert
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lea Elsner
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bodo Philipp
- Microbial Biotechnology and Ecology, Institute for Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Applied Ecology and Bioresources, Fraunhofer-Institute for Molecular and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
16
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
17
|
Yuan T, Werman JM, Yin X, Yang M, Garcia-Diaz M, Sampson NS. Enzymatic β-Oxidation of the Cholesterol Side Chain in Mycobacterium tuberculosis Bifurcates Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA. ACS Infect Dis 2021; 7:1739-1751. [PMID: 33826843 PMCID: PMC8204306 DOI: 10.1021/acsinfecdis.1c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The unique ability
of Mycobacterium tuberculosis (Mtb) to utilize host
lipids such as cholesterol for survival, persistence,
and virulence has made the metabolic pathway of cholesterol an area
of great interest for therapeutics development. Herein, we identify
and characterize two genes from the Cho-region (genomic locus responsible
for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products
catalyze two sequential stereospecific hydration and dehydrogenation
steps in the β-oxidation of the cholesterol side chain. ChsH3
favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA
in contrast to the previously reported EchA19 (Rv3516), which catalyzes
formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA
from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes
dehydrogenation of the ChsH3 product but not the EchA19 product. The
X-ray crystallographic structure of the ChsB1 apo-protein was determined
at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The
homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including
a Rossmann-fold motif, but exhibits a unique substrate binding site
architecture that is of greater length and width than its homologous
counterparts, likely to accommodate the bulky steroid substrate. Intriguingly,
Mtb utilizes hydratases from the MaoC-like family in sterol side-chain
catabolism in contrast to fatty acid β-oxidation in other species
that utilize the evolutionarily distinct crotonase family of hydratases.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xingyu Yin
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | - Meng Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
18
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
19
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
20
|
Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors. Angew Chem Int Ed Engl 2021; 60:5414-5420. [PMID: 33258169 DOI: 10.1002/anie.202015462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/15/2022]
Abstract
4-Androstenedione (4-AD) and progesterone (PG) are two of the most important precursors for synthesis of steroid drugs, however their current manufacturing processes suffer from low efficiency and severe environmental issues. In this study, we decipher a dual-role reductase (mnOpccR) in the phytosterols catabolism, which engages in two different metabolic branches to produce the key intermediate 20-hydroxymethyl pregn-4-ene-3-one (4-HBC) through a 4-e reduction of 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) and 2-e reduction of 3-oxo-4-pregnene-20-carboxyl aldehyde (3-OPA), respectively. Inactivation or overexpression of mnOpccR in the Mycobacterium neoaurum can achieve exclusive production of either 4-AD or 4-HBC from phytosterols. By utilizing a two-step synthesis, 4-HBC can be efficiently converted into PG in a scalable manner (100 gram scale). This study deciphers a pivotal biosynthetic mechanism of phytosterol catabolism and provides very efficient production routes of 4-AD and PG.
Collapse
Affiliation(s)
- Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Yaya Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Kai Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 1 Luojiashan Rd., Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| |
Collapse
|
21
|
Shtratnikova VY, Sсhelkunov MI, Fokina VV, Bragin EY, Shutov AA, Donova MV. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol 2021; 21:7. [PMID: 33441120 PMCID: PMC7807495 DOI: 10.1186/s12896-021-00668-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. RESULTS Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N. simplex. Unlike phytosterol, cortisone 21-acetate does not provide induction of the genes with predicted KstR and KstR2 sites. Superior 3-ketosteroid-Δ1-dehydrogenase activity of N. simplex VKM Ac-2033D is due to the kstDs redundancy in the genome, with the highest expression level of the gene KR76_27125 orthologous to kstD2, in response to cortisone 21-acetate. The substrate spectrum of N. simplex 3-ketosteroid-Δ1-dehydrogenase was expanded in this study with progesterone and its 17α-hydroxylated and 11α,17α-dihydroxylated derivatives, that effectively were 1(2)-dehydrogenated in vivo by the whole cells of the N. simplex VKM Ac-2033D. CONCLUSION The results contribute to the knowledge of biocatalytic features and diversity of steroid modification capabilities of actinobacteria, defining targets for further bioengineering manipulations with the purpose of expansion of their biotechnological applications.
Collapse
Affiliation(s)
- Victoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, h. 1, b. 40, Moscow, Russian Federation 119991
| | - Mikhail I. Sсhelkunov
- Skolkovo Institute of Science and Technology, Nobelya str., 3, Moscow, Russian Federation 121205
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., h. 19, b. 1, Moscow, Russian Federation 127994
| | - Victoria V. Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Eugeny Y. Bragin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
| | - Andrey A. Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| | - Marina V. Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation 142290
- Pharmins, Ltd., R&D, Institutskaya str, 4, Pushchino, Moscow Region, Russian Federation 142290
| |
Collapse
|
22
|
Stirling AJ, Gilbert SE, Conner M, Mallette E, Kimber MS, Seah SYK. A Key Glycine in Bacterial Steroid-Degrading Acyl-CoA Dehydrogenases Allows Flavin-Ring Repositioning and Modulates Substrate Side Chain Specificity. Biochemistry 2020; 59:4081-4092. [PMID: 33040522 DOI: 10.1021/acs.biochem.0c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide variety of steroid metabolites synthesized by eukaryotes are all ultimately catabolized by bacteria; while generally saprophytic, pathogenic Mycobacteria have repurposed these pathways to utilize host intracellular cholesterol pools. Steroid degradation is complex, but a recurring theme is that cycles of β-oxidation are used to iteratively remove acetyl- or propanoyl-CoA groups. These β-oxidation cycles are initiated by the FAD-dependent oxidation of acyl groups, catalyzed by acyl-CoA dehydrogenases (ACADs). We show here that the tcur3481 and tcur3483 genes of Thermomonospora curvata encode subunits of a single ACAD that degrades steroid side chains with a preference for three-carbon over five-carbon substituents. The structure confirms that this enzyme is heterotetrameric, with active sites only in the Tcur3483 subunits. In comparison with the steroid ACAD FadE26-FadE27 from Mycobacterium tuberculosis, the active site is narrower and closed at the steroid-binding end, suggesting that Tcur3481-Tcur3483 is in a catalytically productive state, while FadE26-FadE27 is opened up to allow substrate entry. The flavin rings in Tcur3481-Tcur3483 sit in an unusual pocket created by Gly363, a residue conserved as Ala in steroid ACADs narrowly specific for five-carbon side chains, including FadE34. A Gly363Ala variant of Tcur3481-Tcur3483 prefers five-carbon side chains, while an inverse Ala691Gly FadE34 variant enables three-carbon side chain steroid oxidation. We determined the structure of the Tcur3483 Gly363Ala variant, showing that the flavin rings shift into the more conventional position. Modeling suggests that the shifted flavin position made possible by Gly363 is required to allow the bulky, inflexible three-carbon steroid to bind productively in the active site.
Collapse
Affiliation(s)
- Alexander J Stirling
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Stephanie E Gilbert
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Megan Conner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Evan Mallette
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| |
Collapse
|
23
|
Bonds AC, Yuan T, Werman JM, Jang J, Lu R, Nesbitt NM, Garcia-Diaz M, Sampson NS. Post-translational Succinylation of Mycobacterium tuberculosis Enoyl-CoA Hydratase EchA19 Slows Catalytic Hydration of Cholesterol Catabolite 3-Oxo-chol-4,22-diene-24-oyl-CoA. ACS Infect Dis 2020; 6:2214-2224. [PMID: 32649175 DOI: 10.1021/acsinfecdis.0c00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol is a major carbon source for Mycobacterium tuberculosis (Mtb) during infection, and cholesterol utilization plays a significant role in persistence and virulence within host macrophages. Elucidating the mechanism by which cholesterol is degraded may permit the identification of new therapeutic targets. Here, we characterized EchA19 (Rv3516), an enoyl-CoA hydratase involved in cholesterol side-chain catabolism. Steady-state kinetics assays demonstrated that EchA19 preferentially hydrates cholesterol enoyl-CoA metabolite 3-oxo-chol-4,22-diene-24-oyl-CoA, an intermediate of side-chain β-oxidation. In addition, succinyl-CoA, a downstream catabolite of propionyl-CoA that forms during cholesterol degradation, covalently modifies targeted mycobacterial proteins, including EchA19. Inspection of a 1.9 Å resolution X-ray crystallography structure of Mtb EchA19 suggests that succinylation of Lys132 and Lys139 may perturb enzymatic activity by modifying the entrance to the substrate binding site. Treatment of EchA19 with succinyl-CoA revealed that these two residues are hotspots for succinylation. Replacement of these specific lysine residues with negatively charged glutamate reduced the rate of catalytic hydration of 3-oxo-chol-4,22-diene-24-oyl-CoA by EchA19, as does succinylation of EchA19. Our findings suggest that succinylation is a negative feedback regulator of cholesterol metabolism, thereby adding another layer of complexity to Mtb physiology in the host. These regulatory pathways are potential noncatabolic targets for antimicrobial drugs.
Collapse
Affiliation(s)
- Amber C. Bonds
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Jungwon Jang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Natasha M. Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| |
Collapse
|
24
|
Structural basis for the broad substrate specificity of two acyl-CoA dehydrogenases FadE5 from mycobacteria. Proc Natl Acad Sci U S A 2020; 117:16324-16332. [PMID: 32601219 PMCID: PMC7368279 DOI: 10.1073/pnas.2002835117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
FadE, an acyl-CoA dehydrogenase, introduces unsaturation to carbon chains in lipid metabolism pathways. Here, we report that FadE5 from Mycobacterium tuberculosis (MtbFadE5) and Mycobacterium smegmatis (MsFadE5) play roles in drug resistance and exhibit broad specificity for linear acyl-CoA substrates but have a preference for those with long carbon chains. Here, the structures of MsFadE5 and MtbFadE5, in the presence and absence of substrates, have been determined. These reveal the molecular basis for the broad substrate specificity of these enzymes. FadE5 interacts with the CoA region of the substrate through a large number of hydrogen bonds and an unusual π-π stacking interaction, allowing these enzymes to accept both short- and long-chain substrates. Residues in the substrate binding cavity reorient their side chains to accommodate substrates of various lengths. Longer carbon-chain substrates make more numerous hydrophobic interactions with the enzyme compared with the shorter-chain substrates, resulting in a preference for this type of substrate.
Collapse
|
25
|
Gadbery JE, Round JW, Yuan T, Wipperman MF, Story KT, Crowe AM, Casabon I, Liu J, Yang X, Eltis LD, Sampson NS. IpdE1-IpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria. Biochemistry 2020; 59:1113-1123. [PMID: 32101684 PMCID: PMC7081610 DOI: 10.1021/acs.biochem.0c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α2β2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ΔipdE1 and ΔipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the α- and β-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3aα-H-4α(3'-prop-1-enoate)-7aβ-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via β-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an α2β2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.
Collapse
Affiliation(s)
- John E Gadbery
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - James W Round
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Matthew F Wipperman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Clinical & Translational Science Center, Weill Cornell Medicine, New York, New York 10065, United States
| | - Keith T Story
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam M Crowe
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Israel Casabon
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xinxin Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
26
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
27
|
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ 1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 2019; 191:105366. [PMID: 30991094 DOI: 10.1016/j.jsbmb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the introduction of a double bond between the C1 and C2 atoms of the A-ring of 3-ketosteroid substrates. These enzymes are found in a large variety of microorganisms, especially in bacteria belonging to the phylum Actinobacteria. They play a critical role in the early steps of the degradation of the steroid core. 3-Ketosteroid Δ1-dehydrogenases are of particular interest for the etiology of some infectious diseases, for the production of starting materials for the pharmaceutical industry, and for environmental bioremediation applications. Here we summarize and discuss the biochemical and enzymological properties of these enzymes, their microbial sources, and their natural diversity. The three-dimensional structure of a 3-ketosteroid Δ1-dehydrogenase in connection with the enzyme mechanism is highlighted.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Proteomics, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Bauke W Dijkstra
- The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
28
|
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 2019; 19:39. [PMID: 31238923 PMCID: PMC6593523 DOI: 10.1186/s12896-019-0533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Aerobic side chain degradation of phytosterols by actinobacteria is the basis for the industrial production of androstane steroids which are the starting materials for the synthesis of steroid hormones. A native strain of Mycobacterium sp. VKM Ac-1817D effectively produces 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) from phytosterol, but also is capable of slow steroid core degradation. However, the set of the genes with products that are involved in phytosterol oxidation, their organisation and regulation remain poorly understood. Results High-throughput sequencing of the global transcriptomes of the Mycobacterium sp. VKM Ac-1817D cultures grown with or without phytosterol was carried out. In the presence of phytosterol, the expression of 260 genes including those related to steroid catabolism pathways significantly increased. Two of the five genes encoding the oxygenase unit of 3-ketosteroid-9α-hydroxylase (kshA) were highly up-regulated in response to phytosterol (55- and 25-fold, respectively) as well as one of the two genes encoding its reductase subunit (kshB) (40-fold). Only one of the five putative genes encoding 3-ketosteroid-∆1-dehydrogenase (KstD_1) was up-regulated in the presence of phytosterol (61-fold), but several substitutions in the conservative positions of its product were revealed. Among the genes over-expressed in the presence of phytosterol, several dozen genes did not possess binding sites for the known regulatory factors of steroid catabolism. In the promoter regions of these genes, a regularly occurring palindromic motif was revealed. The orthologue of TetR-family transcription regulator gene Rv0767c of M. tuberculosis was identified in Mycobacterium sp. VKM Ac-1817D as G155_05115. Conclusions High expression levels of the genes related to the sterol side chain degradation and steroid 9α-hydroxylation in combination with possible defects in KstD_1 may contribute to effective 9α-hydroxyandrost-4-ene-3,17-dione accumulation from phytosterol provided by this biotechnologically relevant strain. The TetR-family transcription regulator gene G155_05115 presumably associated with the regulation of steroid catabolism. The results are of significance for the improvement of biocatalytic features of the microbial strains for the steroid industry. Electronic supplementary material The online version of this article (10.1186/s12896-019-0533-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugeny Y Bragin
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290. .,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290.
| | - Victoria Y Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, 1, building 40, Moscow, Russian Federation, 119992
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow, Russian Federation, 121205.,Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny, 19, build. 1, Moscow, Russian Federation, 127051
| | - Dmitry V Dovbnya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| |
Collapse
|
29
|
Biochemical characterization of acyl-coenzyme A synthetases involved in mycobacterial steroid side-chain catabolism and molecular design: synthesis of an anti-mycobacterial agent. 3 Biotech 2019; 9:169. [PMID: 30997306 DOI: 10.1007/s13205-019-1703-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
The metabolism of host cholesterol by Mycobacterium tuberculosis is an important factor for both its virulence and pathogenesis. However, the rationale for this cholesterol metabolism has not been fully understood yet. In the present study, we characterized several previously undescribed acyl-CoA synthetases that are involved in the steroid side-chain degradation in Mycobacterium smegmatis, and an analogue of intermediate from steroid degradation, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was successfully designed and synthesized to be used as a specific anti-mycobacterial agent. The acyl-CoA synthetases exhibited strong preferences for the length of side chain. FadD19 homologs, including FadD19 (MSMEG_5914), FadD19-2 (MSMEG_2241), and FadD19-4 (MSMEG_3687), are unanimously favorable cholesterol with a C8 alkanoate side chain. FadD17 (MSMEG_5908) and FadD1 (MSMEG_4952) showed high preferences for steroids, containing a C5 alkanoate side chain. FadD8 (MSMEG_1098) exhibited specific activity toward cholestenoate with a C8 alkanoate side chain. An acylsulfamoyl analogue of lithocholate, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was designed and synthesized. As expected, the intermediate analogue not only specifically inhibited those steroid-activated acyl-CoA synthetases, but also selectively inhibited the growth of mycobacterial species, including M. tuberculosis, M. smegmatis, and Mycobacterium neoaurum. Overall, our research advanced our understanding of mycobacterial steroid degradation and provided new insights to develop novel mechanism-based anti-mycobacterial agents.
Collapse
|
30
|
Rani N, Hazra S, Singh A, Surolia A. Functional annotation of putative fadE9 of Mycobacterium tuberculosis as isobutyryl-CoA dehydrogenase involved in valine catabolism. Int J Biol Macromol 2019; 122:45-57. [DOI: 10.1016/j.ijbiomac.2018.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
|
31
|
Bonds AC, Sampson NS. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis. Curr Opin Chem Biol 2018; 44:39-46. [PMID: 29906645 DOI: 10.1016/j.cbpa.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the epitome of persistent. Mtb is the pathogen that causes tuberculosis, the leading cause of death by infection worldwide. The success of this pathogen is due in part to its clever ability to adapt to its host environment and its effective manipulation of the host immune system. A major contributing factor to the survival and virulence of Mtb is its acquisition and metabolism of host derived lipids including cholesterol. Accumulating evidence suggests that the catabolism of cholesterol during infection is highly regulated by cholesterol catabolites. We review what is known about how regulation interconnects with cholesterol catabolism. This framework provides support for an indirect approach to drug development that targets Mtb cholesterol metabolism through dysregulation of nutrient utilization pathways.
Collapse
Affiliation(s)
- Amber C Bonds
- Molecular and Cellular Pharmacology Program, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States.
| |
Collapse
|
32
|
Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018; 4:278-290. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| |
Collapse
|
33
|
Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4931720. [PMID: 29718271 PMCID: PMC6251666 DOI: 10.1093/femspd/fty021] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis is a distinctive disease in which the causative agent, Mycobacterium tuberculosis, can persist in humans for decades by avoiding clearance from host immunity. During infection, M. tuberculosis maintains viability by extracting and utilizing essential nutrients from the host, and this is a prerequisite for all of the pathogenic activities that are deployed by the bacterium. In particular, M. tuberculosis preferentially acquires and metabolizes host-derived lipids (fatty acids and cholesterol), and the bacterium utilizes these substrates to cause and maintain disease. In this review, we discuss our current understanding of lipid utilization by M. tuberculosis, and we describe how these pathways promote pathogenesis to fuel metabolic processes in the bacillus. Finally, we highlight weaknesses in these pathways that potentially can be targeted for drug discovery.
Collapse
Affiliation(s)
- Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
34
|
A Novel Steroid-Coenzyme A Ligase from Novosphingobium sp. Strain Chol11 Is Essential for an Alternative Degradation Pathway for Bile Salts. Appl Environ Microbiol 2017; 84:AEM.01492-17. [PMID: 29054875 DOI: 10.1128/aem.01492-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023] Open
Abstract
Bile salts such as cholate are steroid compounds with a C5 carboxylic side chain and occur ubiquitously in vertebrates. Upon their excretion into soils and waters, bile salts can serve as growth substrates for diverse bacteria. Novosphingobium sp. strain Chol11 degrades 7-hydroxy bile salts via 3-keto-7-deoxy-Δ4,6 metabolites by the dehydration of the 7-hydroxyl group catalyzed by the 7α-hydroxysteroid dehydratase Hsh2. This reaction has not been observed in the well-studied 9-10-seco degradation pathway used by other steroid-degrading bacteria indicating that strain Chol11 uses an alternative pathway. A reciprocal BLASTp analysis showed that known side chain degradation genes from other cholate-degrading bacteria (Pseudomonas stutzeri Chol1, Comamonas testosteroni CNB-2, and Rhodococcus jostii RHA1) were not found in the genome of strain Chol11. The characterization of a transposon mutant of strain Chol11 showing altered growth with cholate identified a novel steroid-24-oyl-coenzyme A ligase named SclA. The unmarked deletion of sclA resulted in a strong growth rate decrease with cholate, while growth with steroids with C3 side chains or without side chains was not affected. Intermediates with a 7-deoxy-3-keto-Δ4,6 structure, such as 3,12-dioxo-4,6-choldienoic acid (DOCDA), were shown to be likely physiological substrates of SclA. Furthermore, a novel coenzyme A (CoA)-dependent DOCDA degradation metabolite with an additional double bond in the side chain was identified. These results support the hypothesis that Novosphingobium sp. strain Chol11 harbors an alternative pathway for cholate degradation, in which side chain degradation is initiated by the CoA ligase SclA and proceeds via reaction steps catalyzed by so-far-unknown enzymes different from those of other steroid-degrading bacteria.IMPORTANCE This study provides further evidence of the diversity of metabolic pathways for the degradation of steroid compounds in environmental bacteria. The knowledge about these pathways contributes to the understanding of the CO2-releasing part of the global C cycle. Furthermore, it is useful for investigating the fate of pharmaceutical steroids in the environment, some of which may act as endocrine disruptors.
Collapse
|
35
|
Warnke M, Jacoby C, Jung T, Agne M, Mergelsberg M, Starke R, Jehmlich N, von Bergen M, Richnow HH, Brüls T, Boll M. A patchwork pathway for oxygenase-independent degradation of side chain containing steroids. Environ Microbiol 2017; 19:4684-4699. [PMID: 28940833 DOI: 10.1111/1462-2920.13933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022]
Abstract
The denitrifying betaproteobacterium Sterolibacterium denitrificans serves as model organism for studying the oxygen-independent degradation of cholesterol. Here, we demonstrate its capability of degrading various globally abundant side chain containing zoo-, phyto- and mycosterols. We provide the complete genome that empowered an integrated genomics/proteomics/metabolomics approach, accompanied by the characterization of a characteristic enzyme of steroid side chain degradation. The results indicate that individual molybdopterin-containing steroid dehydrogenases are involved in C25-hydroxylations of steroids with different isoprenoid side chains, followed by the unusual conversion to C26-oic acids. Side chain degradation to androsta-1,4-diene-3,17-dione (ADD) via aldolytic C-C bond cleavages involves acyl-CoA synthetases/dehydrogenases specific for the respective 26-, 24- and 22-oic acids/-oyl-CoAs and promiscuous MaoC-like enoyl-CoA hydratases, aldolases and aldehyde dehydrogenases. Degradation of rings A and B depends on gene products uniquely found in anaerobic steroid degraders, which after hydrolytic cleavage of ring A, again involves CoA-ester intermediates. The degradation of the remaining CD rings via hydrolytic cleavage appears to be highly similar in aerobic and anaerobic bacteria. Anaerobic cholesterol degradation employs a composite repertoire of more than 40 genes partially known from aerobic degradation in gammaproteobacteria/actinobacteria, supplemented by unique genes that are required to circumvent oxygenase-dependent reactions.
Collapse
Affiliation(s)
- Markus Warnke
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Christian Jacoby
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tobias Jung
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Michael Agne
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mario Mergelsberg
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Robert Starke
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Sciences, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Sciences, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Sciences, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre of Environmental Sciences, Leipzig, Germany
| | - Thomas Brüls
- CEA, DRF, IG, Genoscope, Evry, France.,CNRS-UMR8030, Université d'Evry Val d'Essonne and Université Paris-Saclay, Evry, France
| | - Matthias Boll
- Institute of Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Origins of coevolution between residues distant in protein 3D structures. Proc Natl Acad Sci U S A 2017; 114:9122-9127. [PMID: 28784799 DOI: 10.1073/pnas.1702664114] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Residue pairs that directly coevolve in protein families are generally close in protein 3D structures. Here we study the exceptions to this general trend-directly coevolving residue pairs that are distant in protein structures-to determine the origins of evolutionary pressure on spatially distant residues and to understand the sources of error in contact-based structure prediction. Over a set of 4,000 protein families, we find that 25% of directly coevolving residue pairs are separated by more than 5 Å in protein structures and 3% by more than 15 Å. The majority (91%) of directly coevolving residue pairs in the 5-15 Å range are found to be in contact in at least one homologous structure-these exceptions arise from structural variation in the family in the region containing the residues. Thirty-five percent of the exceptions greater than 15 Å are at homo-oligomeric interfaces, 19% arise from family structural variation, and 27% are in repeat proteins likely reflecting alignment errors. Of the remaining long-range exceptions (<1% of the total number of coupled pairs), many can be attributed to close interactions in an oligomeric state. Overall, the results suggest that directly coevolving residue pairs not in repeat proteins are spatially proximal in at least one biologically relevant protein conformation within the family; we find little evidence for direct coupling between residues at spatially separated allosteric and functional sites or for increased direct coupling between residue pairs on putative allosteric pathways connecting them.
Collapse
|
37
|
Abstract
The interaction between Mycobacterium tuberculosis and its host cell is highly complex and extremely intimate. Were it not for the disease, one might regard this interaction at the cellular level as an almost symbiotic one. The metabolic activity and physiology of both cells are shaped by this coexistence. We believe that where this appreciation has greatest significance is in the field of drug discovery. Evolution rewards efficiency, and recent data from many groups discussed in this review indicate that M. tuberculosis has evolved to utilize the environmental cues within its host to control large genetic programs or regulons. But these regulons may represent chinks in the bacterium's armor because they include off-target effects, such as the constraint of the metabolic plasticity of M. tuberculosis. A prime example is how the presence of cholesterol within the host cell appears to limit the ability of M. tuberculosis to fully utilize or assimilate other carbon sources. And that is the reason for the title of this review. We believe firmly that, to understand the physiology of M. tuberculosis and to identify new drug targets, it is imperative that the bacterium be interrogated within the context of its host cell. The constraints induced by the environmental cues present within the host cell need to be preserved and exploited. The M. tuberculosis-infected macrophage truly is the "minimal unit of infection."
Collapse
|
38
|
Wang W, Ge F, Ma C, Li J, Ren Y, Li W, Fu J. Heterologous expression and characterization of a 3-ketosteroid-∆ 1-dehydrogenase from Gordonia neofelifaecis and its utilization in the bioconversion of androst-4,9(11)-dien-3,17-dione. 3 Biotech 2017; 7:19. [PMID: 28391482 PMCID: PMC5385177 DOI: 10.1007/s13205-017-0601-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/02/2017] [Indexed: 01/25/2023] Open
Abstract
3-Ketosteroid-∆1-dehydrogenase (KstD), a key enzyme in microbial steroid catabolism, catalyzes the trans-axial elimination of the C1 and C2 hydrogen atoms of the A-ring from the polycyclic ring structure of 3-ketosteroids, and it was usually used to transform androst-4-ene-3,17-dione (AD) to produce androsta-1,4-diene-3,17-dione. Here, the KstD from Gordonia neofelifaecis was expressed efficiently in Escherichia coli. E. coli cells expressing KstD3gor were subjected to the investigation of dehydrogenation activity for different steroids. The results showed that KstD3gor has a clear preference for steroid substrates with 3-keto-4-ene configuration, and it exhibits higher activity towards steroid substrates carrying a small or no aliphatic side chain than towards substrates having a bulky side chain at the C-17 atom. The recombinant strain could efficiently convert androst-4,9(11)-dien-3,17-dione into androst-1,4,9(11)-trien-3,17-dione (with conversion rate of 96%). 1(2)-Dehydrogenation of androst-4,9(11)-dien-3,17-dione is one of the key steps in glucocorticoid production. To the best of our knowledge, this is the first study reporting on the conversion of androst-4,9(11)-dien-3,17-dione catalyzed by recombinant KstD; the expression system of KstD3gor reported here would have an impact in the industrial production of glucocorticoid in the future.
Collapse
|
39
|
Fernández-Cabezón L, García-Fernández E, Galán B, García JL. Molecular characterization of a new gene cluster for steroid degradation in Mycobacterium smegmatis. Environ Microbiol 2017; 19:2546-2563. [PMID: 28217856 DOI: 10.1111/1462-2920.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
The C-19 steroids 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) or 9α-hydroxy-4-androstene-3,17-dione (9OH-AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH-AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR-like regulator (MSMEG_2868) can efficiently metabolize all C-19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C-19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C-19+ cluster has apparently evolved independently from the upper cholesterol kstR-regulon, but both clusters converge on the lower cholesterol kstR2-regulon responsible for the metabolism of C and D steroid rings. Homologous C-19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Esther García-Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
40
|
Vermeulen I, Baird M, Al-Dulayymi J, Smet M, Verschoor J, Grooten J. Mycolates of Mycobacterium tuberculosis modulate the flow of cholesterol for bacillary proliferation in murine macrophages. J Lipid Res 2017; 58:709-718. [PMID: 28193630 DOI: 10.1194/jlr.m073171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/28/2017] [Indexed: 12/11/2022] Open
Abstract
The differentiation of macrophages into lipid-filled foam cells is a hallmark of the lung granuloma that forms in patients with active tuberculosis (TB). Mycolic acids (MAs), the abundant lipid virulence factors in the cell wall of Mycobacterium tuberculosis (Mtb), can induce this foam phenotype possibly as a way to perturb host cell lipid homeostasis to support the infection. It is not exactly clear how MAs allow differentiation of foam cells during Mtb infection. Here we investigated how chemically synthetic MAs, each with a defined stereochemistry similar to natural Mtb-associated mycolates, influence cell foamy phenotype and mycobacterial proliferation in murine host macrophages. Using light and laser-scanning-confocal microscopy, we assessed the influence of MA structure first on the induction of granuloma cell types, second on intracellular cholesterol accumulation, and finally on mycobacterial growth. While methoxy-MAs (mMAs) effected multi-vacuolar giant cell formation, keto-MAs (kMAs) induced abundant intracellular lipid droplets that were packed with esterified cholesterol. Macrophages from mice treated with kMA were permissive to mycobacterial growth, whereas cells from mMA treatment were not. This suggests a separate yet key involvement of oxygenated MAs in manipulating host cell lipid homeostasis to establish the state of TB.
Collapse
Affiliation(s)
- Ilke Vermeulen
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent Zwijnaarde 9052, Belgium; Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | - Mark Baird
- School of Chemistry, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Juma Al-Dulayymi
- School of Chemistry, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Muriel Smet
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent Zwijnaarde 9052, Belgium
| | - Jan Verschoor
- Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent Zwijnaarde 9052, Belgium.
| |
Collapse
|
41
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
42
|
Wrońska N, Brzostek A, Szewczyk R, Soboń A, Dziadek J, Lisowska K. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis. Molecules 2016; 21:molecules21050598. [PMID: 27164074 PMCID: PMC6273163 DOI: 10.3390/molecules21050598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy. Several genes which play an important role in cholesterol ring degradation have been described in Mycobacterium smegmatis. However, there are limited data describing the molecular mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed the role of the echA19 and fadD19 genes in the degradation process of the side chain of cholesterol and β-sitosterol. We demonstrated that the M. smegmatis fadD19 and echA19 genes are not essential for viability. FadD19 is required in the initial step of the biodegradation of C-24 branched sterol side chains in Mycobacterium smegmatis mc2155, but not those carrying a straight chain like cholesterol. Additionally, we have shown that echA19 is not essential in the degradation of either substrate. This is the first report, to our knowledge, on the molecular characterization of the genes playing an essential role in C-24 branched side chain sterol degradation in M. smegmatis mc2155.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Adrian Soboń
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
43
|
Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 2016; 6:21928. [PMID: 26898409 PMCID: PMC4761994 DOI: 10.1038/srep21928] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/12/2022] Open
Abstract
The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.
Collapse
|
44
|
Ho NAT, Dawes SS, Crowe AM, Casabon I, Gao C, Kendall SL, Baker EN, Eltis LD, Lott JS. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. J Biol Chem 2016; 291:7256-66. [PMID: 26858250 DOI: 10.1074/jbc.m115.707760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Cholesterol can be a major carbon source forMycobacterium tuberculosisduring infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, includingkstR, are either induced during infection or are essential for survival ofM. tuberculosis in vivo In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.
Collapse
Affiliation(s)
- Ngoc Anh Thu Ho
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Stephanie S Dawes
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Adam M Crowe
- the Departments of Biochemistry and Molecular Biology and
| | - Israël Casabon
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand, Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chen Gao
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Sharon L Kendall
- the Department of Pathology and Pathogen Biology The Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom, and
| | - Edward N Baker
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Lindsay D Eltis
- the Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - J Shaun Lott
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand,
| |
Collapse
|
45
|
Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts inPseudomonassp. strain Chol1. Environ Microbiol 2016; 18:3373-3389. [DOI: 10.1111/1462-2920.13192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Johannes Holert
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Onur Yücel
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | | | | | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| |
Collapse
|
46
|
Shtratnikova VY, Schelkunov MI, Fokina VV, Pekov YA, Ivashina T, Donova MV. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr Genet 2016; 62:643-56. [PMID: 26832142 DOI: 10.1007/s00294-016-0568-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/04/2016] [Accepted: 01/16/2016] [Indexed: 11/27/2022]
Abstract
Actinobacteria comprise diverse groups of bacteria capable of full degradation, or modification of different steroid compounds. Steroid catabolism has been characterized best for the representatives of suborder Corynebacterineae, such as Mycobacteria, Rhodococcus and Gordonia, with high content of mycolic acids in the cell envelope, while it is poorly understood for other steroid-transforming actinobacteria, such as representatives of Nocardioides genus belonging to suborder Propionibacterineae. Nocardioides simplex VKM Ac-2033D is an important biotechnological strain which is known for its ability to introduce ∆(1)-double bond in various 1(2)-saturated 3-ketosteroids, and perform convertion of 3β-hydroxy-5-ene steroids to 3-oxo-4-ene steroids, hydrolysis of acetylated steroids, reduction of carbonyl groups at C-17 and C-20 of androstanes and pregnanes, respectively. The strain is also capable of utilizing cholesterol and phytosterol as carbon and energy sources. In this study, a comprehensive bioinformatics genome-wide screening was carried out to predict genes related to steroid metabolism in this organism, their clustering and possible regulation. The predicted operon structure and number of candidate gene copies paralogs have been estimated. Binding sites of steroid catabolism regulators KstR and KstR2 specified for N. simplex VKM Ac-2033D have been calculated de novo. Most of the candidate genes grouped within three main clusters, one of the predicted clusters having no analogs in other actinobacteria studied so far. The results offer a base for further functional studies, expand the understanding of steroid catabolism by actinobacteria, and will contribute to modifying of metabolic pathways in order to generate effective biocatalysts capable of producing valuable bioactive steroids.
Collapse
Affiliation(s)
- Victoria Y Shtratnikova
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory, h. 1, b. 73, Moscow, 119991, Russian Federation.
| | - Mikhail I Schelkunov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, b. 1, Moscow, 127051, Russian Federation
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, h. 1, b. 41, Moscow, 119991, Russian Federation
| | - Victoria V Fokina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| | - Yury A Pekov
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory, h. 1, b. 73, Moscow, 119991, Russian Federation
| | - Tanya Ivashina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki, 5, Puschino, Moscow, 142290, Russian Federation
| |
Collapse
|
47
|
Lu R, Schmitz W, Sampson NS. α-Methyl Acyl CoA Racemase Provides Mycobacterium tuberculosis Catabolic Access to Cholesterol Esters. Biochemistry 2015; 54:5669-72. [PMID: 26348625 DOI: 10.1021/acs.biochem.5b00911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolism of cholesterol by Mycobacterium tuberculosis (Mtb) contributes to its pathogenesis. We show that ChsE4-ChsE5 (Rv3504/Rv3505) specifically catalyzes dehydrogenation of the (25S)-3-oxo-cholest-4-en-26-oyl-CoA diastereomer in cholesterol side chain β-oxidation. Thus, a dichotomy between the supply of both 25R and 25S metabolic precursors by upstream cytochrome P450s and the substrate stereospecificity of ChsE4-ChsE5 exists. We reconcile the dilemma of 25R metabolite production by demonstrating that mycobacterial MCR (Rv1143) can efficiently epimerize C25 diastereomers of 3-oxo-cholest-4-en-26-oyl-CoA. Our data suggest that cholesterol and cholesterol ester precursors can converge into a single catabolic pathway, thus widening the metabolic niche in which Mtb survives.
Collapse
Affiliation(s)
- Rui Lu
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Werner Schmitz
- Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum-Am Hubland , 7074 Würzburg, Germany
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| |
Collapse
|