1
|
Mertinkus KR, Oxenfarth A, Richter C, Wacker A, Mata CP, Carazo JM, Schlundt A, Schwalbe H. Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5'-Untranslated Region of SARS-CoV-2. J Am Chem Soc 2024. [PMID: 39442924 DOI: 10.1021/jacs.4c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b. We herein report the detailed characterization of the structure and dynamics of elements SL5a and SL5b that are located immediately upstream of the SARS-CoV-2 ORF1a/b start codon. Exploiting the unique ability of solution NMR methods, we show that the structures of both apical loops are modulated by structural differences in the remote parts located in their stem regions. We further integrated our high-resolution models of SL5a/b into the context of full-length 5_SL5 structures by combining different structural biology methods. Finally, we evaluated the impact of the two most common VoC mutations within 5_SL5 with respect to individual base-pair stability.
Collapse
Affiliation(s)
- Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Carlos P Mata
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Andreas Schlundt
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald 17489, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| |
Collapse
|
2
|
Toews S, Wacker A, Faison EM, Duchardt-Ferner E, Richter C, Mathieu D, Bottaro S, Zhang Q, Schwalbe H. The 5'-terminal stem-loop RNA element of SARS-CoV-2 features highly dynamic structural elements that are sensitive to differences in cellular pH. Nucleic Acids Res 2024; 52:7971-7986. [PMID: 38842942 PMCID: PMC11260494 DOI: 10.1093/nar/gkae477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/23/2024] Open
Abstract
We present the nuclear magnetic resonance spectroscopy (NMR) solution structure of the 5'-terminal stem loop 5_SL1 (SL1) of the SARS-CoV-2 genome. SL1 contains two A-form helical elements and two regions with non-canonical structure, namely an apical pyrimidine-rich loop and an asymmetric internal loop with one and two nucleotides at the 5'- and 3'-terminal part of the sequence, respectively. The conformational ensemble representing the averaged solution structure of SL1 was validated using NMR residual dipolar coupling (RDC) and small-angle X-ray scattering (SAXS) data. We show that the internal loop is the major binding site for fragments of low molecular weight. This internal loop of SL1 can be stabilized by an A12-C28 interaction that promotes the transient formation of an A+•C base pair. As a consequence, the pKa of the internal loop adenosine A12 is shifted to 5.8, compared to a pKa of 3.63 of free adenosine. Furthermore, applying a recently developed pH-differential mutational profiling (PD-MaP) approach, we not only recapitulated our NMR findings of SL1 but also unveiled multiple sites potentially sensitive to pH across the 5'-UTR of SARS-CoV-2.
Collapse
Affiliation(s)
- Sabrina Toews
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Anna Wacker
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Edgar M Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Christian Richter
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| | - Daniel Mathieu
- Bruker BioSpin GmbH, Ettlingen, Baden-Württemberg 76275, Germany
| | - Sandro Bottaro
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Hesse 60438, Germany
| |
Collapse
|
3
|
Lin P, W-M Fan T, Lane AN. NMR-based isotope editing, chemoselection and isotopomer distribution analysis in stable isotope resolved metabolomics. Methods 2022; 206:8-17. [PMID: 35908585 PMCID: PMC9539636 DOI: 10.1016/j.ymeth.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
NMR is a very powerful tool for identifying and quantifying compounds within complex mixtures without the need for individual standards or chromatographic separation. Stable Isotope Resolved Metabolomics (or SIRM) is an approach to following the fate of individual atoms from precursors through metabolic transformation, producing an atom-resolved metabolic fate map. However, extracts of cells or tissue give rise to very complex NMR spectra. While multidimensional NMR experiments may partially overcome the spectral overlap problem, additional tools may be needed to determine site-specific isotopomer distributions. NMR is especially powerful by virtue of its isotope editing capabilities using NMR active nuclei such as 13C, 15N, 19F and 31P to select molecules containing just these atoms in a complex mixture, and provide direct information about which atoms are present in identified compounds and their relative abundances. The isotope-editing capability of NMR can also be employed to select for those compounds that have been selectively derivatized with an NMR-active stable isotope at particular functional groups, leading to considerable spectral simplification. Here we review isotope analysis by NMR, and methods of chemoselection both for spectral simplification, and for enhanced isotopomer analysis.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Mertinkus KR, Grün JT, Altincekic N, Bains JK, Ceylan B, Ferner JP, Frydman L, Fürtig B, Hengesbach M, Hohmann KF, Hymon D, Kim J, Knezic B, Novakovic M, Oxenfarth A, Peter SA, Qureshi NS, Richter C, Scherf T, Schlundt A, Schnieders R, Schwalbe H, Stirnal E, Sudakov A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Martin MAW, Wöhnert J. 1H, 13C and 15N chemical shift assignment of the stem-loops 5b + c from the 5'-UTR of SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:17-25. [PMID: 35178672 PMCID: PMC8853908 DOI: 10.1007/s12104-021-10053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.
Collapse
Affiliation(s)
- Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jan-Peter Ferner
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jihyun Kim
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Božana Knezic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
- Institute for Biochemistry, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | | | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Deutero GmbH, Am Ring 29, 56288, Kastellaun, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
| | - Elke Stirnal
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jennifer Vögele
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Maria A Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
5
|
Lee K, Park SH, Lee JH. Selective detection of protein acetylation by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107169. [PMID: 35255256 DOI: 10.1016/j.jmr.2022.107169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Selective detection of biomolecules and their modifications in cells is essential for understanding cell functions and diseases. We have developed an NMR pulse sequence, Ac-FIND (Acetylation-FIltered aNd eDited), which uses isotope editing/filtering techniques for selective detection of protein acetylation. Acetylation of the N-terminus and lysine side chains by N-succinimidyl acetate was selectively observed for intrinsically disordered α-synuclein and well-ordered ubiquitin. Furthermore, when nonacetylated 13C/15N-enriched α-synuclein was introduced into live HEK293 cells, intracellular N-terminal acetylation of α-synuclein was detected by the appearance of a single peak using Ac-FIND. This work demonstrates the utility of NMR to detect a specific protein modification both in vitro and in live cells.
Collapse
Affiliation(s)
- Kyungryun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sho Hee Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, South Korea.
| |
Collapse
|
6
|
Collu G, Bierig T, Krebs AS, Engilberge S, Varma N, Guixà-González R, Sharpe T, Deupi X, Olieric V, Poghosyan E, Benoit RM. Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure 2021; 30:95-106.e7. [PMID: 34587504 DOI: 10.1016/j.str.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Chimeric fusion proteins are essential tools for protein nanotechnology. Non-optimized protein-protein connections are usually flexible and therefore unsuitable as structural building blocks. Here we show that the ER/K motif, a single α-helical domain (SAH), can be seamlessly fused to terminal helices of proteins, forming an extended, partially free-standing rigid helix. This enables the connection of two domains at a defined distance and orientation. We designed three constructs termed YFPnano, T4Lnano, and MoStoNano. Analysis of experimentally determined structures and molecular dynamics simulations reveals a certain degree of plasticity in the connections that allows the adaptation to crystal contact opportunities. Our data show that SAHs can be stably integrated into designed structural elements, enabling new possibilities for protein nanotechnology, for example, to improve the exposure of epitopes on nanoparticles (structural vaccinology), to engineer crystal contacts with minimal impact on construct flexibility (for the study of protein dynamics), and to design novel biomaterials.
Collapse
Affiliation(s)
- Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna-Sophia Krebs
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sylvain Engilberge
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Niveditha Varma
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Timothy Sharpe
- Biophysics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Emiliya Poghosyan
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roger M Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
7
|
Chamberlain SG, Gohlke A, Shafiq A, Squires IJ, Owen D, Mott HR. Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Proc Natl Acad Sci U S A 2021; 118:e2104219118. [PMID: 34480001 PMCID: PMC8433508 DOI: 10.1073/pnas.2104219118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
RalA is a small GTPase and a member of the Ras family. This molecular switch is activated downstream of Ras and is widely implicated in tumor formation and growth. Previous work has shown that the ubiquitous Ca2+-sensor calmodulin (CaM) binds to small GTPases such as RalA and K-Ras4B, but a lack of structural information has obscured the functional consequences of these interactions. Here, we have investigated the binding of CaM to RalA and found that CaM interacts exclusively with the C terminus of RalA, which is lipidated with a prenyl group in vivo to aid membrane attachment. Biophysical and structural analyses show that the two RalA membrane-targeting motifs (the prenyl anchor and the polybasic motif) are engaged by distinct lobes of CaM and that CaM binding leads to removal of RalA from its membrane environment. The structure of this complex, along with a biophysical investigation into membrane removal, provides a framework with which to understand how CaM regulates the function of RalA and sheds light on the interaction of CaM with other small GTPases, including K-Ras4B.
Collapse
Affiliation(s)
- Samuel G Chamberlain
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Arooj Shafiq
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Iolo J Squires
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
8
|
Marincin K, Pal I, Frueh D. Using delayed decoupling to attenuate residual signals in editing filters. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:475-487. [PMID: 34661195 PMCID: PMC8516316 DOI: 10.5194/mr-2-475-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.
Collapse
Affiliation(s)
- Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| | - Indrani Pal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
- current address: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Lameiras P, Nuzillard JM. Tailoring the nuclear Overhauser effect for the study of small and medium-sized molecules by solvent viscosity manipulation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:1-50. [PMID: 34078536 DOI: 10.1016/j.pnmrs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The nuclear Overhauser effect (NOE) is a consequence of cross-relaxation between nuclear spins mediated by dipolar coupling. Its sensitivity to internuclear distances has made it an increasingly important tool for the determination of through-space atom proximity relationships within molecules of sizes ranging from the smallest systems to large biopolymers. With the support of sophisticated FT-NMR techniques, the NOE plays an essential role in structure elucidation, conformational and dynamic investigations in liquid-state NMR. The efficiency of magnetization transfer by the NOE depends on the molecular rotational correlation time, whose value depends on solution viscosity. The magnitude of the NOE between 1H nuclei varies from +50% when molecular tumbling is fast to -100% when it is slow, the latter case corresponding to the spin diffusion limit. In an intermediate tumbling regime, the NOE may be vanishingly small. Increasing the viscosity of the solution increases the motional correlation time, and as a result, otherwise unobservable NOEs may be revealed and brought close to the spin diffusion limit. The goal of this review is to report the resolution of structural problems that benefited from the manipulation of the negative NOE by means of viscous solvents, including examples of molecular structure determination, conformation elucidation and mixture analysis (the ViscY method).
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
10
|
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, Zetzsche H. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res 2020; 48:12415-12435. [PMID: 33167030 PMCID: PMC7736788 DOI: 10.1093/nar/gkaa1013] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sabine R Akabayov
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Erhan Cetiner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Lucio Frydman
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - José Gallego
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Carolin Hacker
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Martin Hähnke
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Fabian Hiller
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Henry Jonker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Le Luo
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Christina Muhs
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Mihajlo Novakovic
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Dennis J Pyper
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tali Scherf
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | | | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alvaro Simba-Lahuasi
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Maria A Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Heidi Zetzsche
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| |
Collapse
|
11
|
Binas O, Schamber T, Schwalbe H. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans. Nucleic Acids Res 2020; 48:6970-6979. [PMID: 32479610 PMCID: PMC7337938 DOI: 10.1093/nar/gkaa427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, prokaryotic riboswitches have been identified that regulate transcription in response to change of the concentration of secondary messengers. The ZMP (5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR))-sensing riboswitch from Thermosinus carboxydivorans is a transcriptional ON-switch that is involved in purine and carbon-1 metabolic cycles. Its aptamer domain includes the pfl motif, which features a pseudoknot, impeding rho-independent terminator formation upon stabilization by ZMP interaction. We herein investigate the conformational landscape of transcriptional intermediates including the expression platform of this riboswitch and characterize the formation and unfolding of the important pseudoknot structure in the context of increasing length of RNA transcripts. NMR spectroscopic data show that even surprisingly short pre-terminator stems are able to disrupt ligand binding and thus metabolite sensing. We further show that the pseudoknot structure, a prerequisite for ligand binding, is preformed in transcription intermediates up to a certain length. Our results describe the conformational changes of 13 transcription intermediates of increasing length to delineate the change in structure as mRNA is elongated during transcription. We thus determine the length of the key transcription intermediate to which addition of a single nucleotide leads to a drastic drop in ZMP affinity.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
12
|
Niu Z, Prade E, Malideli E, Hille K, Jussupow A, Mideksa YG, Yan L, Qian C, Fleisch M, Messias AC, Sarkar R, Sattler M, Lamb DC, Feige MJ, Camilloni C, Kapurniotu A, Reif B. Structural Insight into IAPP-Derived Amyloid Inhibitors and Their Mechanism of Action. Angew Chem Int Ed Engl 2020; 59:5771-5781. [PMID: 31863711 PMCID: PMC7154662 DOI: 10.1002/anie.201914559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Indexed: 11/12/2022]
Abstract
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a β-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid-liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.
Collapse
Affiliation(s)
- Zheng Niu
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| | - Elke Prade
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| | - Eleni Malideli
- Technische Universität München (TUM)TUM School of Life SciencesDivision of Peptide BiochemistryEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Kathleen Hille
- Technische Universität München (TUM)TUM School of Life SciencesDivision of Peptide BiochemistryEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Alexander Jussupow
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
- Technische Universität München (TUM)Institute for Advanced StudyLichtenbergstr. 2a85748GarchingGermany
| | - Yonatan G. Mideksa
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
- Technische Universität München (TUM)Institute for Advanced StudyLichtenbergstr. 2a85748GarchingGermany
| | - Li‐Mei Yan
- Technische Universität München (TUM)TUM School of Life SciencesDivision of Peptide BiochemistryEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Chen Qian
- Ludwig-Maximilians-Universität, MunichDepartment of ChemistryCenter for Integrated Protein Science Munich (CIPSM)Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS)Butenandtstr. 581377MünchenGermany
| | - Markus Fleisch
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| | - Ana C. Messias
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| | - Michael Sattler
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| | - Don C. Lamb
- Ludwig-Maximilians-Universität, MunichDepartment of ChemistryCenter for Integrated Protein Science Munich (CIPSM)Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS)Butenandtstr. 581377MünchenGermany
| | - Matthias J. Feige
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
- Technische Universität München (TUM)Institute for Advanced StudyLichtenbergstr. 2a85748GarchingGermany
| | - Carlo Camilloni
- Technische Universität München (TUM)Institute for Advanced StudyLichtenbergstr. 2a85748GarchingGermany
- Università degli Studi di MilanoDipartimento di BioscienzeVia Giovanni Celoria 2620133MilanoItaly
| | - Aphrodite Kapurniotu
- Technische Universität München (TUM)TUM School of Life SciencesDivision of Peptide BiochemistryEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU)Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural BiologyIngolstädter Landstr. 185764NeuherbergGermany
- Technische Universität München (TUM)Munich Center for Integrated Protein Science (CIPS-M) at the Department of ChemistryLichtenbergstr. 485747GarchingGermany
| |
Collapse
|
13
|
Yu B, Pletka CC, Iwahara J. NMR Observation of Intermolecular Hydrogen Bonds between Protein Tyrosine Side-Chain OH and DNA Phosphate Groups. J Phys Chem B 2020; 124:1065-1070. [PMID: 31958014 PMCID: PMC7021563 DOI: 10.1021/acs.jpcb.9b10987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Channing C. Pletka
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
14
|
Niu Z, Prade E, Malideli E, Hille K, Jussupow A, Mideksa YG, Yan L, Qian C, Fleisch M, Messias AC, Sarkar R, Sattler M, Lamb DC, Feige MJ, Camilloni C, Kapurniotu A, Reif B. Structural Insight into IAPP‐Derived Amyloid Inhibitors and Their Mechanism of Action. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zheng Niu
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| | - Elke Prade
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| | - Eleni Malideli
- Technische Universität München (TUM) TUM School of Life Sciences Division of Peptide Biochemistry Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Kathleen Hille
- Technische Universität München (TUM) TUM School of Life Sciences Division of Peptide Biochemistry Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Alexander Jussupow
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
- Technische Universität München (TUM) Institute for Advanced Study Lichtenbergstr. 2a 85748 Garching Germany
| | - Yonatan G. Mideksa
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
- Technische Universität München (TUM) Institute for Advanced Study Lichtenbergstr. 2a 85748 Garching Germany
| | - Li‐Mei Yan
- Technische Universität München (TUM) TUM School of Life Sciences Division of Peptide Biochemistry Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Chen Qian
- Ludwig-Maximilians-Universität, Munich Department of Chemistry Center for Integrated Protein Science Munich (CIPSM) Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) Butenandtstr. 5 81377 München Germany
| | - Markus Fleisch
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| | - Ana C. Messias
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| | - Michael Sattler
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| | - Don C. Lamb
- Ludwig-Maximilians-Universität, Munich Department of Chemistry Center for Integrated Protein Science Munich (CIPSM) Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS) Butenandtstr. 5 81377 München Germany
| | - Matthias J. Feige
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
- Technische Universität München (TUM) Institute for Advanced Study Lichtenbergstr. 2a 85748 Garching Germany
| | - Carlo Camilloni
- Technische Universität München (TUM) Institute for Advanced Study Lichtenbergstr. 2a 85748 Garching Germany
- Università degli Studi di Milano Dipartimento di Bioscienze Via Giovanni Celoria 26 20133 Milano Italy
| | - Aphrodite Kapurniotu
- Technische Universität München (TUM) TUM School of Life Sciences Division of Peptide Biochemistry Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU) Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Structural Biology Ingolstädter Landstr. 1 85764 Neuherberg Germany
- Technische Universität München (TUM) Munich Center for Integrated Protein Science (CIPS-M) at the Department of Chemistry Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
15
|
Jones DNM, Wang J, Murphy EJ. Complete NMR chemical shift assignments of odorant binding protein 22 from the yellow fever mosquito, Aedes aegypti, bound to arachidonic acid. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:187-193. [PMID: 30684234 PMCID: PMC6439253 DOI: 10.1007/s12104-019-09875-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Aedes aegypti mosquitoes are the vector for transmission of Dengue, Zika and chikungunya viruses. These mosquitos feed exclusively on human hosts for a blood meal. Previous studies have established that Dengue virus infection of the mosquito results in increased expression of the odorant binding proteins 22 and 10 within the mosquito salivary gland and silencing of these genes dramatically reduces blood-feeding behaviors. Odorant binding proteins are implicated in modulating the chemosensory perception of external stimuli that regulate behaviors such as host location, feeding and reproduction. However, the role that AeOBP22 plays in the salivary gland is unclear. Here, as a first step to a more complete understanding of the function of AeOBP22, we present the complete backbone and side chain chemical shift assignments of the protein in the complex it forms with arachidonic acid. These assignments reveal that the protein consists of seven α-helices, and that the arachidonic acid is bound tightly to the protein. Comparison with the chemical shift assignments of the apo-form of the protein reveals that binding of the fatty acid is accompanied by a large conformational change in the C-terminal helix, which appears disordered in the absence of lipid. This NMR data provides the basis for determining the structure of AeOBP22 and understanding the nature of the conformational changes that occur upon ligand binding. This information will provide a path to discover novel compounds that can interfere with AeOBP22 function and impact blood feeding by this mosquito.
Collapse
Affiliation(s)
- David N M Jones
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Ave, Aurora, CO, 80045, USA.
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, 12801 East 17th Ave, Aurora, CO, 80045, USA.
| | - Jing Wang
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Ave, Aurora, CO, 80045, USA
| | - Emma J Murphy
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Ave, Aurora, CO, 80045, USA
| |
Collapse
|
16
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Goretzki B, Glogowski NA, Diehl E, Duchardt-Ferner E, Hacker C, Gaudet R, Hellmich UA. Structural Basis of TRPV4 N Terminus Interaction with Syndapin/PACSIN1-3 and PIP 2. Structure 2018; 26:1583-1593.e5. [PMID: 30244966 DOI: 10.1016/j.str.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) channels are polymodally regulated ion channels. TRPV4 (vanilloid 4) is sensitized by PIP2 and desensitized by Syndapin3/PACSIN3, which bind to the structurally uncharacterized TRPV4 N terminus. We determined the nuclear magnetic resonance structure of the Syndapin3/PACSIN3 SH3 domain in complex with the TRPV4 N-terminal proline-rich region (PRR), which binds as a class I polyproline II (PPII) helix. This PPII conformation is broken by a conserved proline in a cis conformation. Beyond the PPII, we find that the proximal TRPV4 N terminus is unstructured, a feature conserved across species thus explaining the difficulties in resolving it in previous structural studies. Syndapin/PACSIN SH3 domain binding leads to rigidification of both the PRR and the adjacent PIP2 binding site. We determined the affinities of the TRPV4 N terminus for PACSIN1, 2, and 3 SH3 domains and PIP2 and deduce a hierarchical interaction network where Syndapin/PACSIN binding influences the PIP2 binding site but not vice versa.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Nina A Glogowski
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Erika Diehl
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany; Institute for Molecular Biosciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Carolin Hacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany; Institute for Molecular Biosciences, Goethe-Universität, 60438 Frankfurt am Main, Germany
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Pagano K, Galante D, D'Arrigo C, Corsaro A, Nizzari M, Florio T, Molinari H, Tomaselli S, Ragona L. Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Mol Neurobiol 2018; 56:1957-1971. [PMID: 29981054 DOI: 10.1007/s12035-018-1202-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Soluble Aβ oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aβ receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aβ oligomers. The interactions of PrP with both Aβ42 and the highly toxic N-truncated pyroglutamylated species (AβpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aβ42 and AβpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aβ42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aβ42 sample. A distinct behavior is observed for Aβ42 1-30 region and C-terminal residues, suggesting that PrP protects Aβ42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aβ42 N-tail is the locus of interaction with PrP. PrP/AβpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aβ oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aβ oligomers bears relevance for studies of druggable pathways.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy
| | | | | | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | | | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| |
Collapse
|
19
|
Russo L, Giller K, Pfitzner E, Griesinger C, Becker S. Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6. Sci Rep 2017; 7:16845. [PMID: 29203888 PMCID: PMC5714956 DOI: 10.1038/s41598-017-17088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Crucial for immune and anti-inflammatory cellular responses, signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 and -13 -induced tyrosine phosphorylation by direct interaction with coactivators. The interaction of STAT6 with nuclear coactivator 1 (NCoA1) is mediated by a short region of the STAT6 transactivation domain that includes the motif LXXLL and interacts with the PAS-B domain of NCoA1. Despite the availability of an X-ray structure of the PAS-B domain/ Leu794-Gly814-STAT6 complex, the mechanistic details of this interaction are still poorly understood. Here, we determine the structure of the NCoA1257–385/STAT6783–814 complex using Nuclear Magnetic Resonance (NMR) and X-ray crystallography. The STAT6783–814 peptide binds with additional N-terminal amino acids to NCoA1257–385, compared to the STAT6794–814 peptide, explaining its higher affinity. Secondary and tertiary structures existing in the free peptide are more highly populated in the complex, suggesting binding by conformational selection.
Collapse
Affiliation(s)
- Luigi Russo
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Karin Giller
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Edith Pfitzner
- Friedrich-Schiller-University Jena, Institute of Biochemistry and Biophysics, Philosophenweg 12, 07743, Jena, Germany.,University of Kassel, Mönchebergstr. 19, 34109, Kassel, Germany
| | - Christian Griesinger
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Lehner F, Kudlinzki D, Richter C, Müller-Werkmeister HM, Eberl KB, Bredenbeck J, Schwalbe H, Silvers R. Impact of Azidohomoalanine Incorporation on Protein Structure and Ligand Binding. Chembiochem 2017; 18:2340-2350. [DOI: 10.1002/cbic.201700437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Lehner
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Denis Kudlinzki
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium; DKTK; German Cancer Research Center; DKFZ; Im Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Christian Richter
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | | | - Katharina B. Eberl
- Institute for Biophysics; Goethe University Frankfurt; Max-von-Laue-Strasse 1 60438 Frankfurt am Main Germany
| | - Jens Bredenbeck
- Institute for Biophysics; Goethe University Frankfurt; Max-von-Laue-Strasse 1 60438 Frankfurt am Main Germany
| | - Harald Schwalbe
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Robert Silvers
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- Present address: Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
21
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
22
|
Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na V1.2. Biophys Chem 2017; 224:1-19. [PMID: 28343066 PMCID: PMC5503752 DOI: 10.1016/j.bpc.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Ryan Mahling
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Zesen Lin
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Mark Stephen Miller
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Dagan C Marx
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Jesse B Yoder
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Elaine H Kim
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Kristin M Tefft
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Brett C Waite
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Michael D Feldkamp
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States.
| |
Collapse
|
23
|
Piazza M, Taiakina V, Dieckmann T, Guillemette JG. Structural Consequences of Calmodulin EF Hand Mutations. Biochemistry 2017; 56:944-956. [PMID: 28121131 DOI: 10.1021/acs.biochem.6b01296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Valentina Taiakina
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - J Guy Guillemette
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Srivastava G, Moseri A, Kessler N, Akabayov SR, Arshava B, Naider F, Anglister J. Detection of intermolecular transferred NOEs in large protein complexes using asymmetric deuteration: HIV-1 gp120 in complex with a CCR5 peptide. FEBS J 2016; 283:4084-4096. [DOI: 10.1111/febs.13916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Gautam Srivastava
- Department of Structural Biology; Weizmann Institute of Science; Rehovot Israel
| | - Adi Moseri
- Department of Structural Biology; Weizmann Institute of Science; Rehovot Israel
| | - Naama Kessler
- Department of Structural Biology; Weizmann Institute of Science; Rehovot Israel
| | - Sabine R. Akabayov
- Department of Structural Biology; Weizmann Institute of Science; Rehovot Israel
| | - Boris Arshava
- Department of Chemistry and Macromolecular Assembly Institute; College of Staten Island of the City University of New York; Staten Island NY USA
- The Graduate Center of the City University of New York; NY USA
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute; College of Staten Island of the City University of New York; Staten Island NY USA
- The Graduate Center of the City University of New York; NY USA
| | - Jacob Anglister
- Department of Structural Biology; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
25
|
Piazza M, Dieckmann T, Guillemette JG. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration. Biochemistry 2016; 55:5962-5971. [DOI: 10.1021/acs.biochem.6b00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Fan TWM, Lane AN. Applications of NMR spectroscopy to systems biochemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:18-53. [PMID: 26952191 PMCID: PMC4850081 DOI: 10.1016/j.pnmrs.2016.01.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 05/05/2023]
Abstract
The past decades of advancements in NMR have made it a very powerful tool for metabolic research. Despite its limitations in sensitivity relative to mass spectrometric techniques, NMR has a number of unparalleled advantages for metabolic studies, most notably the rigor and versatility in structure elucidation, isotope-filtered selection of molecules, and analysis of positional isotopomer distributions in complex mixtures afforded by multinuclear and multidimensional experiments. In addition, NMR has the capacity for spatially selective in vivo imaging and dynamical analysis of metabolism in tissues of living organisms. In conjunction with the use of stable isotope tracers, NMR is a method of choice for exploring the dynamics and compartmentation of metabolic pathways and networks, for which our current understanding is grossly insufficient. In this review, we describe how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotope-resolved metabolomic (SIRM) analysis. We also highlight the importance of sample preparation methods including rapid cryoquenching, efficient extraction, and chemoselective derivatization to facilitate robust and reproducible NMR-based metabolomic analysis. We further illustrate how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems, including human subjects. The pathway and network knowledge generated from NMR- and MS-based tracing of isotopically enriched substrates will be invaluable for directing functional analysis of other 'omics data to achieve understanding of regulation of biochemical systems, as demonstrated in a case study. Future developments in NMR technologies and reagents to enhance both detection sensitivity and resolution should further empower NMR in systems biochemical research.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| | - Andrew N Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| |
Collapse
|
27
|
Martin JW, Zhou P, Donald BR. Systematic solution to homo-oligomeric structures determined by NMR. Proteins 2015; 83:651-61. [PMID: 25620116 DOI: 10.1002/prot.24768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/12/2014] [Accepted: 01/12/2015] [Indexed: 11/07/2022]
Abstract
Protein structure determination by NMR has predominantly relied on simulated annealing-based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects, paramagnetic relaxation enhancement, and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo-oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo-oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina, 27708
| | | | | |
Collapse
|
28
|
Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system. Proc Natl Acad Sci U S A 2014; 111:E5498-507. [PMID: 25489067 DOI: 10.1073/pnas.1412070111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TipA is a transcriptional regulator found in diverse bacteria. It constitutes a minimal autoregulated multidrug resistance system against numerous thiopeptide antibiotics. Here we report the structures of its drug-binding domain TipAS in complexes with promothiocin A and nosiheptide, and a model of the thiostrepton complex. Drug binding induces a large transition from a partially unfolded to a globin-like structure. The structures rationalize the mechanism of promiscuous, yet specific, drug recognition: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipAS amino acids; and (ii) the variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified four-ring motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. The observed identity of chemical motifs responsible for antibiotic function and resistance may be a general principle and could help to better define new leads for antibiotics.
Collapse
|
29
|
Robertson IM, Pineda-Sanabria SE, Holmes PC, Sykes BD. Conformation of the critical pH sensitive region of troponin depends upon a single residue in troponin I. Arch Biochem Biophys 2014; 552-553:40-9. [DOI: 10.1016/j.abb.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
|
30
|
Piazza M, Taiakina V, Guillemette SR, Guillemette JG, Dieckmann T. Solution structure of calmodulin bound to the target peptide of endothelial nitric oxide synthase phosphorylated at Thr495. Biochemistry 2014; 53:1241-9. [PMID: 24495081 DOI: 10.1021/bi401466s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes, and it is important to understand how this enzyme is regulated. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic and at least in part controlled by several possible phosphorylation sites. We have determined the solution structure of CaM bound to a peptide that contains a phosphorylated threonine corresponding to Thr495 in full size endothelial NOS (eNOS) to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. Our biophysical studies show that phosphorylation of Thr495 introduces electrostatic repulsions between the target sequence and CaM as well as a diminished propensity for the peptide to form an α-helix. The calcium affinity of the CaM-target peptide complex is reduced because of phosphorylation, and this leads to weaker binding at low physiological calcium concentrations. This study provides an explanation for the reduced level of NO production by eNOS carrying a phosphorylated Thr495 residue.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
31
|
Brockerman JA, Okon M, McIntosh LP. Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 58:17-25. [PMID: 24306180 DOI: 10.1007/s10858-013-9799-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.
Collapse
Affiliation(s)
- Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
32
|
Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Structure 2012; 20:139-50. [PMID: 22244763 DOI: 10.1016/j.str.2011.10.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022]
Abstract
Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution nuclear magnetic resonance (NMR) studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators.
Collapse
Affiliation(s)
- Travis S Hughes
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gorelik M, Davidson AR. Distinct peptide binding specificities of Src homology 3 (SH3) protein domains can be determined by modulation of local energetics across the binding interface. J Biol Chem 2012; 287:9168-77. [PMID: 22277653 DOI: 10.1074/jbc.m111.330753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.
Collapse
Affiliation(s)
- Maryna Gorelik
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Langlois C, Del Gatto A, Arseneault G, Lafrance-Vanasse J, De Simone M, Morse T, de Paola I, Lussier-Price M, Legault P, Pedone C, Zaccaro L, Omichinski JG. Structure-based design of a potent artificial transactivation domain based on p53. J Am Chem Soc 2012; 134:1715-23. [PMID: 22191432 DOI: 10.1021/ja208999e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malfunctions in transcriptional regulation are associated with a number of critical human diseases. As a result, there is considerable interest in designing artificial transcription activators (ATAs) that specifically control genes linked to human diseases. Like native transcriptional activator proteins, an ATA must minimally contain a DNA-binding domain (DBD) and a transactivation domain (TAD) and, although there are several reliable methods for designing artificial DBDs, designing artificial TADs has proven difficult. In this manuscript, we present a structure-based strategy for designing short peptides containing natural amino acids that function as artificial TADs. Using a segment of the TAD of p53 as the scaffolding, modifications are introduced to increase the helical propensity of the peptides. The most active artificial TAD, termed E-Cap-(LL), is a 13-mer peptide that contains four key residues from p53, an N-capping motif and a dileucine hydrophobic bridge. In vitro analysis demonstrates that E-Cap-(LL) interacts with several known p53 target proteins, while in vivo studies in a yeast model system show that it is a 20-fold more potent transcriptional activator than the native p53-13 peptide. These results demonstrate that structure-based design represents a promising approach for developing artificial TADs that can be combined with artificial DBDs to create potent and specific ATAs.
Collapse
Affiliation(s)
- Chantal Langlois
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale, Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Robertson IM, Holmes PC, Li MX, Pineda-Sanabria SE, Baryshnikova OK, Sykes BD. Elucidation of isoform-dependent pH sensitivity of troponin i by NMR spectroscopy. J Biol Chem 2011; 287:4996-5007. [PMID: 22179777 DOI: 10.1074/jbc.m111.301499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myocardial ischemia is characterized by reduced blood flow to cardiomyocytes, which can lead to acidosis. Acidosis decreases the calcium sensitivity and contractile efficiency of cardiac muscle. By contrast, skeletal and neonatal muscles are much less sensitive to changes in pH. The pH sensitivity of cardiac muscle can be reduced by replacing cardiac troponin I with its skeletal or neonatal counterparts. The isoform-specific response of troponin I is dictated by a single histidine, which is replaced by an alanine in cardiac troponin I. The decreased pH sensitivity may stem from the protonation of this histidine at low pH, which would promote the formation of electrostatic interactions with negatively charged residues on troponin C. In this study, we measured acid dissociation constants of glutamate residues on troponin C and of histidine on skeletal troponin I (His-130). The results indicate that Glu-19 comes in close contact with an ionizable group that has a pK(a) of ∼6.7 when it is in complex with skeletal troponin I but not when it is bound to cardiac troponin I. The pK(a) of Glu-19 is decreased when troponin C is bound to skeletal troponin I and the pK(a) of His-130 is shifted upward. These results strongly suggest that these residues form an electrostatic interaction. Furthermore, we found that skeletal troponin I bound to troponin C tighter at pH 6.1 than at pH 7.5. The data presented here provide insights into the molecular mechanism for the pH sensitivity of different muscle types.
Collapse
Affiliation(s)
- Ian M Robertson
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Bhattacharya S, Zhang H, Cowburn D, Debnath AK. Novel structures of self-associating stapled peptides. Biopolymers 2011; 97:253-64. [PMID: 22170623 DOI: 10.1002/bip.22015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/11/2022]
Abstract
Hydrocarbon stapling of peptides is a powerful technique to transform linear peptides into cell-permeable helical structures that can bind to specific biological targets. In this study, we have used high resolution solution NMR techniques complemented by dynamic light scattering to characterize extensively a family of hydrocarbon stapled peptides with known inhibitory activity against HIV-1 capsid assembly to evaluate the various factors that modulate activity. The helical peptides share a common binding motif but differ in charge, the length, and position of the staple. An important outcome of the study was to show the peptides, share a propensity to self-associate into organized polymeric structures mediated predominantly by hydrophobic interactions between the olefinic chain and the aromatic side-chains from the peptide. We have also investigated in detail the structural significance of the length and position of the staple, and of olefinic bond isomerization in stabilizing the helical conformation of the peptides as potential factors driving polymerization. This study presents the numerous challenges of designing biologically active stapled peptides and the conclusions have broad implications for optimizing a promising new class of compounds in drug discovery.
Collapse
|
37
|
Pauwels K, Williams TL, Morris KL, Jonckheere W, Vandersteen A, Kelly G, Schymkowitz J, Rousseau F, Pastore A, Serpell LC, Broersen K. Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease. J Biol Chem 2011; 287:5650-60. [PMID: 22157754 DOI: 10.1074/jbc.m111.264473] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-amyloid peptide (Aβ) is directly related to neurotoxicity in Alzheimer disease (AD). The two most abundant alloforms of the peptide co-exist under normal physiological conditions in the brain in an Aβ(42):Aβ(40) ratio of ∼1:9. This ratio is often shifted to a higher percentage of Aβ(42) in brains of patients with familial AD and this has recently been shown to lead to increased synaptotoxicity. The molecular basis for this phenomenon is unclear. Although the aggregation characteristics of Aβ(40) and Aβ(42) individually are well established, little is known about the properties of mixtures. We have explored the biophysical and structural properties of physiologically relevant Aβ(42):Aβ(40) ratios by several techniques. We show that Aβ(40) and Aβ(42) directly interact as well as modify the behavior of the other. The structures of monomeric and fibrillar assemblies formed from Aβ(40) and Aβ(42) mixtures do not differ from those formed from either of these peptides alone. Instead, the co-assembly of Aβ(40) and Aβ(42) influences the aggregation kinetics by altering the pattern of oligomer formation as evidenced by a unique combination of solution nuclear magnetic resonance spectroscopy, high molecular weight mass spectrometry, and cross-seeding experiments. We relate these observations to the observed enhanced toxicity of relevant ratios of Aβ(42):Aβ(40) in synaptotoxicity assays and in AD patients.
Collapse
Affiliation(s)
- Kris Pauwels
- Division of Molecular Structure, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cordeiro TN, Schmidt H, Madrid C, Juárez A, Bernadó P, Griesinger C, García J, Pons M. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler. PLoS Pathog 2011; 7:e1002380. [PMID: 22114557 PMCID: PMC3219716 DOI: 10.1371/journal.ppat.1002380] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022] Open
Abstract
Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. Pathogenic Escherichia coli strains and other enterobacteria carry genes acquired from other bacteria by a process known as horizontal gene transfer. Proper regulation of the genes that are expressed in a given moment is crucial for the success of the bacteria. The protein H-NS is a global regulator that binds DNA and maintains a large number of genes silent until they are required, for example, to sustain the bacteria's colonization of a new host. Ler is a member of the H-NS family that competes with H-NS to activate the expression of a group of horizontally acquired genes that encode for a molecular machine used by E. coli to infect human cells. Ler and H-NS share a similar DNA-binding domain and can bind to different DNA sequences. Here, we present the structure of a complex between the DNA-binding domain of Ler and a natural DNA fragment. This structure reveals that Ler recognizes specific DNA shapes, explaining its capacity to regulate genes with different sequences. A single arginine residue is key for the recognition of a DNA narrow minor groove, which is one of, though not the only, hallmarks of the DNA shapes that are recognized by H-NS and Ler.
Collapse
Affiliation(s)
- Tiago N. Cordeiro
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
| | - Holger Schmidt
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany
| | - Cristina Madrid
- Department of Microbiology, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Microbiology, University of Barcelona, Barcelona, Spain
- Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain
| | - Pau Bernadó
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Göttingen, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
- * E-mail: (MP); (JG)
| | - Miquel Pons
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- * E-mail: (MP); (JG)
| |
Collapse
|
39
|
Baturin SJ, Okon M, McIntosh LP. Structure, dynamics, and ionization equilibria of the tyrosine residues in Bacillus circulans xylanase. JOURNAL OF BIOMOLECULAR NMR 2011; 51:379-394. [PMID: 21912982 DOI: 10.1007/s10858-011-9564-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/26/2011] [Indexed: 05/31/2023]
Abstract
We have developed NMR spectroscopic methods to investigate the tyrosines within Bacillus circulans xylanase (BcX). Four slowly exchanging buried tyrosine hydroxyl protons with chemical shifts between 7.5 and 12.5 ppm were found using a long-range (13)C-HSQC experiment that exploits the (3)J(CH) coupling between the ring (1)H(η) and (13)C(ε) nuclei. The NMR signals from these protons were assigned via (13)C-tyrosine selective labelling and a suite of scalar and (13)C,(15)N-filtered/edited NOE correlation spectra. Of the fifteen tyrosines in BcX, only the buried Tyr79 and Tyr105 showed four distinct, rather than two averaged, signals from ring (13)C-(1)H pairs, indicative of slow flipping on the chemical shift timescale. Ring flipping rate constants of ~10 and ~0.2 s(-1) were measured for the two residues, respectively, using a (13)C longitudinal exchange experiment. The hydrogen bonding properties of the Tyr79 and Tyr105 hydroxyls were also defined by complementary NOE and J-coupling measurements. The (1)H(η) hydrogen-deuterium exchange rate constants of the buried tyrosines were determined from (13)C/(15)N-filtered spectra recorded as a function of pH. These exchange rate constants correspond to estimated protection factors of ~10(4)-10(8) relative to a random coil tyrosine. The phenolic sidechain pK (a) values were also measured by monitoring their pH-dependent (13)C(ζ) chemical shifts via (1)H(ε/δ)((13)C(ε))(13)C(ζ) correlation spectra. Exposed tyrosines had unperturbed pK (a) values of ~10.2, whereas buried residues remained predominantly neutral at or even above pH 11. Combined with selective isotope labelling, these NMR experiments should prove useful for investigating the structural and electrostatic properties of tyrosines in many interesting proteins.
Collapse
Affiliation(s)
- Simon J Baturin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | |
Collapse
|
40
|
Martin JW, Yan AK, Bailey-Kellogg C, Zhou P, Donald BR. A geometric arrangement algorithm for structure determination of symmetric protein homo-oligomers from NOEs and RDCs. J Comput Biol 2011; 18:1507-23. [PMID: 22035328 DOI: 10.1089/cmb.2011.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a primary tool to perform structural studies of proteins in physiologically-relevant solution conditions. Restraints on distances between pairs of nuclei in the protein, derived from the nuclear Overhauser effect (NOE), provide information about the structure of the protein in its folded state. NMR studies of symmetric protein homo-oligomers present a unique challenge. Using X-filtered NOESY experiments, it is possible to determine whether an NOE restrains a pair of protons across different subunits or within a single subunit, but current experimental techniques are unable to determine in which subunits the restrained protons lie. Consequently, it is difficult to assign NOEs to particular pairs of subunits with certainty, thus hindering the structural analysis of the oligomeric state. Computational approaches are needed to address this subunit ambiguity, but traditional solutions often rely on stochastic search coupled with simulated annealing and simulations of simplified molecular dynamics, which have many tunable parameters that must be chosen carefully and can also fail to report structures consistent with the experimental restraints. In addition, these traditional approaches rarely provide guarantees on running time or solution quality. We reduce the structure determination of homo-oligomers with cyclic symmetry to computing geometric arrangements of unions of annuli in a plane. Our algorithm, disco, runs in expected O(n²) time, where n is the number of distance restraints, potentially assigned ambiguously. disco is guaranteed to report the exact set of oligomer structures consistent with the distance restraints and also with orientational restraints from residual dipolar couplings (RDCs). We demonstrate our method using two symmetric protein complexes: the trimeric E. coli diacylglycerol kinase (DAGK) and a dimeric mutant of the immunoglobulin-binding domain B1 of streptococcal protein G (GB1). In both cases, disco computes oligomer structures with high precision and also finds distance restraints that are either mutually inconsistent or inconsistent with the RDCs. The entire protocol DISCO has been completely automated in a software package that is freely available and open-source at www.cs.duke.edu/donaldlab/software.php.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
41
|
Suzuki R, Fujimoto Z, Shiotsuki T, Tsuchiya W, Momma M, Tase A, Miyazawa M, Yamazaki T. Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori. Sci Rep 2011; 1:133. [PMID: 22355650 PMCID: PMC3216614 DOI: 10.1038/srep00133] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/07/2011] [Indexed: 11/09/2022] Open
Abstract
Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling.
Collapse
Affiliation(s)
- Rintaro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nudelman I, Akabayov SR, Scherf T, Anglister J. Observation of intermolecular interactions in large protein complexes by 2D-double difference nuclear Overhauser enhancement spectroscopy: application to the 44 kDa interferon-receptor complex. J Am Chem Soc 2011; 133:14755-64. [PMID: 21819146 PMCID: PMC3173517 DOI: 10.1021/ja205480v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR detection of intermolecular interactions between protons in large protein complexes is very challenging because it is difficult to distinguish between weak NOEs from intermolecular interactions and the much larger number of strong intramolecular NOEs. This challenging task is exacerbated by the decrease in signal-to-noise ratio in the often used isotope-edited and isotope-filtered experiments as a result of enhanced T(2) relaxation. Here, we calculate a double difference spectrum that shows exclusively intermolecular NOEs and manifests the good signal-to-noise ratio in 2D homonuclear NOESY spectra even for large proteins. The method is straightforward and results in a complete picture of all intermolecular interactions involving non exchangeable protons. Ninety-seven such (1)H-(1)H NOEs were assigned for the 44 KDa interferon-α2/IFNAR2 complex and used for docking these two proteins. The symmetry of the difference spectrum, its superb resolution, and unprecedented signal-to-noise ratio in this large protein/receptor complex suggest that this method is generally applicable to study large biopolymeric complexes.
Collapse
Affiliation(s)
- Ilona Nudelman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabine R. Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tali Scherf
- Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Chandola H, Yan AK, Potluri S, Donald BR, Bailey-Kellogg C. NMR structural inference of symmetric homo-oligomers. J Comput Biol 2011; 18:1757-75. [PMID: 21718128 DOI: 10.1089/cmb.2010.0327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symmetric homo-oligomers represent a majority of proteins, and determining their structures helps elucidate important biological processes, including ion transport, signal transduction, and transcriptional regulation. In order to account for the noise and sparsity in the distance restraints used in Nuclear Magnetic Resonance (NMR) structure determination of cyclic (C(n)) symmetric homo-oligomers, and the resulting uncertainty in the determined structures, we develop a Bayesian structural inference approach. In contrast to traditional NMR structure determination methods, which identify a small set of low-energy conformations, the inferential approach characterizes the entire posterior distribution of conformations. Unfortunately, traditional stochastic techniques for inference may under-sample the rugged landscape of the posterior, missing important contributions from high-quality individual conformations and not accounting for the possible aggregate effects on inferred quantities from numerous unsampled conformations. However, by exploiting the geometry of symmetric homo-oligomers, we develop an algorithm that provides provable guarantees for the posterior distribution and the inferred mean atomic coordinates. Using experimental restraints for three proteins, we demonstrate that our approach is able to objectively characterize the structural diversity supported by the data. By simulating spurious and missing restraints, we further demonstrate that our approach is robust, degrading smoothly with noise and sparsity.
Collapse
Affiliation(s)
- Himanshu Chandola
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
44
|
Feldkamp MD, Yu L, Shea MA. Structural and energetic determinants of apo calmodulin binding to the IQ motif of the Na(V)1.2 voltage-dependent sodium channel. Structure 2011; 19:733-47. [PMID: 21439835 PMCID: PMC3094505 DOI: 10.1016/j.str.2011.02.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 02/03/2011] [Accepted: 02/06/2011] [Indexed: 11/29/2022]
Abstract
The neuronal voltage-dependent sodium channel (Na(v)1.2), essential for generation and propagation of action potentials, is regulated by calmodulin (CaM) binding to the IQ motif in its α subunit. A peptide (Na(v)1.2(IQp), KRKQEEVSAIVIQRAYRRYLLKQKVKK) representing the IQ motif had higher affinity for apo CaM than (Ca(2+))(4)-CaM. Association was mediated solely by the C-domain of CaM. A solution structure (2KXW.pdb) of apo (13)C,(15)N-CaM C-domain bound to Na(v)1.2(IQp) was determined with NMR. The region of Na(v)1.2(IQp) bound to CaM was helical; R1902, an Na(v)1.2 residue implicated in familial autism, did not contact CaM. The apo C-domain of CaM in this complex shares features of the same domain bound to myosin V IQ motifs (2IX7) and bound to an SK channel peptide (1G4Y) that does not contain an IQ motif. Thermodynamic and structural studies of CaM-Na(v)1.2(IQp) interactions show that apo and (Ca(2+))(4)-CaM adopt distinct conformations that both permit tight association with Na(v)1.2(IQp) during gating.
Collapse
Affiliation(s)
- Michael D. Feldkamp
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| | - Liping Yu
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
- NMR Facility Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| | - Madeline A. Shea
- Department of Biochemistry Roy J. and Lucille A. Carver College of Medicine University of Iowa Iowa City, Iowa 52242-1109, USA
| |
Collapse
|
45
|
Sgourakis NG, Lange OF, DiMaio F, André I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J Am Chem Soc 2011; 133:6288-98. [PMID: 21466200 PMCID: PMC3080108 DOI: 10.1021/ja111318m] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR can be difficult due to slow tumbling of the system and the difficulty in identifying NOE interactions across protein interfaces. Here, we present an automated method (RosettaOligomers) for determining the solution structures of oligomeric systems using only chemical shifts, sparse NOEs, and domain orientation restraints from residual dipolar couplings (RDCs) without a need for a previously determined structure of the monomeric subunit. The method integrates previously developed Rosetta protocols for solving the structures of monomeric proteins using sparse NMR data and for predicting the structures of both nonintertwined and intertwined symmetric oligomers. We illustrated the performance of the method using a benchmark set of nine protein dimers, one trimer, and one tetramer with available experimental data and various interface topologies. The final converged structures are found to be in good agreement with both experimental data and previously published high-resolution structures. The new approach is more readily applicable to large oligomeric systems than conventional structure-determination protocols, which often require a large number of NOEs, and will likely become increasingly relevant as more high-molecular weight systems are studied by NMR.
Collapse
Affiliation(s)
- Nikolaos G Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee HW, Wylie G, Bansal S, Wang X, Barb AW, Macnaughtan MA, Ertekin A, Montelione GT, Prestegard JH. Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Sci 2011; 19:1673-85. [PMID: 20589905 DOI: 10.1002/pro.447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The traditional NMR-based method for determining oligomeric protein structure usually involves distinguishing and assigning intra- and intersubunit NOEs. This task becomes challenging when determining symmetric homo-dimer structures because NOE cross-peaks from a given pair of protons occur at the same position whether intra- or intersubunit in origin. While there are isotope-filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (K(d) 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape-based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed.
Collapse
Affiliation(s)
- Hsiau-Wei Lee
- Complex Carbohydrate Research Center, Northeast Structural Genomics Consortium, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Campagne S, Gervais V, Milon A. Nuclear magnetic resonance analysis of protein-DNA interactions. J R Soc Interface 2011; 8:1065-78. [PMID: 21389020 DOI: 10.1098/rsif.2010.0543] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent methodological and instrumental advances in solution-state nuclear magnetic resonance have opened up the way to investigating challenging problems in structural biology such as large macromolecular complexes. This review focuses on the experimental strategies currently employed to solve structures of protein-DNA complexes and to analyse their dynamics. It highlights how these approaches can help in understanding detailed molecular mechanisms of target recognition.
Collapse
Affiliation(s)
- S Campagne
- Université de Toulouse, UPS, Department of Structural Biology and Biophysics, F-31077 Toulouse, France
| | | | | |
Collapse
|
48
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
49
|
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50:1309-20. [PMID: 21226534 DOI: 10.1021/bi101985j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac troponin, a heterotrimeric protein complex that regulates heart contraction, represents an attractive target for the development of drugs for treating heart disease. Cardiovascular diseases are one of the chief causes of morbidity and mortality worldwide. In France, however, the death rate from heart disease is remarkably low relative to fat consumption. This so-called "French paradox" has been attributed to the high level of consumption of wine in France, and the antioxidant trans-resveratrol is thought to be the primary basis for wine's cardioprotective nature. It has been demonstrated that trans-resveratrol increases the myofilament Ca(2+) sensitivity of guinea pig myocytes [Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P. (2005) Eur. J. Pharmacol. 519, 1-8]; however, the specific mode of its action is unknown. In this study, the structure of trans-resveratrol free and bound to the calcium-binding protein, troponin C, was determined by nuclear magnetic resonance spectroscopy. The results indicate that trans-resveratrol undergoes a minor conformational change upon binding to the hydrophobic pocket of the C-domain of troponin C. The location occupied by trans-resveratrol coincides with the binding site of troponin I, troponin C's natural binding partner. This has been seen for other troponin C-targeting inotropes and implicates the modulation of the troponin C-troponin I interaction as a possible mechanism of action for trans-resveratrol.
Collapse
Affiliation(s)
- Sandra E Pineda-Sanabria
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
50
|
Ziarek JJ, Peterson FC, Lytle BL, Volkman BF. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol 2011; 493:241-75. [PMID: 21371594 PMCID: PMC3635485 DOI: 10.1016/b978-0-12-381274-2.00010-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last 15 years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like compounds because of its ability to identify binding sites, affinities, and ligand poses at the level of individual amino acids without necessarily solving the structure of the protein-ligand complex. However, it can also provide structures of flexible proteins and low-affinity (K(d)>10(-6)M) complexes, which often fail to crystallize. This chapter emphasizes a throughput-focused protocol that aims to identify practical aspects of binding site characterization, automated and semiautomated NMR assignment methods, and structure determination of protein-ligand complexes by NMR.
Collapse
Affiliation(s)
- Joshua J. Ziarek
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Betsy L. Lytle
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|