1
|
Saha S, Prajapati DG, Mishra A. Amphiphilic polymer coated carbon nanotubes: A promising platform against Salmonella typhi. Microb Pathog 2025; 202:107411. [PMID: 39993548 DOI: 10.1016/j.micpath.2025.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Carbon nanotubes (CNTs) are an excellent example of new nanostructures that can penetrate bacterial cell walls. Its remarkable physical features and potent antibacterial activity make it a promising candidate for various applications. However, two significant barriers currently limit the antibacterial potential of CNTs in medical devices: cell toxicity and CNTs aggregation within a polymer matrix. In this study, a simple and cost-effective method was proposed to synthesize multi-walled carbon nanotubes-g-[poly(ethylene glycol)-bpoly(ε-caprolactone)] (PEG-PCL@CNTs) using biocompatible amphiphilic PEG-PCL diblock copolymer via non-covalent functionalization. Furthermore, time-killing kinetic, ROS generation experiments and SEM analysis demonstrated that PEG-PCL@CNTs exhibited antibacterial activities against S. typhi strains through cell membrane disruption with the release of cellular contents and ROS generation. Excellent hemocompatibility with decreased hemolysis ratios was demonstrated by the PEG-PCL@CNTs nanohybrid materials. Thus, PEG-PCL incorporation may successfully lessen both bacterial adhesion and the toxicity of CNT to human cells. These findings suggest a new avenue for rational design of polymer-functionalization of carbon nanomaterials as therapeutic agents for bacterial infections.
Collapse
Affiliation(s)
- Sarmistha Saha
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India; Department of Biotechnology, Institute of Applied Science and Humanities, GLA University, Uttar Pradesh, India.
| | - Deepak G Prajapati
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| | - Abhijit Mishra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| |
Collapse
|
2
|
Hirose R, Haraguchi T, Nagakubo A, Tachibana M, Murakami M, Ogi H. Coupled Nanomechanical Resonator with Protein-Interaction Vibration for an Ultrasensitive Label-Free Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23405-23413. [PMID: 40172991 DOI: 10.1021/acsami.5c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A mechanical-resonator biosensor detects target molecules attached to the resonator surface through a change in resonant frequency caused by the mass-loading effect. Since mass-detection sensitivity can be improved by thinning resonator thickness, much effort has been devoted to the development of a thinner resonator. Here, we propose a much more effective strategy for an ultrasensitive mechanical-resonator biosensor. When the resonator frequency is close to the local vibration at a specific interaction between target and receptor molecules (∼30 GHz), a significantly large frequency change can occur because of energy coupling between the resonator vibration and target-receptor vibration (similar to avoided crossing). For realizing this strategy, we developed an ultrahigh-frequency nanomechanical resonator of multilayer graphene. The resonator-frequency change near the avoided-crossing frequency is about 10 times higher than that caused by the mass-loading effect, which allowed label-free detection of C-reactive protein with a detection limit of 10 pg/mL or less even in serum.
Collapse
Affiliation(s)
- Ryo Hirose
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| | - Takuya Haraguchi
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| | - Akira Nagakubo
- Department of Materials Processing, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masamitsu Tachibana
- Material Solutions New Research Engine, Kaneka Co., Settsu, Osaka 566-0072, Japan
| | - Mutsuaki Murakami
- Material Solutions New Research Engine, Kaneka Co., Settsu, Osaka 566-0072, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| |
Collapse
|
3
|
Kumar S, Chakraborty A, Gomez Quispe JR, Mitra R, Barala S, Autreto PAD, Tiwary CS, Biswas K, Kumar M. AlMnPdPtAu Quasicrystal Modulated Carbon Nanotubes for H 2 Sensors: Experimental and DFT Computational Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21670-21681. [PMID: 40167114 PMCID: PMC11986908 DOI: 10.1021/acsami.5c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Hydrogen (H2) sensors are crucial for safety in H2 storage and fuel cell systems. AlMnPdPtAu high-entropy alloy (HEA) quasicrystal nanosheets with high surface area, tunable electronic structure, and atomic disorder exhibit enhanced H2 adsorption and sensor response. This work demonstrates highly sensitive and selective H2 sensors developed by a low-cost screen printing method using the AlMnPdPtAu quasicrystal and CNTs. The sensor demonstrates high sensitivity with a relative response of 103% (1 ppm) to 130.4% (100 ppm) and rapid dynamics (τres = 19 s, τrec = 81 s at 100 ppm of H2) at room temperature. Structural analysis by high-resolution transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the interface formation between the AlMnPdPtAu HEA quasicrystal and CNTs. Raman spectroscopy revealed structural and electronic interactions within the composite, while X-ray photoelectron spectroscopy identified chemical states and surface interactions at the AlMnPdPtAu QC@CNT interface. The density functional theory study highlighted dissociative H2 adsorption modes and spillover effects at the QC@CNT interface, where H atoms bond with Mn atoms in the quasicrystal, facilitating H atom migration and stabilization. The adsorption energy and Bader charge transfer values are calculated to determine the binding strength of the H atom to the sensing material and the extent of electronic interaction, influencing sensitivity.
Collapse
Affiliation(s)
- Sumit Kumar
- Department
of Electrical Engineering, Indian Institute
of Technology Jodhpur, Jodhpur 342030, India
| | - Anyesha Chakraborty
- School
of Nano Science and Technology, Indian Institute
of Technology, Kharagpur, West Bengal 721302, India
| | - Juan Rafael Gomez Quispe
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André, SP 09280-560, Brazil
| | - Rahul Mitra
- Department
of Materials Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur 208016, India
| | - Suraj Barala
- Inter-disciplinary
Department of Space Science and Technology, Indian Institute of Technology Jodhpur, Jodhpur 342030, India
| | | | - Chandra Sekhar Tiwary
- School
of Nano Science and Technology, Indian Institute
of Technology, Kharagpur, West Bengal 721302, India
- Department
of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishanu Biswas
- Department
of Materials Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur 208016, India
| | - Mahesh Kumar
- Department
of Electrical Engineering, Indian Institute
of Technology Jodhpur, Jodhpur 342030, India
- Department
of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic
Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| |
Collapse
|
4
|
Kikuchi K, Yamazaki Y, Kanekura K, Hayamizu Y. Graphene Biosensor Differentiating Sensitive Interactions between Ribonucleic Acid and Dipeptide Repeats in Liquid-Liquid Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12765-12771. [PMID: 39957101 PMCID: PMC11874026 DOI: 10.1021/acsami.4c15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Liquid-Liquid Phase Separation (LLPS) plays a crucial role in cell biology and is closely associated with neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Recent studies connect mutations in the C9ORF72 gene to the production of arginine-rich dipeptide repeat proteins (R-DPRs), such as poly(PR) and poly(GR). These R-DPRs disrupt LLPS in membrane-less organelles (MLOs) and contribute to disease pathology. While traditional analysis techniques like nuclear magnetic resonance (NMR), fluorescence recovery after photobleaching (FRAP), and Förster resonance energy transfer (FRET) provide insights into LLPS's role in these diseases, their ability is limited in detecting weak intermolecular interactions within LLPS droplets. This study employs graphene field-effect transistors (GFETs) for their superior sensitivity in detecting these molecular interactions. We immobilized RNA (poly-A) on GFETs and measured the electrical conductivity of GFETs to characterize shifts in the voltage of the charge neutral point in GFETs, allowing for the detection of dipeptide repeat peptides, such as (PR)12, (GR)12, and R12. Our results show that interactions between peptides and RNA require a specific peptide concentration threshold and vary between peptide types. Notably, the minimal conductivity shift suggests that peptides containing proline residues exhibit a nonuniform spatial distribution during interactions with RNA on graphene surfaces. This finding indicates that peptide rigidity induced by prolines plays a vital role in these molecular interactions and their multivalent contacts with RNA, which agrees with findings reported in other recent works. The capability of GFETs to detect these interactions at nanomolar concentrations marks a significant advancement in sensitivity over existing methods. This research sheds light on the mechanisms of LLPS involving R-DPRs and opens avenues for further understanding of related neurodegenerative diseases.
Collapse
Affiliation(s)
- Kantaro Kikuchi
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Yui Yamazaki
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Kohsuke Kanekura
- Department
of Pharmacology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuhei Hayamizu
- Department
of Materials Science and Engineering, School of Materials and Chemical
Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Ourabi M, Massey RS, Prakash R, Lessard BH. Adapting single-walled carbon nanotube-based thin-film transistors to flexible substrates with electrolyte-gated configurations using a versatile tri-layer polymer dielectric. NANOSCALE ADVANCES 2025; 7:1154-1162. [PMID: 39777233 PMCID: PMC11701725 DOI: 10.1039/d4na01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT). Despite the potential for fabrication on flexible substrates, these devices were only characterized on rigid substrates. We present herein the fabrication of these TFTs on Kapton® substrates and a progression of the devices' n- and p-type operation over 7 days, demonstrating continuous loss of the n-type performance and relative stability of the p-type performance after 3 days in ambient air. The tri-layer dielectric is then applied in an electrolyte-gated SWNT field-effect transistor (EG-SWNT-FET) architecture, shielding the SWNTs from the electrolyte and allowing for width-normalised g m values of 0.0563 ± 0.0263 μS μm-1 and I ON/OFF ratios of 103-104 using de-ionized (DI) water as the electrolyte. Finally, as a proof of concept, the device was used to detect α-synuclein, a neuronal protein whose aggregation is associated with Parkinson's disease, in DI water through the immobilization of target specific aptamer molecules on the polymer layer covering the gate electrode.
Collapse
Affiliation(s)
- May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
| | - Roslyn S Massey
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
- School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
6
|
Yin Y, Yu Q, Fu H, Li Y. Constructing conical helices inside carbon nanocones. Phys Chem Chem Phys 2025; 27:2588-2600. [PMID: 39807039 DOI: 10.1039/d4cp03149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Molecular dynamics simulations demonstrate that regular conical helices of poly(para-phenylene) (PPP) chains can be constructed inside the confined space of single-walled carbon nanocones (CNCs). The translocation displacement of the PPP chain combined with the change of the system total potential energy including each energy component and structural parameters of the formed conical helix is discussed to deeply explore the microstructure evolution, driving forces and dynamic mechanisms. In addition, the influence of chain length, cone angle, temperature, chain number, linked position of benzene rings and the form of Lennard-Jones potential on the helical encapsulation is further studied. The proposed method may provide a new way for constructing regular conical helices from polymer chains, with potential applications in electronic nanodevices.
Collapse
Affiliation(s)
- Yuliang Yin
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Qinzheng Yu
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Hongjin Fu
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Yunfang Li
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
| |
Collapse
|
7
|
Huang T, Li J, Chen H, Sun H, Jang DW, Alam MM, Yeung KK, Zhang Q, Xia H, Duan L, Mao C, Gao Z. Rapid miRNA detection enhanced by exponential hybridization chain reaction in graphene field-effect transistors. Biosens Bioelectron 2024; 266:116695. [PMID: 39241340 DOI: 10.1016/j.bios.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Scalable electronic devices that can detect target biomarkers from clinical samples hold great promise for point-of-care nucleic acid testing, but still cannot achieve the detection of target molecules at an attomolar range within a short timeframe (<1 h). To tackle this daunting challenge, we integrate graphene field-effect transistors (GFETs) with exponential target recycling and hybridization chain reaction (TRHCR) to detect oligonucleotides (using miRNA as a model disease biomarker), achieving a detection limit of 100 aM and reducing the sensing time by 30-fold, from 15 h to 30 min. In contrast to traditional linear TRHCR, our exponential TRHCR enables the target miRNA to initiate an autocatalytic system with exponential kinetics, significantly accelerating the reaction speed. The resulting reaction products, long-necked double-stranded polymers with a negative charge, are effectively detected by the GFET through chemical gating, leading to a shift in the Dirac voltage. Therefore, by monitoring the magnitude of this voltage shift, the target miRNA is quantified with high sensitivity. Consequently, our approach successfully detects 22-mer miRNA at concentrations as low as 100 aM in human serum samples, achieving the desired short timeframe of 30 min, which is congruent with point-of-care testing, and demonstrates superior specificity against single-base mismatched interfering oligonucleotides.
Collapse
Affiliation(s)
- Ting Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingwei Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haohan Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Honglin Sun
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dong Wook Jang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Md Masruck Alam
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kan Kan Yeung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qicheng Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China; Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China
| | - Han Xia
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Pan Y, Baster D, Käch D, Reger J, Wettstein L, Krumeich F, El Kazzi M, Bezdek MJ. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angew Chem Int Ed Engl 2024; 63:e202412084. [PMID: 39087346 DOI: 10.1002/anie.202412084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV/Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.
Collapse
Affiliation(s)
- Yanlin Pan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Dominika Baster
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jan Reger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Lionel Wettstein
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Mario El Kazzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Máté J Bezdek
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
9
|
Ranne M, Ourabi M, Lessard BH, Adronov A. CO 2 Responsive Thin-Film Transistors Using Conjugated Polymer Complexes with Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46600-46608. [PMID: 39185575 DOI: 10.1021/acsami.4c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.
Collapse
Affiliation(s)
- Mokhamed Ranne
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
10
|
Yamamoto A, Sakamaki Y, Abuillan W, Konovalov O, Ueno Y, Tanaka M. Structural and Mechanical Characterization of DNA-Tethered Membranes on Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16530-16537. [PMID: 39046847 DOI: 10.1021/acs.langmuir.4c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lipid membranes that are separated from the surface of graphene by DNA tethers were prepared by surface functionalization with pyrene coupled to single-stranded DNA (ssDNA), followed by self-assembly of the mixture of ssDNA-functionalized phospholipid and the matrix phospholipids. The formation of uniform membranes was confirmed by fluorescence microscopy, and the structures of the systems before and after hybridization in the direction perpendicular to the global plane of the membranes were investigated using high-energy X-ray reflectivity. The thickness values of the DNA spacers (15 and 37 bp) calculated from the best-fit results were less than the expected thicknesses of the double-stranded DNA (dsDNA) chains taking the upright conformation, indicating that the DNA spacers are tilted with respect to the direction normal to the surface. The Young's moduli of the DNA-tethered membranes obtained by AFM nanoindentation showed higher values than the membranes with no DNA tethers, which suggests that the DNA layer resists against the compression, lifting up the membrane. Intriguingly, the presence of DNA tethers caused no increase in the yield depth. The smaller thickness values as well as the unchanged yield depth suggest that the dsDNA chains can tilt and rotate, which can be attributed to the flexible pyrene-DNA junction.
Collapse
Affiliation(s)
- Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Sakamaki
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Yuko Ueno
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Sousa TASL, Almeida NBF, Santos FA, Filgueiras PS, Corsini CA, Lacerda CMS, Silva TG, Grenfell RFQ, Plentz F. Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. NANOTECHNOLOGY 2024; 35:425503. [PMID: 39059417 DOI: 10.1088/1361-6528/ad67e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etiological agent for the coronavirus disease 2019 (COVID-19), has resulted in over 775 million global infections. Early diagnosis remains pivotal for effective epidemiological surveillance despite the availability of vaccines. Antigen-based assays are advantageous for early COVID-19 detection due to their simplicity, cost-effectiveness, and suitability for point-of-care testing (PoCT). This study introduces a graphene field-effect transistor-based biosensor designed for high sensitivity and rapid response to the SARS-CoV-2 spike protein. By functionalizing graphene with monoclonal antibodies and applying short-duration gate voltage pulses, we achieve selective detection of the viral spike protein in human serum within 100 µs and at concentrations as low as 1 fg ml-1, equivalent to 8 antigen molecules perµl of blood. Furthermore, the biosensor estimates spike protein concentrations in serum from COVID-19 patients. Our platform demonstrates potential for next-generation PoCT antigen assays, promising fast and sensitive diagnostics for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Thiago A S L Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
- DTU Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Nathalie B F Almeida
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Fabrício A Santos
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Priscilla S Filgueiras
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Camila A Corsini
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Camila M S Lacerda
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thais G Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rafaella F Q Grenfell
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Flavio Plentz
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
12
|
Li L, Zhou P, Wen J, Sun P, Guo Z. Dispersion of Single-Walled Carbon Nanotubes by Aromatic Cyclic Schiff Bases via Non-Covalent Interactions. Molecules 2024; 29:3179. [PMID: 38999131 PMCID: PMC11243016 DOI: 10.3390/molecules29133179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
One of the challenging issues that hinders the application of single-walled carbon nanotubes (SWCNTs) is the poor solubility and the inevitable formation of bundles. Efforts still need to be made towards solving the problem. Herein, we report a non-covalent strategy to disperse aggregated SWCNTs by aromatic cyclic Schiff bases assisted by ultrasonic techniques. The aromatic cyclic Schiff base (OMM) was synthesized via Schiff base reactions, and the molecular structure was determined by ATR-FT-IR, solid-state 13C-NMR, and HRMS. Although the yielded product showed poor solubility in aqueous solution and organic solvents, it could interact with and disperse the aggregated SWCNTs in dimethyl formamide (DMF) under the condition of ultrasound. UV-vis-NIR, FL, Raman spectra, AFM, and TEM, along with computer simulations, provide evidence for the interactions between OMM molecules and SWCNTs and the dispersion thereof. The semiconductive (7,5), (8,6), (12,1), and (9,7)-SWCNTs expressed a preference for dissolution. The capability of dispersion is contributed by π-π, C-H·π, and lone pair (lp)·π interactions between OMM and SWCNTs based on the simulated results. The present non-covalent strategy could provide inspiration for preparing organic cyclic compounds as dispersants for SWCNTs and then facilitate their further utilization.
Collapse
Affiliation(s)
- Lun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengfei Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiali Wen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Panli Sun
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zongxia Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
13
|
Chen Q, Zhou J, Sun R. Carbon Nanotube Loading Strategies for Peptide Drugs: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13515-13526. [PMID: 38887887 DOI: 10.1021/acs.langmuir.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Carbon nanotubes (CNTs) can be regarded as a potential platform for transmembrane drug delivery as many experimental works have demonstrated their capability to effectively transport bioactive molecules into living cells. Within this framework, the loading of a peptide drug onto either the interior or exterior of CNTs has gained considerable interest. This study aims to conduct a comprehensive comparison of these two loading methods. To this end, we performed molecular dynamics simulations and the umbrella sampling technique to investigate the interaction energy, conformational changes, and free energy changes of a model peptide drug containing α-helical structure interacting with the inner or outer walls of a 14.7-nm-long (20,20) CNT. Our finding reveals that, for a tube of such dimensions, it is thermodynamically more favorable for the peptide to be loaded onto the inner tube wall than the outer tube wall, primarily due to a larger free energy change for the former strategy. Conversely, unloading the drug from the tube interior poses greater challenges. Moreover, the tube's curvature plays an essential role in influencing the conformation of the adsorbed peptide. Despite the relatively weaker van der Waals interaction between the CNT exterior and the peptide, loading the peptide onto the exterior may induce significant conformational changes, particularly affecting the peptide's α-helix structure. In contrast, loading of the peptide on the CNT interior could maintain most of the α-helical content. CNTs do not typically attract specific peptide residues, with adsorbed groups primarily determined by the peptide's configurations and orientations. Finally, we offer a guideline for selecting an optimal loading strategy for CNT-based drug delivery.
Collapse
Affiliation(s)
- Qu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Jianping Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Rong Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
14
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
15
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
16
|
Wang J, Shao W, Liu Z, Kesavan G, Zeng Z, Shurin MR, Star A. Diagnostics of Tuberculosis with Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Sens 2024; 9:1957-1966. [PMID: 38484361 PMCID: PMC11059104 DOI: 10.1021/acssensors.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Tuberculosis (TB) is still threatening millions of people's lives, especially in developing countries. One of the major factors contributing to the ongoing epidemic of TB is the lack of a fast, efficient, and inexpensive diagnostic strategy. In this work, we developed a semiconducting single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) device functionalized with anti-Mycobacterium tuberculosis antigen 85B antibody (Ab85B) to detect the major M. tuberculosis-secreted antigen 85B (Ag85B). Through optimizing the device fabrication process by evaluating the mass of the antibody and the concentration of the gating electrolyte, our Ab85B-SWCNT FET devices achieved the detection of the Ag85B spiked in phosphate-buffered saline (calibration samples) with a limit of detection (LOD) of 0.05 fg/mL. This SWCNT FET biosensor also showed good sensing performance in biological matrices including artificial sputum and can identify Ag85B in serum after introducing bovine serum albumin (BSA) into the blocking layer. Furthermore, our BSA-blocked Ab85B-SWCNT FET devices can distinguish between TB-positive and -negative clinical samples, promising the application of SWCNT FET devices in point-of-care TB diagnostics. Moreover, the robustness of this SWCNT-based biosensor to the TB diagnosis in blood serum was enhanced by blocking SWCNT devices directly with a glutaraldehyde cross-linked BSA layer, enabling future applications of these SWCNT-based biosensors in clinical testing.
Collapse
Affiliation(s)
- Jieyu Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wenting Shao
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhengru Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ganesh Kesavan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Shurin
- Department
of Pathology, University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
17
|
Oishi Y, Kitatani M, Kusakabe K. Possible bi-stable structures of pyrenebutanoic acid-linked protein molecules adsorbed on graphene: theoretical study. Beilstein J Org Chem 2024; 20:570-577. [PMID: 38505239 PMCID: PMC10949008 DOI: 10.3762/bjoc.20.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
We theoretically analyze possible multiple conformations of protein molecules immobilized by 1-pyrenebutanoic acid succinimidyl ester (PASE) linkers on graphene. The activation barrier between two bi-stable conformations exhibited by PASE is confirmed to be based on the steric hindrance effect between a hydrogen on the pyrene group and a hydrogen on the alkyl group of this molecule. Even after the protein is supplemented, this steric hindrance effect remains if the local structure of the linker consisting of an alkyl group and a pyrene group is maintained. Therefore, it is likely that the kinetic behavior of a protein immobilized with a single PASE linker exhibits an activation barrier-type energy surface between the bi-stable conformations on graphene. We discuss the expected protein sensors when this type of energy surface appears and provide a guideline for improving the sensitivity, especially as an oscillator-type biosensor.
Collapse
Affiliation(s)
- Yasuhiro Oishi
- Graduate School of Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Motoharu Kitatani
- Graduate School of Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Koichi Kusakabe
- Graduate School of Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
18
|
Shkodra B, Petrelli M, Yang KA, Tagliaferri A, Lugli P, Petti L, Nakatsuka N. Polymeric integration of structure-switching aptamers on transistors for histamine sensing. Faraday Discuss 2024; 250:43-59. [PMID: 37970875 DOI: 10.1039/d3fd00123g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Aptamers that undergo large conformational rearrangements at the surface of electrolyte-gated field-effect transistor (EG-FETs)-based biosensors can overcome the Debye length limitation in physiological high ionic strength environments. For the sensitive detection of small molecules, carbon nanotubes (CNTs) that approach the dimensions of analytes of interest are promising channel materials for EG-FETs. However, functionalization of CNTs with bioreceptors using frequently reported surface modification strategies (e.g., π-π stacking), requires highly pristine CNTs deposited through methods that are incompatible with low-cost fabrication methods and flexible substrates. In this work, we explore alternative non-covalent surface chemistry to functionalize CNTs with aptamers. We harnessed the adhesive properties of poly-D-lysine (PDL), to coat the surface of CNTs and then grafted histamine-specific DNA aptamers electrostatically in close proximity to the CNT semiconducting channel. The layer-by-layer assembly was monitored by complementary techniques such as X-ray photoelectron spectroscopy, optical waveguide lightmode spectroscopy, and fluorescence microscopy. Surface characterization confirmed histamine aptamer integration into PDL-coated CNTs and revealed ∼5-fold higher aptamer surface coverage when using CNT networks with high surface areas. Specific aptamers assembled on EG-CNTFETs enabled histamine detection in undiluted high ionic strength solutions in the concentration range of 10 nM to 100 μM. Sequence specificity was demonstrated via parallel measurements with control EG-CNTFETs functionalized with scrambled DNA. Histamine aptamer-modified EG-CNTFETs showed high selectivity vs. histidine, the closest structural analog and precursor to histamine. Taken together, these results implied that target-specific aptamer conformational changes on CNTs facilitate signal transduction, which was corroborated by circular dichroism spectroscopy. Our work suggests that layer-by-layer polymer chemistry enables integration of structure-switching aptamers into flexible EG-CNTFETs for small-molecule biosensing.
Collapse
Affiliation(s)
- Bajramshahe Shkodra
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| | - Mattia Petrelli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Kyung-Ae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York 10032, USA
| | - Anna Tagliaferri
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Paolo Lugli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Luisa Petti
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| |
Collapse
|
19
|
Al-Sodies S, Asiri AM, Alam MM, Alamry KA, Hussein MA, Rahman MM. Sensitive Cr 3+ sensor based on novel poly(luminol- co-1,8-diaminonaphthalene)/CeO 2/MWCNTs nanocomposites. RSC Adv 2024; 14:5797-5811. [PMID: 38362067 PMCID: PMC10865463 DOI: 10.1039/d4ra00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
In this study, poly(luminol-co-1,8-diaminonaphthalene) (PLim-DAN) was synthesized and subsequently modified with MWCNTs and CeO2 NPs. The synthesized nanocomposites were analyzed using IR, SEM, TEM, and XRD. Furthermore, a comprehensive set of thermal behavior measurements were taken using TGA/DTG analysis. Next, the electroactivity of the developed nanocomposites was tested as an electrochemical sensor to measure the concentration of Cr3+ ions in phosphate buffers. The GCE adapted with the PLim-DAN/CeO2/CNTs-10% nanocomposite (NC) exhibited the highest current response among the other compositions and copolymers. The fabricated nanocomposite sensor showed high sensitivity, with a value of 19.78 μA μM-1 cm-2, and a low detection limit of 4.80 ± 0.24 pM. The analytical performance was evaluated by plotting a current calibration curve versus the concentration of Cr3+ ions. It was found to be linear (R2 = 0.9908) over the range of 0.1 nM to 0.1 mM, identified as the linear dynamic range (LDR). This electrochemical sensor demonstrated that it could be a useful tool for environmental monitoring by accurately detecting and measuring carcinogenic Cr3+ ions in real-world samples.
Collapse
Affiliation(s)
- Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - M M Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST) Shariatpur 8024 Bangladesh
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
20
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
21
|
Wang G, Han D, Zhang Q. Highly sensitive detection of circulating tumour cells based on an ASV/CV dual-signal electrochemical strategy. RSC Adv 2023; 13:33038-33046. [PMID: 38025856 PMCID: PMC10631473 DOI: 10.1039/d3ra04856j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Circulating tumour cells (CTCs), as a tumour marker, may provide more information in early diagnosis and accurate therapy of cancer patients. Electrochemical detection of CTCs has exhibited exceptional advantages. However, single-signal electrochemical detection usually has a high probability of false positives coming from interferents, operating personnel, and nonstandard analytical processes. Herein, a dual-signal strategy using anodic stripping voltammetry (ASV) and cyclic voltammetry (CV) for highly sensitive detection of CTCs was developed. When MCF-7 cells were present, aptamer DNA (DNA1)-magnetic beads (MBs) were captured by CTCs and detached from the biosensing electrodes. Following magnetic separation, polystyrene bead (PS)-CdS QDs labelled on MCF-7 cells were dissolved by HNO3 and the intensity of the oxidation peak current of Cd2+ ions was proportional to the amount of MCF-7 cells in ASV (y = 6.8929 lg Ccells + 1.0357 (Ccells, cells per mL; R2, 0.9947; LOD, 3 cells per mL)). Meanwhile, the anodic peak currents of the remaining electrode in CV were also proportional to the amount of MCF-7 cells (y = 3.7891 lg Ccells + 52.3658 (Ccells, cells per mL; R2, 0.9846; LOD, 3 cells per mL)). An ASV/CV dual-signal biosensor for electrochemical detection of CTCs was achieved, which overcame the limitations of any single-signal mode and improved the detection reliability and precision.
Collapse
Affiliation(s)
- Gang Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital Anshan Road 154, Heping District Tianjin 300052 China
| | - Dan Han
- Department of Gastroenterology, Tianjin Medical University General Hospital Anshan Road 154, Heping District Tianjin 300052 China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital Anshan Road 154, Heping District Tianjin 300052 China
| |
Collapse
|
22
|
Paradisi A, Berto M, Di Giosia M, Mazzali S, Borsari M, Marforio TD, Zerbetto F, Calvaresi M, Orieshyna A, Amdursky N, Bortolotti CA, Biscarini F. Robust Biosensor Based on Carbon Nanotubes/Protein Hybrid Electrolyte Gated Transistors. Chemistry 2023; 29:e202301704. [PMID: 37432093 DOI: 10.1002/chem.202301704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marcello Berto
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Matteo Di Giosia
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Sara Mazzali
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Tainah Dorina Marforio
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Francesco Zerbetto
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Fabio Biscarini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| |
Collapse
|
23
|
Alsafrani AE, Adeosun WA, Alruwais RS, Marwani HM, Asiri AM, Khan A. Metal-organic frameworks (MOFs) composite of polyaniline-CNT@aluminum succinate for non-enzymatic nitrite sensor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26965-8. [PMID: 37160857 DOI: 10.1007/s11356-023-26965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Nitrite has been linked to a variety of health issues, as well as cancer and oxygen deficiency when its allowable limit is exceeded. Nitrite monitoring and detection are required due to the negative effects on public health. Metal-organic frameworks (MOFs)-based nanomaterials/composites have recently been shown to have the potential for various biological and medical applications like sensing, imaging, and drug delivery. As a result, this research creates an efficient electrochemical sensor by incorporating MOFs into polyaniline (PANI)/carbon nanotube (CNT) cast on the GCE. In situ oxidative polymerization was used to construct an aluminum succinate MOF (Al-Succin)-incorporated CNT/PANI nanocomposite (PANI/CNT@Al-Succin) and well characterized by various characterization techniques, namely, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential thermal analysis (TGA-DTA), cyclic voltammetry (CV), and four probes to measure DC electrical conductivity. Cyclic voltammetry and linear sweep voltammetry techniques were employed to detect nitrite on the surface of PANI/CNT@Al-Succin-modified glassy carbon electrode (GCE). PANI/CNT@Al-Succin-modified GCE demonstrated good current response and electrocatalytic property towards nitrite compared to bare GCE. The newly synthesized electrode exhibited a high electrocatalytic activity towards nitrite oxidation and showed a linear response ranging from 5.7 to 74.1 μM for CV and 8.55-92.62 μM for LSV. The obtained LOD values for CV (1.16 μM) and LSV (0.08 μM) were significantly below the WHO-defined acceptable nitrite limit in drinking water. Results of recovery studies for real samples of apple juice, orange juice, and bottled water were 98.92%, 99.38%, and 99.90%, respectively. These values show practical usability of PANI/CNT@Al-Succin in real samples.
Collapse
Affiliation(s)
- Amjad E Alsafrani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Waheed A Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia.
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
25
|
M Frias IA, Zine N, Sigaud M, Lozano-Sanchez P, Caffio M, Errachid A. Non-covalent π-π functionalized Gii-sense Ⓡ graphene foam for interleukin 10 impedimetric detection. Biosens Bioelectron 2023; 222:114954. [PMID: 36502717 DOI: 10.1016/j.bios.2022.114954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Monitoring Interleukin 10 (IL-10) is essential for understanding the vast responses of T-cells in cancer, autoimmunity, and internal homeostasis after physical stress. However, current diagnostic methods are complex and more focused on medical screening rather than point-of-care monitoring. Biosensors based on graphene's conductivity and flexibility are attractive to offer simple single-use and reduced handling. However, oxidation of its carbon lattice to develop functional moieties for biomolecule immobilization cuts down its electronic conductivity potential. In this work, the authors present a microfluidic lab-on-chip device for simple impedimetric monitoring of IL-10 based on graphene foam (GF) flexible electrodes. Graphene's structure was maintained by employing π-π non-covalent functionalization with pyrene carboxylic acid (PCA). Impedimetric measurements could be performed in low ionic strength phosphate-buffered saline (LI-PBS). The PCA-antibody modification showed to endure the incubation, measurement, and washing processes performed in the microfluidic device. Electrode modification and measurements were characterized by, electrochemical impedance spectroscopy (EIS), contact angle, and scanning electron microscopy. From the contact angle results, we found that the wettability of the graphene surface increased gradually after each modification step. Detection measurements performed in the 3D-printed microfluidic device showed a linear response between 10 fg/mL to 100 fg/mL with a limit of detection (LOD) of 7.89 fg/mL in artificial saliva. With these features, the device was used to quantify IL-10 samples by the standard addition method for 10 fg and 50 fg with recoveries between 82% and 99%. Specificity was evaluated towards interleukin 6, TNF-⍺ and bovine serum albumin.
Collapse
Affiliation(s)
- Isaac A M Frias
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Nadia Zine
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Monique Sigaud
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France
| | - Pablo Lozano-Sanchez
- Integrated Graphene Ltd Eurohouse, Wellgreen Place Stirling, FK8 2DJ, Scottland, UK
| | - Marco Caffio
- Integrated Graphene Ltd Eurohouse, Wellgreen Place Stirling, FK8 2DJ, Scottland, UK
| | - Abdelhamid Errachid
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, Rue de La Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
26
|
Alosime EM. A review on surface functionalization of carbon nanotubes: methods and applications. NANOSCALE RESEARCH LETTERS 2023; 18:12. [PMID: 36779998 DOI: 10.1186/s11671-023-03789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/26/2022] [Indexed: 05/24/2023]
Abstract
In this review, the radiolytic and physical methods that can be used for the functionalization of carbon nanotubes (CNTs) and their applications as a support for fuel cell electrodes are described. Alloy nanoparticles have also been examined. For example, Pt-Ru nanoparticles were deposited onto a functionalized multiwalled carbon nanotube (MWNT) composite by reducing metal ions (e.g., Pt4+ and Ru3+) here using γ-irradiation and, hence, creating Pt-Ru/MWNT catalysts. The morphology, size, and composition of these Pt-Ru/MWNT catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and elemental analysis, respectively. The efficiency of the Pt-Ru/MWNT catalyst was examined for use in the oxidation of carbon monoxide (CO) and methanol. The results of stripping voltammetry for the adsorbed CO on the Pt-Ru/MWNT catalyst electrodes indicated that CO oxidation was energetically favorable at these electrodes. Thus, Pt-Ru/MWNT catalysts were found to be suitable for electrode assembly in direct methanol fuel cells.
Collapse
Affiliation(s)
- Eid M Alosime
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.
| |
Collapse
|
27
|
Ritaine D, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules 2023; 28:1471. [PMID: 36771137 PMCID: PMC9920975 DOI: 10.3390/molecules28031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.
Collapse
Affiliation(s)
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
28
|
Torrinha Á, Tavares M, Delerue-Matos C, Morais S. Microenergy generation and dioxygen sensing by bilirubin oxidase immobilized on a nanostructured carbon paper transducer. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Farcas A, Damoc M, Asandulesa M, Aubert PH, Ionut Tigoianu R, Laura Ursu E. The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
30
|
Li Y, Han X, Mu X, Wang Y, Shi C, Ma C. Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. Anal Chim Acta 2023; 1238:340639. [PMID: 36464451 PMCID: PMC9674634 DOI: 10.1016/j.aca.2022.340639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The false-negative result of nucleic acid testing is an important cause of continued spread of COVID-19, while SARS-CoV-2 RNA degradation during transportation and nucleic acid extraction can lead to false-negative results. Here, we investigated that single-walled carbon nanotubes (SCNTs) could protect RNA from degradation for at least 4 days at room temperature. By constructing magnetism-functionalized SCNTs (MSCNTs), we developed a method that enabled protection and simple extraction of SARS-CoV-2 RNA, and the RNA-bound MSCNTs can be directly used for reverse transcription polymerase chain reaction (RT-qPCR) detection. The experimental results showed that 1 μg of MSCNTs adsorbed up to 24 ng of RNA. Notably, the MSCNTs-based method for extracting SARS-CoV-2 RNA from simulated nasopharyngeal swabs and saliva samples with mean recovery rates of 103% and 106% improved the sensitivity of RT-qPCR detection by 8-32 fold in comparison to current common methods. This improvement was largely attributable to the protection of RNA, enabling increased RNA load for downstream assays.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Xiangning Han
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, 266071, Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China.
| |
Collapse
|
31
|
Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. PHYSICA. B, CONDENSED MATTER 2023; 648:414438. [PMID: 36281340 PMCID: PMC9582926 DOI: 10.1016/j.physb.2022.414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.
Collapse
Affiliation(s)
- Serhan Yamacli
- Nuh Naci Yazgan University, Dept. of Electrical-Electronics Engineering, Kayseri, Turkey
| | - Mutlu Avci
- Cukurova University, Dept. of Biomedical Engineering, Adana, Turkey
| |
Collapse
|
32
|
Ruiu A, González-Méndez I, Sorroza-Martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. EMERGING APPLICATIONS OF CARBON NANOTUBES IN DRUG AND GENE DELIVERY 2023:119-155. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
34
|
Carbonaceous nanomaterials integrated carbon paste sensors for adsorptive anodic voltammetric determination of butenafine in the presence of its degradation product. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Induchoodan G, Jansson H, Mohammadi AS, Swenson J. The Critical Role of Asphaltene Nanoaggregates in Stabilizing Functionalized Graphene in Crude Oil Derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Isci R, Baysak E, Kesan G, Minofar B, Eroglu MS, Duygulu O, Gorkem SF, Ozturk T. Non-covalent modification of single wall carbon nanotubes (SWCNTs) by thienothiophene derivatives. NANOSCALE 2022; 14:16602-16610. [PMID: 36317494 DOI: 10.1039/d2nr04582f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Non-covalent functionalization of single wall carbon nanotubes (SWCNTs) has been conducted using several binding agents with surface π-interaction forces in recent studies. Herein, we present the first example of non-covalent functionalization of sidewalls of SWCNTs using thienothiophene (TT) derivatives without requiring any binding agents. Synthesized TT derivatives, TT-CN-TPA, TT-CN-TPA2 and TT-COOH-TPA, were attached directly to SWCNTs through non-covalent interactions to obtain new TT-based SWCNT hybrids, HYBRID 1-3. Taking advantage of the presence of sulfur atoms in the structure of TT, HYBRID 1, as a representative, was treated with Au nanoparticles for the adsorption of Au by sulfur atoms, which generated clear TEM images of the particles. The images indicated the attachment of TTs to the surface of SWCNTs. Thus, the presence of sulfur atoms in TT units made the binding of TTs to SWCNTs observable via TEM analysis through adsorption of Au nanoparticles by the sulfur atoms. Surface interactions between TTs and SWCNTs of the new hybrids were also clarified by classical molecular dynamic simulations, a quantum mechanical study, and SEM, TEM, AFM and contact angle (CA) analyses. The minimum distance between a TT and a SWCNT reached up to 3.5 Å, identified with strong peaks on a radial distribution function (RDF), while maximum interaction energies were raised to -316.89 kcal mol-1, which were determined using density functional theory (DFT).
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Elif Baysak
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Gurkan Kesan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
| | - Babak Minofar
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Mehmet S Eroglu
- Metallurgical and Materials Engineering Dept., Faculty of Engineering, Marmara University, Aydınevler, Maltepe, 34854, Istanbul, Turkey
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| | - Ozgur Duygulu
- Material Technologies, TUBITAK Marmara Research Center, Gebze, Kocaeli, 41470, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| |
Collapse
|
37
|
Motoc S, Manea F, Baciu A, Vasilie S, Pop A. Highly sensitive and simultaneous electrochemical determinations of non-steroidal anti-inflammatory drugs in water using nanostructured carbon-based paste electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157412. [PMID: 35853524 DOI: 10.1016/j.scitotenv.2022.157412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Simple and fast simultaneous quantifications in water of anti-inflammatory drugs, which belong to the emerging pollutants, represents a great challenge for water quality control. The development of electrochemical methods to meet the simultaneous and concomitant detection requirements depends mainly on the electrode material. The fullerene‑carbon nanofiber (FULL/CNF) and graphene‑carbon nanotubes (GR/CNT) paste electrodes as sensing elements were employed for the first time for the determination of diclofenac (DCF), naproxen (NPX) and ibuprofen (IBP) simultaneously and concomitantly. The comparative morphostructural and electrochemical characterizations of both electrodes were achieved by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Differential-pulsed voltammetry (DPV), chronoamperometry (CA) and multiple-pulsed amperometry (MPA) were used for detection tests. FULL/CNF electrode was suitable to develop a simultaneous DPV-based detection methodology that allowed reaching the lowest limit of detections of 0.230 nM for DCF, 0.310 nM for NPX and 0.180 nM for IBP. GR/CNT electrode did not provide stability for DPV-based detection, but the lowest limits of detection of 0.149 nM for DCF, 0.809 nM for NPX and 0.640 nM for IBP were achieved by MPA-based methodology. Both electrodes, linked to specific detection technique, showed good reproducibility, stability and ability to measure DCF, NPX and IBP simultaneously in aqueous solution. The satisfactory results achieved by analysis of real surface water sample (Bega River, Timisoara city, Romania) indicated that the proposed voltammetric and amperometric methodologies using both electrodes have great potential for practical applications in analysis of different water samples.
Collapse
Affiliation(s)
- Sorina Motoc
- "Coriolan Drăgulescu" Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 6 Bv. V. Parvan, 300223 Timisoara, Romania.
| | - Anamaria Baciu
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 6 Bv. V. Parvan, 300223 Timisoara, Romania
| | - Sergiu Vasilie
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 6 Bv. V. Parvan, 300223 Timisoara, Romania
| | - Aniela Pop
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 6 Bv. V. Parvan, 300223 Timisoara, Romania
| |
Collapse
|
38
|
Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. BIOSENSORS 2022; 12:776. [PMID: 36290914 PMCID: PMC9599861 DOI: 10.3390/bios12100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Nano biochemical sensors play an important role in detecting the biomarkers related to human diseases, and carbon nanotubes (CNTs) have become an important factor in promoting the vigorous development of this field due to their special structure and excellent electronic properties. This paper focuses on applying carbon nanotube field-effect transistor (CNT-FET) biochemical sensors to detect biomarkers. Firstly, the preparation method, physical and electronic properties and functional modification of CNTs are introduced. Then, the configuration and sensing mechanism of CNT-FETs are introduced. Finally, the latest progress in detecting nucleic acids, proteins, cells, gases and ions based on CNT-FET sensors is summarized.
Collapse
Affiliation(s)
- Yixi Deng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
39
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
40
|
Oishi Y, Ogi H, Hagiwara S, Otani M, Kusakabe K. Theoretical Analysis on the Stability of 1-Pyrenebutanoic Acid Succinimidyl Ester Adsorbed on Graphene. ACS OMEGA 2022; 7:31120-31125. [PMID: 36092595 PMCID: PMC9453977 DOI: 10.1021/acsomega.2c03257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The adsorbed structure of 1-pyrenebutanoic acid succinimidyl ester (PASE) on graphene was investigated based on density functional theory. We found two locally stable structures: a straight structure with the chainlike part of butanoic acid succinimidyl ester (BSE) lying down and a bent structure with the BSE part directed away from graphene, keeping the pyrene (Py) part adsorbed on graphene. Then, to elucidate the adsorption mechanism, we separately estimated the contributions of the Py and BSE parts to the entire PASE adsorption, and the adsorption effect of the BSE part was found to be secondary in comparison to the contribution of the Py. Next, the mobility of the BSE part at room temperature was confirmed by the activation energy barrier between straight and bent structures. To take account of the external environment, we considered the presence of amino acids and the hydration effect by a three-dimensional reference interaction site model. The contributions of glycine molecules and the solvent environment to stabilizing the bent PASE structure relative to the straight PASE structure were found. Therefore, the effect of the external environment around PASE is of importance when the standing-up process of the BSE part from graphene is considered.
Collapse
Affiliation(s)
- Yasuhiro Oishi
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hirotsugu Ogi
- Graduate
School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Hagiwara
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1, Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
| | - Minoru Otani
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1, Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koichi Kusakabe
- Graduate
School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
41
|
Ritaine D, Adronov A. Functionalization of polyfluorene‐wrapped carbon nanotubes using thermally cleavable side‐chains. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Fundamental mechanisms of hexagonal boron nitride sensing of dopamine, tryptophan, ascorbic acid, and uric acid by first-principles study. J Mol Model 2022; 28:158. [PMID: 35596016 DOI: 10.1007/s00894-022-05158-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Selectivity of dopamine (DA), uric acid (UA), and ascorbic acid (AA) is an open challenge of electrochemical sensors in the field of biosensing. In this study, two selective mechanisms for detecting DA, UA, and AA biomolecules on the pristine boron nitride nanosheets (BNNS) and functionalized BNNS with tryptophan (Trp), i.e., Trp@BNNS have been illustrated through density functional density (DFT) calculation and charge population analysis. Our findings reveal that the adsorbed biomolecules on Trp@BNNS indicate the less sensitivity factor of biomolecule separation than the functionalized biomolecules with Trp (Trp@biomolecule) adsorbed on pristine BNNS. From the calculations, strong adsorption of Trp@biomolecule on the pristine substrate corresponds to enhancing of electron charge transfer and electrical dipole moment. Our analysis is in good agreement with the previous theoretical and experimental results and suggests new pathway for electrode modification for electrochemical biosensing.
Collapse
|
43
|
Guzmán-Mendoza JJ, Chávez-Flores D, Montes-Fonseca SL, González-Horta C, Orrantia-Borunda E, Sánchez-Ramírez B. A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1465. [PMID: 35564174 PMCID: PMC9105613 DOI: 10.3390/nano12091465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023]
Abstract
Carbon nanotubes (CNTs) have been proposed as nanovehicles for drug or antigen delivery since they can be functionalized with different biomolecules. For this purpose, different types of molecules have been chemically bonded to CNTs; however, this method has low efficiency and generates solvent waste. Candida antarctica lipase is an enzyme that, in an organic solvent, can bind a carboxylic to a hydroxyl group by esterase activity. The objective of this work was to functionalize purified CNTs with insulin as a protein model using an immobilized lipase of Candida antarctica to develop a sustainable functionalization method with high protein attachment. The functionalized CNTs were characterized by scanning electron microscope (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzymatic functionalization of insulin on the surface of the CNTs was found to have an efficiency of 21%, which is higher in conversion and greener than previously reported by the diimide-activated amidation method. These results suggest that enzymatic esterification is a convenient and efficient method for CNT functionalization with proteins. Moreover, this functionalization method can be used to enhance the cellular-specific release of proteins by lysosomal esterases.
Collapse
Affiliation(s)
- José Jesús Guzmán-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus II, Chihuahua 31125, Mexico; (J.J.G.-M.); (D.C.-F.); (C.G.-H.)
| | - David Chávez-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus II, Chihuahua 31125, Mexico; (J.J.G.-M.); (D.C.-F.); (C.G.-H.)
| | - Silvia Lorena Montes-Fonseca
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Heroico Colegio Militar 4700, Col. Nombre de Dios, Chihuahua 31300, Mexico;
| | - Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus II, Chihuahua 31125, Mexico; (J.J.G.-M.); (D.C.-F.); (C.G.-H.)
| | - Erasmo Orrantia-Borunda
- Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n Campus II, Chihuahua 31125, Mexico; (J.J.G.-M.); (D.C.-F.); (C.G.-H.)
| |
Collapse
|
44
|
Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503463. [PMID: 35483786 DOI: 10.1016/j.mrgentox.2022.503463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The genotoxicity of pyrene-polyethylene glycol-modified multi-walled carbon nanotubes (MWCNT-PyPEG), engineered as a nanoplatform for bioapplication, was evaluated. Toxicity was assessed in hamster lung fibroblast cells (V79-4). MTT and Cell Titer Blue methods were used to evaluate cell viability. Genotoxicity was measured by the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, and fluorescence in situ hybridization (FISH) was used to test induction of structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity). Exogenous metabolic activation enzymes were used in the CBMN-Cyt and FISH tests. Only with metabolic activation, the hybrids caused chromosomal damage, by both clastogenic and aneugenic processes.
Collapse
Affiliation(s)
- Graziela de Paula Ferreira Dantas
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | | | - Lívia Santos Gomides
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Farah Maria Drumond Chequer
- Laboratório de Análises Toxicológicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, MG, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Clascídia Aparecida Furtado
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Adelina Pinheiro Santos
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Carlos Alberto Tagliati
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
45
|
Photothermal/NO combination therapy from plasmonic hybrid nanotherapeutics against breast cancer. J Control Release 2022; 345:417-432. [PMID: 35331784 DOI: 10.1016/j.jconrel.2022.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
In this study, a plasmon-semiconductor nanotheranostic system comprising Au nanostars/graphene quantum dots (AuS/QD) hybrid nanoparticles loaded with BNN6 and surface modified with PEG-pyrene was developed for the photo-triggered hyperthermia effect and NO production as the dual modality treatment against orthotopic triple-negative breast cancer. The structure and morphology of the hybrid nanodevice was characterized and the NIR-II induced thermal response and NO production was determined. The hybrid nanodevice has shown enhanced plasmonic energy transfer from localized surface plasmonic resonance of Au nanostars to QD semiconductor that activates the BNN6 species loaded on QD surfaces, leading to the effective NO production and the gas therapy in addition to the photothermal response. The increased accumulation of the NIR-II-responsive hybrid nanotheranostic in tumor via the enhanced permeation and retention effects was confirmed by both in vivo fluorescence and photoacoustic imaging. The prominent therapeutic efficacy of the photothermal/NO combination therapy from the BNN6-loaded AuS@QD nanodevice with the NIR-II laser irradiation at 1064 nm against 4T1 breast cancer was observed both in vitro and in vivo. The NO therapy for the cancer treatment was evidenced with the increased cellular nitrosative and oxidative stress, nitration of tyrosine residues of mitochondrial proteins, vessel eradication and cell apoptosis. The efficacy of the photothermal treatment was corroborated directly by severe tissue thermal ablation and tumor growth inhibition. The NIR-II triggered thermal/NO combination therapy along with the photoacoustic imaging-guided therapeutic accumulation in tumor shows prominent effect to fully inhibit tumor growth and validates the promising strategy developed in this study.
Collapse
|
46
|
Chen M, Cui D, Zhao Z, Kang D, Li Z, Albawardi S, Alsageer S, Alamri F, Alhazmi A, Amer MR, Zhou C. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In 2O 3 nanoribbon transistors and phosphatase. NANO RESEARCH 2022; 15:5510-5516. [PMID: 35371413 PMCID: PMC8959552 DOI: 10.1007/s12274-022-4190-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
UNLABELLED Developing convenient and accurate SARS-CoV-2 antigen test and serology test is crucial in curbing the global COVID-19 pandemic. In this work, we report an improved indium oxide (In2O3) nanoribbon field-effect transistor (FET) biosensor platform detecting both SARS-CoV-2 antigen and antibody. Our FET biosensors, which were fabricated using a scalable and cost-efficient lithography-free process utilizing shadow masks, consist of an In2O3 channel and a newly developed stable enzyme reporter. During the biosensing process, the phosphatase enzymatic reaction generated pH change of the solution, which was then detected and converted to electrical signal by our In2O3 FETs. The biosensors applied phosphatase as enzyme reporter, which has a much better stability than the widely used urease in FET based biosensors. As proof-of-principle studies, we demonstrate the detection of SARS-CoV-2 spike protein in both phosphate-buffered saline (PBS) buffer and universal transport medium (UTM) (limit of detection [LoD]: 100 fg/mL). Following the SARS-CoV-2 antigen tests, we developed and characterized additional sensors aimed at SARS-CoV-2 IgG antibodies, which is important to trace past infection and vaccination. Our spike protein IgG antibody tests exhibit excellent detection limits in both PBS and human whole blood ((LoD): 1 pg/mL). Our biosensors display similar detection performance in different mediums, demonstrating that our biosensor approach is not limited by Debye screening from salts and can selectively detect biomarkers in physiological fluids. The newly selected enzyme for our platform performs much better performance and longer shelf life which will lead our biosensor platform to be capable for real clinical diagnosis usage. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (materials and methods for device fabrication, functionalization of In2O3 devices, photographs of the liquid gate measurement setup, mobilities of the nine devices labeled in Fig. 1(b), family curves of I DS-V DS with the liquid gate setup and current change after bubbling the substrate solution (current vs. time curve for S1 antigen detection)) is available in the online version of this article at 10.1007/s12274-022-4190-0.
Collapse
Affiliation(s)
- Mingrui Chen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
| | - Dingzhou Cui
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 USA
| | - Zhiyuan Zhao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
| | - Di Kang
- eDNA Biotech, Pasadena, California 91107 USA
| | - Zhen Li
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089 USA
| | - Shahad Albawardi
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Shahla Alsageer
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Faisal Alamri
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abrar Alhazmi
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Moh. R. Amer
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Department of Electrical Engineering, 420 Westwood Plaza, 5412 Boelter Hall, University of California, Los Angeles, Los Angeles, California 90095 USA
| | - Chongwu Zhou
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 USA
| |
Collapse
|
47
|
Das P, Sharma SK, Sanfui BK. Engineering of the structural and morphological characteristics of MWCNTs employing a nano-dimensional binary oxide coating with enhanced thermal oxidation resistance properties for the tailoring of their reinforcement potential. NEW J CHEM 2022. [DOI: 10.1039/d1nj05807j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present investigation mainly addresses the rational design of a MgAl-binary-oxide-coated MWCNT nano-hybrid architecture and the study of its reinforcement potential.
Collapse
Affiliation(s)
- Paromita Das
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| | - Savan Kumar Sharma
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| | - Barun K. Sanfui
- Department of Ceramic Technology, Government College of Engineering and Ceramic Technology (Autonomous Post Graduate) NAAC Accredited Grade A, 73, A. C. Banerjee Lane, Kolkata-700010, West Bengal, India
| |
Collapse
|
48
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
49
|
Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. BIOSENSORS 2021; 11:bios11120486. [PMID: 34940243 PMCID: PMC8699144 DOI: 10.3390/bios11120486] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
This review focuses on recent advances in the application of carbon nanotubes (CNTs) for the development of sensors and biosensors. The paper discusses various configurations of these devices, including their integration in analytical devices. Carbon nanotube-based sensors have been developed for a broad range of applications including electrochemical sensors for food safety, optical sensors for heavy metal detection, and field-effect devices for virus detection. However, as yet there are only a few examples of carbon nanotube-based sensors that have reached the marketplace. Challenges still hamper the real-world application of carbon nanotube-based sensors, primarily, the integration of carbon nanotube sensing elements into analytical devices and fabrication on an industrial scale.
Collapse
Affiliation(s)
- David C. Ferrier
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
| | - Kevin C. Honeychurch
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
- Centre for Research in Biosciences, Frenchay Campus, Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
50
|
Saini RV, Vaid P, Saini NK, Siwal SS, Gupta VK, Thakur VK, Saini AK. Recent Advancements in the Technologies Detecting Food Spoiling Agents. J Funct Biomater 2021; 12:67. [PMID: 34940546 PMCID: PMC8709279 DOI: 10.3390/jfb12040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.
Collapse
Affiliation(s)
- Reena V. Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Prachi Vaid
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| | - Neeraj K. Saini
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Adesh K. Saini
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| |
Collapse
|