1
|
Nagelski AL, Ozerov M, Fataftah MS, Krzystek J, Greer SM, Holland PL, Telser J. Electronic Structure of Three-Coordinate Fe II and Co II β-Diketiminate Complexes. Inorg Chem 2024; 63:4511-4526. [PMID: 38408452 DOI: 10.1021/acs.inorgchem.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The β-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.
Collapse
Affiliation(s)
- Alexandra L Nagelski
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel M Greer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
2
|
Chung T, McClain TP, Alonso-Mori R, Chollet M, Deb A, Garcia-Esparza AT, Huang Ze En J, Lamb RM, Michocki LB, Reinhard M, van Driel TB, Penner-Hahn JE, Sension RJ. Ultrafast X-ray Absorption Spectroscopy Reveals Excited-State Dynamics of B 12 Coenzymes Controlled by the Axial Base. J Phys Chem B 2024; 128:1428-1437. [PMID: 38301132 DOI: 10.1021/acs.jpcb.3c07779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.04 to 0.05 Å. The 5-coordinate base-off cob(II)alamin that is formed following photodissociation has a structure similar to that of the 5-coordinate base-on cob(II)alamin, with a ring expansion of 0.03 to 0.04 Å and a contraction of the lower axial bond length relative to that in the 6-coordinate ground state. These data provide insights into the role of the lower axial ligand in modulating the reactivity of B12 coenzymes.
Collapse
Affiliation(s)
- Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Taylor P McClain
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025-7015, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Marco Reinhard
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025-7015, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
3
|
Fisher K, Halliwell T, Payne KAP, Ragala G, Hay S, Rigby SEJ, Leys D. Efficient NADPH-dependent dehalogenation afforded by a self-sufficient reductive dehalogenase. J Biol Chem 2023; 299:105086. [PMID: 37495113 PMCID: PMC10463259 DOI: 10.1016/j.jbc.2023.105086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Reductive dehalogenases are corrinoid and iron-sulfur cluster-containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen-sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in Escherichia coli. Combining the use of maltose-binding protein as a solubility-enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron-sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption is tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. Electron paramagnetic resonance spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady-state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.
Collapse
Affiliation(s)
- Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Gabriel Ragala
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Thomas-Colwell J, Sookezian A, Kurtz DA, Kallick J, Henling LM, Stich TA, Hill MG, Hunter BM. Tuning Cobalt(II) Phosphine Complexes to be Axially Ambivalent. Inorg Chem 2022; 61:12625-12634. [PMID: 35920800 PMCID: PMC9387527 DOI: 10.1021/acs.inorgchem.2c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the isolation and characterization of a series
of three
cobalt(II) bis(phosphine) complexes with varying numbers of coordinated
solvent ligands in the axial position. X-ray quality crystals of [Co(dppv)2][BF4]2(1), [Co(dppv)2(NCCH3)][BPh4]2(2), and [Co(dppv)2(NCCH3)2][BF4]2(3) (dppv = cis-1,2-bis(diphenylphosphino)ethylene) were grown under slightly different
conditions, and their structures were compared. This analysis revealed
multiple crystallization motifs for divalent cobalt(II) complexes
with the same set of phosphine ligands. Notably, the 4-coordinate
complex 1 is a rare example of a square-planar cobalt(II)
complex, the first crystallographically characterized square-planar
Co(II) complex containing only neutral, bidentate ligands. Characterization
of the different axial geometries via EPR and UV–visible spectroscopies
showed that there is a very shallow energy landscape for axial ligation.
Ligand field angular overlap model calculations support this conclusion,
and we provide a strategy for tuning other ligands to be axially labile
on a phosphine scaffold. This methodology is proposed to be used for
designing cobalt phosphine catalysts for a variety of oxidation and
reduction reactions. A
square-planar cobalt(II) complex featuring two chelating
diphosphine ligands was isolated with 0, 1, and 2 axial acetonitrile
ligands. AOM calculations, validated by EPR, suggest this “axial
ambivalence” results from the near degeneracy of the dx2 − y2/dz2 orbital energies, with a change in the parentage
of the SOMO upon axial ligation. The calculations additionally provide
a simple method of predicting square-planar ligand sets/geometries
tuned to bind axial substrates with varying s-donor strengths.
Collapse
Affiliation(s)
- Jack Thomas-Colwell
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Arvin Sookezian
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Daniel A Kurtz
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jeremy Kallick
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Lawrence M Henling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Troy A Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Michael G Hill
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Bryan M Hunter
- Rowland Institute at Harvard University, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Nichols AW, Cook EN, Gan YJ, Miedaner PR, Dressel JM, Dickie DA, Shafaat HS, Machan CW. Pendent Relay Enhances H 2O 2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co-N 2O 2 Complexes. J Am Chem Soc 2021; 143:13065-13073. [PMID: 34380313 DOI: 10.1021/jacs.1c03381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, cobalt-N2O2 complexes show selectivity for hydrogen peroxide during electrochemical dioxygen (O2) reduction. We recently reported a Co(III)-N2O2 complex with a 2,2'-bipyridine-based ligand backbone which showed alternative selectivity: H2O was observed as the primary reduction product from O2 (71 ± 5%) with decamethylferrocene as a chemical reductant and acetic acid as a proton donor in methanol solution. We hypothesized that the key selectivity difference in this case arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(III)-hydroperoxide species. To interrogate this hypothesis, we have prepared a new Co(III) compound that contains pendent -OMe groups poised to direct protonation toward the proximal O atom of this hydroperoxo intermediate. Mechanistic studies in acetonitrile (MeCN) solution reveal two regimes are possible in the catalytic response, dependent on added acid strength and the presence of the pendent proton donor relay. In the presence of stronger acids, the activity of the complex containing pendent relays becomes O2 dependent, implying a shift to Co(III)-superoxide protonation as the rate-determining step. Interestingly, the inclusion of the relay results in primarily H2O2 production in MeCN, despite minimal difference between the standard reduction potentials of the three complexes tested. EPR spectroscopic studies indicate the formation of Co(III)-superoxide species in the presence of exogenous base, with greater O2 reactivity observed in the presence of the pendent -OMe groups.
Collapse
Affiliation(s)
- Asa W Nichols
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Emma N Cook
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Yunqiao J Gan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Peter R Miedaner
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Julia M Dressel
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, Ohio 43210, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
7
|
Tsybizova A, Brenig C, Kieninger C, Kräutler B, Chen P. Surprising Homolytic Gas Phase Co-C Bond Dissociation Energies of Organometallic Aryl-Cobinamides Reveal Notable Non-Bonded Intramolecular Interactions. Chemistry 2021; 27:7252-7264. [PMID: 33560580 PMCID: PMC8251903 DOI: 10.1002/chem.202004589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/12/2023]
Abstract
Aryl-cobalamins are a new class of organometallic structural mimics of vitamin B12 designed as potential 'antivitamins B12 '. Here, the first cationic aryl-cobinamides are described, which were synthesized using the newly developed diaryl-iodonium method. The aryl-cobinamides were obtained as pairs of organometallic coordination isomers, the stereo-structure of which was unambiguously assigned based on homo- and heteronuclear NMR spectra. The availability of isomers with axial attachment of the aryl group, either at the 'beta' or at the 'alpha' face of the cobalt-center allowed for an unprecedented comparison of the organometallic reactivity of such pairs. The homolytic gas-phase bond dissociation energies (BDEs) of the coordination-isomeric phenyl- and 4-ethylphenyl-cobinamides were determined by ESI-MS threshold CID experiments, furnishing (Co-Csp 2 )-BDEs of 38.4 and 40.6 kcal mol-1 , respectively, for the two β-isomers, and the larger BDEs of 46.6 and 43.8 kcal mol-1 for the corresponding α-isomers. Surprisingly, the observed (Co-Csp 2 )-BDEs of the Coβ -aryl-cobinamides were smaller than the (Co-Csp 3 )-BDE of Coβ -methyl-cobinamide. DFT studies and the magnitudes of the experimental (Co-Csp 2 )-BDEs revealed relevant contributions of non-bonded interactions in aryl-cobinamides, notably steric strain between the aryl and the cobalt-corrin moieties and non-bonded interactions with and among the peripheral sidechains.
Collapse
Affiliation(s)
- Alexandra Tsybizova
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| | - Christopher Brenig
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Peter Chen
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| |
Collapse
|
8
|
Kieninger C, Baker JA, Podewitz M, Wurst K, Jockusch S, Lawrence AD, Deery E, Gruber K, Liedl KR, Warren MJ, Kräutler B. Zinc Substitution of Cobalt in Vitamin B 12: Zincobyric acid and Zincobalamin as Luminescent Structural B 12‐Mimics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | - Joseph A. Baker
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | | | | | - Evelyne Deery
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | - Karl Gruber
- Institute for Molecular Biosciences University of Graz Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | | | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| |
Collapse
|
9
|
Kieninger C, Baker JA, Podewitz M, Wurst K, Jockusch S, Lawrence AD, Deery E, Gruber K, Liedl KR, Warren MJ, Kräutler B. Zinc Substitution of Cobalt in Vitamin B 12 : Zincobyric acid and Zincobalamin as Luminescent Structural B 12 -Mimics. Angew Chem Int Ed Engl 2019; 58:14568-14572. [PMID: 31420932 PMCID: PMC6790578 DOI: 10.1002/anie.201908428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Indexed: 11/14/2022]
Abstract
Replacing the central cobalt ion of vitamin B12 by other metals has been a long-held aspiration within the B12 -field. Herein, we describe the synthesis from hydrogenobyric acid of zincobyric acid (Znby) and zincobalamin (Znbl), the Zn-analogues of the natural cobalt-corrins cobyric acid and vitamin B12 , respectively. The solution structures of Znby and Znbl were studied by NMR-spectroscopy. Single crystals of Znby were produced, providing the first X-ray crystallographic structure of a zinc corrin. The structures of Znby and of computationally generated Znbl were found to resemble the corresponding CoII -corrins, making such Zn-corrins potentially useful for investigations of B12 -dependent processes. The singlet excited state of Znby had a short life-time, limited by rapid intersystem crossing to the triplet state. Znby allowed the unprecedented observation of a corrin triplet (ET =190 kJ mol-1 ) and was found to be an excellent photo-sensitizer for 1 O2 (ΦΔ =0.70).
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | | | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | | | | | - Evelyne Deery
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | - Karl Gruber
- Institute for Molecular BiosciencesUniversity ofGrazAustria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | | | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
10
|
Mendt M, Ehrling S, Senkovska I, Kaskel S, Pöppl A. Synthesis and Characterization of Cu–Ni Mixed Metal Paddlewheels Occurring in the Metal–Organic Framework DUT-8(Ni0.98Cu0.02) for Monitoring Open-Closed-Pore Phase Transitions by X-Band Continuous Wave Electron Paramagnetic Resonance Spectroscopy. Inorg Chem 2019; 58:4561-4573. [PMID: 30869884 DOI: 10.1021/acs.inorgchem.9b00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Matthias Mendt
- Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - Sebastian Ehrling
- Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01062 Dresden, Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01062 Dresden, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| |
Collapse
|
11
|
|
12
|
Garabato BD, Kumar N, Lodowski P, Jaworska M, Kozlowski PM. Electronically excited states of cob(ii)alamin: insights from CASSCF/XMCQDPT2 and TD-DFT calculations. Phys Chem Chem Phys 2016; 18:4513-26. [DOI: 10.1039/c5cp06439b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low-lying excited states of cob(ii)alamin were investigated using time-dependent density functional theory (TD-DFT), and multiconfigurational CASSCF/XMCQDPT2 methodology, to help understand their role in B12-mediated reactions.
Collapse
Affiliation(s)
| | - Neeraj Kumar
- Department of Chemistry
- University of Louisville
- Louisville
- USA
- Pacific Northwest National Laboratory
| | - Piotr Lodowski
- Department of Theoretical Chemistry
- Institute of Chemistry
- University of Silesia
- PL-40 006 Katowice
- Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry
- Institute of Chemistry
- University of Silesia
- PL-40 006 Katowice
- Poland
| | - Pawel M. Kozlowski
- Department of Chemistry
- University of Louisville
- Louisville
- USA
- Visiting Professor at the Department of Food Sciences
| |
Collapse
|
13
|
Tait CE, Neuhaus P, Anderson HL, Timmel CR. Triplet state delocalization in a conjugated porphyrin dimer probed by transient electron paramagnetic resonance techniques. J Am Chem Soc 2015; 137:6670-9. [PMID: 25914154 PMCID: PMC4569061 DOI: 10.1021/jacs.5b03249] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
delocalization of the photoexcited triplet state in a linear
butadiyne-linked porphyrin dimer is investigated by time-resolved
and pulse electron paramagnetic resonance (EPR) with laser excitation.
The transient EPR spectra of the photoexcited triplet states of the
porphyrin monomer and dimer are characterized by significantly different
spin polarizations and an increase of the zero-field splitting parameter D from monomer to dimer. The proton and nitrogen hyperfine
couplings, determined using electron nuclear double resonance (ENDOR)
and X- and Q-band HYSCORE, are reduced to about half in the porphyrin
dimer. These data unequivocally prove the delocalization of the triplet
state over both porphyrin units, in contrast to the conclusions from
previous studies on the triplet states of closely related porphyrin
dimers. The results presented here demonstrate that the most accurate
estimate of the extent of triplet state delocalization can be obtained
from the hyperfine couplings, while interpretation of the zero-field
splitting parameter D can lead to underestimation
of the delocalization length, unless combined with quantum chemical
calculations. Furthermore, orientation-selective ENDOR and HYSCORE
results, in combination with the results of density functional theory
(DFT) calculations, allowed determination of the orientations of the
zero-field splitting tensors with respect to the molecular frame in
both porphyrin monomer and dimer. The results provide evidence for
a reorientation of the zero-field splitting tensor and a change in
the sign of the zero-field splitting D value. The
direction of maximum dipolar coupling shifts from the out-of-plane
direction in the porphyrin monomer to the vector connecting the two
porphyrin units in the dimer. This reorientation, leading to an alignment
of the principal optical transition moment and the axis of maximum
dipolar coupling, is also confirmed by magnetophotoselection experiments.
Collapse
Affiliation(s)
- Claudia E Tait
- †Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Patrik Neuhaus
- ‡Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Harry L Anderson
- ‡Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christiane R Timmel
- †Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
14
|
Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 2014; 517:513-516. [PMID: 25327251 PMCID: PMC4968649 DOI: 10.1038/nature13901] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022]
Abstract
Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria, with substrates including polychlorinated biphenyls or dioxins. Reductive dehalogenases form a distinct subfamily of cobalamin (B12)-dependent enzymes that are usually membrane associated and oxygen sensitive, hindering detailed studies. Here we report the characterization of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR (electron paramagnetic resonance) spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-cobalt bond chemistry catalysed by the other cobalamin-dependent subfamilies, we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-cobalt bond formation. This presents a new model in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
Collapse
|
15
|
Niu J, Li F, Zhao J, Ma P, Zhang D, Bassil B, Kortz U, Wang J. Tetradecacobalt(II)-Containing 36-Niobate [Co14(OH)16(H2O)8Nb36O106]20−and Its Photocatalytic H2Evolution Activity. Chemistry 2014; 20:9852-7. [DOI: 10.1002/chem.201402730] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 11/06/2022]
|
16
|
EPR and XANES studies of anaerobic photolysis of iso-propilpyridinecobaloxime: Elucidation of the reactivity of the Co(II) primary product. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Demissie TB, Repisky M, Liu H, Ruud K, Kozlowski PM. Cob(II)alamin: Relativistic DFT Analysis of the EPR Parameters. J Chem Theory Comput 2014; 10:2125-36. [DOI: 10.1021/ct400769t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taye B. Demissie
- Centre for Theoretical and Computational
Chemistry, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michal Repisky
- Centre for Theoretical and Computational
Chemistry, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Hui Liu
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Kenneth Ruud
- Centre for Theoretical and Computational
Chemistry, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| |
Collapse
|
18
|
Dereven'kov IA, Salnikov DS, Makarov SV, Surducan M, Silaghi-Dumitrescu R, Boss GR. Comparative study of reaction of cobalamin and cobinamide with thiocyanate. J Inorg Biochem 2013; 125:32-9. [PMID: 23685470 DOI: 10.1016/j.jinorgbio.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
Abstract
The interaction of Co(III) and Co(II) cobalamin (Cbl) and cobinamide (Cbi) with thiocyanate was examined with UV-vis and EPR spectra. S/N-linkage isomerism was explored on Co(III) and Co(II) Cbl and Cbi models using density functional theory (DFT; BP86, B3LYP). Performed calculations suggest the prevalence of isothiocyanato isomers over thiocyanato complexes on both Co(III) and Co(II) centers. The formation of Cbl(II) complex with thiocyanate was observed at high ligand concentrations which was proposed to be hexacoordinated. DFT data maintain the possibility of hexacoordinated Co(II) complexes with thiocyanate in which one of extra-ligands is weakly coordinated. It is found that high thiocyanate concentrations could retard cyanide binding to cobalamin but not to cobinamide.
Collapse
Affiliation(s)
- Ilia A Dereven'kov
- State University of Chemistry and Technology, Engels str. 7, 153000 Ivanovo, Russia
| | | | | | | | | | | |
Collapse
|
19
|
Vinck E, Carter E, Murphy DM, Van Doorslaer S. Observation of an Organic Acid Mediated Spin State Transition in a Co(II)–Schiff Base Complex: An EPR, HYSCORE, and DFT Study. Inorg Chem 2012; 51:8014-24. [DOI: 10.1021/ic300058p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evi Vinck
- Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Emma Carter
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| | - Damien M. Murphy
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| | | |
Collapse
|
20
|
Shimakoshi H, Li L, Nishi M, Hisaeda Y. Photosensitizing catalysis of the B12 complex without an additional photosensitizer. Chem Commun (Camb) 2011; 47:10921-3. [DOI: 10.1039/c1cc12482j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Van Doorslaer S, Caretti I, Fallis I, Murphy D. The power of electron paramagnetic resonance to study asymmetric homogeneous catalysts based on transition-metal complexes. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2008.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Liptak MD, Fleischhacker AS, Matthews RG, Telser J, Brunold TC. Spectroscopic and computational characterization of the base-off forms of cob(II)alamin. J Phys Chem B 2009; 113:5245-54. [PMID: 19298066 DOI: 10.1021/jp810136d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The one-electron-reduced form of vitamin B(12), cob(II)alamin (Co(2+)Cbl), is found in several essential human enzymes, including the cobalamin-dependent methionine synthase (MetH). In this work, experimentally validated electronic structure descriptions for two "base-off" Co(2+)Cbl species have been generated using a combined spectroscopic and computational approach, so as to obtain definitive clues as to how these and related enzymes catalyze the thermodynamically challenging reduction of Co(2+)Cbl to cob(I)alamin (Co(1+)Cbl). Specifically, electron paramagnetic resonance (EPR), electronic absorption (Abs), and magnetic circular dichroism (MCD) spectroscopic techniques have been employed as complementary tools to characterize the two distinct forms of base-off Co(2+)Cbl that can be trapped in the H759G variant of MetH, one containing a five-coordinate and the other containing a four-coordinate, square-planar Co(2+) center. Accurate spin Hamiltonian parameters for these low-spin Co(2+) centers have been determined by collecting EPR data using both X- and Q-band microwave frequencies, and Abs and MCD spectroscopic techniques have been employed to probe the corrin-centered pi --> pi* and Co-based d --> d excitations, respectively. By using these spectroscopic data to evaluate electronic structure calculations, we found that density functional theory provides a reasonable electronic structure description for the five-coordinate form of base-off Co(2+)Cbl. However, it was necessary to resort to a multireference ab initio treatment to generate a more realistic description of the electronic structure of the four-coordinate form. Consistent with this finding, our computational data indicate that, in the five-coordinate Co(2+)Cbl species, the unpaired spin density is primarily localized in the Co 3d(z(2))-based molecular orbital, as expected, whereas in the four-coordinate form, extensive Co 3d orbital mixing, configuration interaction, and spin-orbit coupling cause the unpaired electron to delocalize over several Co 3d orbitals. These results provide important clues to the mechanism of enzymatic Co(2+)Cbl --> Co(1+)Cbl reduction.
Collapse
Affiliation(s)
- Matthew D Liptak
- Department of Chemistry, University of Wisconsin-Madison, Madison Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Liptak MD, Van Heuvelen KM, Brunold* TC. Computational Studies of Bioorganometallic Enzymes and Cofactors. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because of their complex geometric and electronic structures, the active sites and cofactors of bioorganometallic enzymes, which are characterized by their metal–carbon bonds, pose a major challenge for computational chemists. However, recent progress in computer technology and theoretical chemistry, along with insights gained from mechanistic, spectroscopic, and X-ray crystallographic studies, have established an excellent foundation for the successful completion of computational studies aimed at elucidating the electronic structures and catalytic cycles of these species. This chapter briefly reviews the most popular computational approaches employed in theoretical studies of bioorganometallic species and summarizes important information obtained from computational studies of (i) the enzymatic formation and cleavage of the Co–C bond of coenzyme B12; (ii) the catalytic cycle of methyl-coenzyme M reductase and its nickel-containing cofactor F430; (iii) the polynuclear active-site clusters of the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-coenzyme A synthase; and (iv) the magnetic properties of the active-site cluster of Fe-only hydrogenases.
Collapse
Affiliation(s)
- Matthew D. Liptak
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | | | - Thomas C. Brunold*
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
24
|
Liptak MD, Datta S, Matthews RG, Brunold TC. Spectroscopic study of the cobalamin-dependent methionine synthase in the activation conformation: effects of the Y1139 residue and S-adenosylmethionine on the B12 cofactor. J Am Chem Soc 2008; 130:16374-81. [PMID: 19006389 PMCID: PMC3101771 DOI: 10.1021/ja8038129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cobalamin-dependent methionine synthase (MetH) from Escherichia coli is a modular enzyme that catalyzes a methyl group transfer from methyltetrahydrofolate to homocysteine via a methylcob(III)alamin (MeCbl) intermediate, generating tetrahydrofolate and methionine (Met). Once every approximately 2000 turnovers, the cobalamin cofactor is converted to the inactive cob(II)alamin (Co(2+)Cbl) form, from which MeCbl has to be recovered for MetH to re-enter the catalytic cycle. A particularly puzzling aspect of this reactivation process is that it requires the reduction of the Co(2+)Cbl species to cob(I)alamin (Co(1+)Cbl) by flavodoxin, a reaction that would appear to be endergonic on the basis of the corresponding reduction potentials. To explore how MetH may overcome this apparent thermodynamic challenge, we have prepared the I690C/G743C variant of a C-terminal fragment of MetH (MetH(CT)) to lock the enzyme into the activation conformation without perturbing any of the residues in the vicinity of the active site. A detailed spectroscopic characterization of this species and the I690C/G743C/Y1139F MetH(CT) triple mutant reveals that the strategy employed by MetH to activate Co(2+)Cbl for Co(2+) --> Co(1+) reduction likely involves (i) an axial ligand switch to generate a five-coordinate species with an axially coordinated water molecule and (ii) a significant lengthening, or perhaps complete rupture, of the Co-OH(2) bond of the cofactor, thereby causing a large stabilization of the Co 3d(z(2))-based "redox-active" molecular orbital. The lengthening of the Co-OH(2) bond is mediated by the Y1139 active-site residue and becomes much more dramatic when the S-adenosylmethionine substrate is present in the enzyme active site. This substrate requirement provides MetH a means to suppress deleterious side reactions involving the transiently formed Co(1+)Cbl "supernucleophile".
Collapse
Affiliation(s)
- Matthew D. Liptak
- Contribution from the Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Supratim Datta
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Rowena G. Matthews
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas C. Brunold
- Contribution from the Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Vinck E, Doorslaer SV, Murphy DM, Fallis IA. The electronic structure of N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino cobalt(II). Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.08.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Park K, Mera PE, Escalante-Semerena JC, Brunold TC. Kinetic and spectroscopic studies of the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri: substrate specificity and insights into the mechanism of Co(II)corrinoid reduction. Biochemistry 2008; 47:9007-15. [PMID: 18672897 DOI: 10.1021/bi800419e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri ( LrPduO) catalyzes the formation of the essential Co-C bond of adenosylcobalamin (coenzyme B 12) by transferring the adenosyl group from cosubstrate ATP to a transient Co (1+)corrinoid species generated in the enzyme active site. While PduO-type enzymes have previously been believed to be capable of adenosylating only Co (1+)cobalamin (Co (1+)Cbl (-)), our kinetic data obtained in this study provide in vitro evidence that LrPduO can in fact also utilize the incomplete corrinoid Co (1+)cobinamide (Co (1+)Cbi) as an alternative substrate. To explore the mechanism by which LrPduO overcomes the thermodynamically challenging reduction of its Co (2+)corrinoid substrates, we have examined how the enzyme active site alters the geometric and electronic properties of Co (2+)Cbl and Co (2+)Cbi (+) by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopic techniques. Our data reveal that upon binding to LrPduO that was preincubated with ATP, both Co (2+)corrinoids undergo a partial ( approximately 40-50%) conversion to distinct paramagnetic Co (2+) species. The spectroscopic signatures of these species are consistent with essentially four-coordinate, square-planar Co (2+) complexes, based on a comparison with the results obtained in our previous studies of related enzymes. Consequently, it appears that the general strategy employed by adenosyltransferases for effecting Co (2+) --> Co (1+) reduction involves the formation of an "activated" Co (2+)corrinoid intermediate that lacks any significant axial bonding interactions, to stabilize the redox-active, Co 3d z (2) -based molecular orbital.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
27
|
Gomes J, Castro BD, Rangel M. EPR Study of the Photolysis of Methyl- and Adenosylcobinamides in the Presence of Phosphine and Pyridine Bases. Evidence for the Need of a Judicious Choice of Irradiation Temperature and Solvent to Assess Ligand Binding. Organometallics 2008. [DOI: 10.1021/om700837d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- João Gomes
- Requimte, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4160-007 Porto, Portugal, and Requimte, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | - Baltazar de Castro
- Requimte, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4160-007 Porto, Portugal, and Requimte, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| | - Maria Rangel
- Requimte, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4160-007 Porto, Portugal, and Requimte, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| |
Collapse
|
28
|
Stich TA, Seravalli J, Venkateshrao S, Spiro TG, Ragsdale SW, Brunold TC. Spectroscopic studies of the corrinoid/iron-sulfur protein from Moorella thermoacetica. J Am Chem Soc 2007; 128:5010-20. [PMID: 16608335 PMCID: PMC2764033 DOI: 10.1021/ja054690o] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyl transfer reactions are important in a number of biochemical pathways. An important class of methyltransferases uses the cobalt cofactor cobalamin, which receives a methyl group from an appropriate methyl donor protein to form an intermediate organometallic methyl-Co bond that subsequently is cleaved by a methyl acceptor. Control of the axial ligation state of cobalamin influences both the mode (i.e., homolytic vs heterolytic) and the rate of Co-C bond cleavage. Here we have studied the axial ligation of a corrinoid iron-sulfur protein (CFeSP) that plays a key role in energy generation and cell carbon synthesis by anaerobic microbes, such as methanogenic archaea and acetogenic bacteria. This protein accepts a methyl group from methyltetrahydrofolate forming Me-Co(3+)CFeSP that then donates a methyl cation (Me) from Me-Co(3+)CFeSP to a nickel site on acetyl-CoA synthase. To unambiguously establish the binding scheme of the corrinoid cofactor in the CFeSP, we have combined resonance Raman, magnetic circular dichroism, and EPR spectroscopic methods with computational chemistry. Our results clearly demonstrate that the Me-Co3+ and Co2+ states of the CFeSP have an axial water ligand like the free MeCbi+ and Co(2+)Cbi+ cofactors; however, the Co-OH2 bond length is lengthened by about 0.2 angstroms for the protein-bound cofactor. Elongation of the Co-OH2 bond of the CFeSP-bound cofactor is proposed to make the cobalt center more "Co1+-like", a requirement to facilitate heterolytic Co-C bond cleavage.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
29
|
Doorslaer S, Murphy DM, Fallis IA. Evaluating π-π stacking effects in macrocyclic transition metal complexes using EPR techniques. RESEARCH ON CHEMICAL INTERMEDIATES 2007. [DOI: 10.1163/156856707782169318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Liptak MD, Fleischhacker AS, Matthews RG, Brunold TC. Probing the role of the histidine 759 ligand in cobalamin-dependent methionine synthase. Biochemistry 2007; 46:8024-35. [PMID: 17567043 PMCID: PMC3113539 DOI: 10.1021/bi700341y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cobalamin-dependent methionine synthase (MetH) of Escherichia coli is a 136 kDa, modular enzyme that undergoes large conformational changes as it uses a cobalamin cofactor as a donor or acceptor in three separate methyl transfer reactions. At different points during the reaction cycle, the coordination to the cobalt of the cobalamin changes; most notably, the imidazole side chain of His759 that coordinates to the cobalamin in the "His-on" state can dissociate to produce a "His-off" state. Here, two distinct species of the cob(II)alamin-bound His759Gly variant have been identified and separated. Limited proteolysis with trypsin was employed to demonstrate that the two species differ in protein conformation. Magnetic circular dichroism and electron paramagnetic resonance spectroscopies were used to show that the two species also differ with respect to the axial coordination to the central cobalt ion of the cobalamin cofactor. One form appears to be in a conformation poised for reductive methylation with adenosylmethionine; this form was readily reduced to cob(I)alamin and subsequently methylated [albeit yielding a unique, five-coordinate methylcob(III)alamin species]. Our spectroscopic data revealed that this form contains a five-coordinate cob(II)alamin species, with a water molecule as an axial ligand to the cobalt. The other form appears to be in a catalytic conformation and could not be reduced to cob(I)alamin under any of the conditions tested, which precluded conversion to the methylcob(III)alamin state. This form was found to possess an effectively four-coordinate cob(II)alamin species that has neither water nor histidine coordinated to the cobalt center. The formation of this four-coordinate cob(II)alamin "dead-end" species in the His759Gly variant illustrates the importance of the His759 residue in governing the equilibria between the different conformations of MetH.
Collapse
Affiliation(s)
- Matthew D. Liptak
- Department of Chemistry, University of Wisconsin-Madison, Madison WI 53706
| | | | - Rowena G. Matthews
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, Department of Biological Chemistry, and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison WI 53706
- To whom correspondence should be addressed: 1101 University Ave., Madison, WI 53706, phone: (608) 265-9056, fax: (608) 262-6143,
| |
Collapse
|
31
|
Van Doorslaer S, Vinck E. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins. Phys Chem Chem Phys 2007; 9:4620-38. [PMID: 17700864 DOI: 10.1039/b701568b] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent technological and methodological advances have strongly increased the potential of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) techniques to characterize the structure and dynamics of metalloproteins. These developments include the introduction of powerful pulsed EPR/ENDOR methodologies and the development of spectrometers operating at very high microwave frequencies and high magnetic fields. This overview focuses on how valuable information about metalloprotein structure-function relations can be obtained using a combination of EPR and ENDOR techniques. After an overview of the historical development and a limited theoretical description of some of the key EPR and ENDOR techniques, their potential will be highlighted using selected examples of applications to iron-, nickel-, cobalt-, and copper-containing proteins. We will end with an outlook of future developments.
Collapse
Affiliation(s)
- Sabine Van Doorslaer
- SIBAC Laboratory, University of Antwerp, Universiteitsplein 1, B-2160, Wilrijk-Antwerp, Belgium.
| | | |
Collapse
|
32
|
Liangfeng G, Garland M. Application of two-dimensional band-target entropy minimization to fluorescence data: implications for the recovery of patterns arising from only bilinear and not trilinear structures. APPLIED SPECTROSCOPY 2007; 61:148-56. [PMID: 17331305 DOI: 10.1366/000370207779947602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pattern recognition in two-dimensional (2D) spectroscopy, without recourse to spectral libraries, etc., has a number of important potential applications. In the present contribution, two blind source separation techniques (spectral reconstruction) are applied to sets of 2D fluorescence data possessing both Rayleigh scattering and Raman scattering. The two methods used are (1) two-dimensional band-target entropy minimization (2D-BTEM), which models data as a bilinear form (in terms of a weighted sum of 2D patterns) and (2) parallel factor analysis (PARAFAC), which models data as a trilinear form. In addition, an a priori estimate of the number of patterns present is not required by 2D-BTEM but is required in PARAFAC. Both 2D-BTEM and PARAFAC are successfully applied to the real three-component data, and good 2D spectral reconstructions of the three amino acids are achieved. Moreover, 2D-BTEM was also able to recover the 2D Raman scattering directly, whereas PARAFAC did not recover the 2D Raman scatter (the Raman scatter does not possess a trilinear form). The present results suggest that 2D-BTEM can be useful in a wide range of spectroscopic applications for the recovery of underlying 2D patterns.
Collapse
Affiliation(s)
- Guo Liangfeng
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117576
| | | |
Collapse
|
33
|
Omae I. Three characteristic reactions of organocobalt compounds in organic synthesis. Appl Organomet Chem 2007. [DOI: 10.1002/aoc.1213] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Hagemeier CH, Kr̈er M, Thauer RK, Warkentin E, Ermler U. Insight into the mechanism of biological methanol activation based on the crystal structure of the methanol-cobalamin methyltransferase complex. Proc Natl Acad Sci U S A 2006; 103:18917-22. [PMID: 17142327 PMCID: PMC1748152 DOI: 10.1073/pnas.0603650103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Indexed: 11/18/2022] Open
Abstract
Some methanogenic and acetogenic microorganisms have the catalytic capability to cleave heterolytically the C O bond of methanol. To obtain insight into the elusive enzymatic mechanism of this challenging chemical reaction we have investigated the methanol-activating MtaBC complex from Methanosarcina barkeri composed of the zinc-containing MtaB and the 5-hydroxybenzimidazolylcobamide-carrying MtaC subunits. Here we report the 2.5-A crystal structure of this complex organized as a (MtaBC)(2) heterotetramer. MtaB folds as a TIM barrel and contains a novel zinc-binding motif. Zinc(II) lies at the bottom of a funnel formed at the C-terminal beta-barrel end and ligates to two cysteinyl sulfurs (Cys-220 and Cys-269) and one carboxylate oxygen (Glu-164). MtaC is structurally related to the cobalamin-binding domain of methionine synthase. Its corrinoid cofactor at the top of the Rossmann domain reaches deeply into the funnel of MtaB, defining a region between zinc(II) and the corrinoid cobalt that must be the binding site for methanol. The active site geometry supports a S(N)2 reaction mechanism, in which the C O bond in methanol is activated by the strong electrophile zinc(II) and cleaved because of an attack of the supernucleophile cob(I)amide. The environment of zinc(II) is characterized by an acidic cluster that increases the charge density on the zinc(II), polarizes methanol, and disfavors deprotonation of the methanol hydroxyl group. Implications of the MtaBC structure for the second step of the reaction, in which the methyl group is transferred to coenzyme M, are discussed.
Collapse
Affiliation(s)
- Christoph H. Hagemeier
- *Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany; and
| | - Markus Kr̈er
- *Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany; and
| | - Rudolf K. Thauer
- *Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany; and
| | - Eberhard Warkentin
- Max Planck Institute for Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany
| | - Ulrich Ermler
- Max Planck Institute for Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, 45701, USA.
| |
Collapse
|
36
|
Ronco AM, Garrido A, Llanos MN, Guerrero-Bosagna C, Tamayo D, Hirsch S. Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation. Lipids 2005; 40:259-64. [PMID: 15957251 DOI: 10.1007/s11745-005-1380-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of LDL contributes to endothelial dysfunction and atherosclerosis. This process could be associated with hyperhomocysteinemia, a condition that can be reduced after folic acid treatment. Because a reduction in LDL oxidation may improve endothelial function, we studied the effect of some vitamins (folic acid, 5-methyltetrahydrofolic acid, and vitamin B-12) on LDL oxidation, either in the presence or absence of homocysteine. For this purpose, two in vitro systems were used: an endothelial cell-catalyzed LDL oxidation system and a cell-free copper-initiated LDL oxidation system. The kinetics of copper-catalyzed LDL oxidation was determined by continuous monitoring of the production of conjugated dienes in the reaction medium. TBARS production, a parameter of lipid peroxidation, was also evaluated. In both in vitro systems, only 5-methyltetrahydrofolic acid was able to decrease TBARS production in a concentration-dependent manner, independently of the presence or absence of homocysteine. In the copper-induced LDL oxidation system, vitamin B-12 and 5-methyltetrahydrofolic acid increased the lag time of conjugated diene production by 25 and 47%, respectively, suggesting that both vitamins in this system had antioxidant properties. Folic acid was unable to show antioxidant properties when included in either in vitro system. The results demonstrate that 5-methyltetrahydrofolic acid and vitamin B-12 are important protective agents against LDL oxidative modifications.
Collapse
Affiliation(s)
- Ana María Ronco
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Casilla 138-11, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
37
|
Pratt DA, van der Donk WA. Theoretical Investigations into the Intermediacy of Chlorinated Vinylcobalamins in the Reductive Dehalogenation of Chlorinated Ethylenes. J Am Chem Soc 2004; 127:384-96. [PMID: 15631489 DOI: 10.1021/ja047915o] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reductive dehalogenation of perchloroethylene and trichloroethylene by vitamin B(12) produces approximately 95% (Z)-dichloroethylene (DCE) and small amounts of (E)-DCE and 1,1-DCE, which are further reduced to ethylene and ethane. Chloroacetylene and acetylene have been detected as intermediates, but not dichloroacetylene. Organocobalamins (RCbls) have been proposed to be intermediates in this process. Density functional theory based approaches were employed to investigate the properties of chlorinated vinylcobalamins and chlorinated vinyl radicals. They reveal that all vinyl radicals studied have reduction potentials more positive (E degrees >or= -0.49) than that of the Co(II)/Co(I) couple of B(12) (E degrees = -0.61 V), indicating that any (chlorinated) vinyl radicals formed in the reductive dehalogenation process should be reduced to the corresponding anions by cob(I)alamin in competition with their combination with Co(II) to yield the corresponding vinylcobalamins. The computed Co-C homolytic bond dissociation enthalpies (BDEs) of the latter complexes range from 33.4 to 45.8 kcal/mol. The substituent effects on the BDEs are affected by the stabilities of the vinyl radicals as well as steric interactions between (Z)-chloro substituents and the corrin ring. The calculated E degrees values of the cobalamin models were within approximately 200 mV of one another since electron attachment is to a corrin ring pi-orbital, whose energy is relatively unaffected by chloride substitution of the vinyl ligand, and all were >500 mV more negative than that of the Co(II)/Co(I) couple of B(12). Reduction of the base-off forms of vinyl- and chlorovinylcobalamin models also involves the corrin pi* orbital, but reduction of the base-off dichlorovinyl- and trichlorovinylcobalamin models occurs with electron attachment to the sigma(Co)(-)(C*) orbital, yielding calculated E degrees values more positive than that of the calculated Co(II)/Co(I) couple of B(12). Thus, cob(I)alamin is expected to reduce these base-off vinyl-Cbls. Heterolytic cleavage of the Co-C bonds is much more favorable than homolysis (>21 kcal/mol) and is significantly more exergonic when coupled to chloride elimination.
Collapse
Affiliation(s)
- Derek A Pratt
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
38
|
|
39
|
Stich TA, Buan NR, Brunold TC. Spectroscopic and Computational Studies of Co2+Corrinoids: Spectral and Electronic Properties of the Biologically Relevant Base-On and Base-Off Forms of Co2+Cobalamin. J Am Chem Soc 2004; 126:9735-49. [PMID: 15291577 DOI: 10.1021/ja0481631] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Co(2+)cobalmain (Co(2+)Cbl) is implicated in the catalytic cycles of all adenosylcobalamin (AdoCbl)-dependent enzymes, as in each case catalysis is initiated through homolytic cleavage of the cofactor's Co-C bond. The rate of Co-C bond homolysis, while slow for the free cofactor, is accelerated by 12 orders of magnitude when AdoCbl is bound to the protein active site, possibly through enzyme-mediated stabilization of the post-homolysis products. As an essential step toward the elucidation of the mechanism of enzymatic Co-C bond activation, we employed electronic absorption (Abs), magnetic circular dichroism (MCD), and resonance Raman spectroscopies to characterize the electronic excited states of Co(2+)Cbl and Co(2+)cobinamide (Co(2+)Cbi(+), a cobalamin derivative that lacks the nucleotide loop and 5,6-dimethylbenzimazole (DMB) base and instead binds a water molecule in the lower axial position). Although relatively modest differences exist between the Abs spectra of these two Co(2+)corrinoid species, MCD data reveal that substitution of the lower axial ligand gives rise to dramatic changes in the low-energy region where Co(2+)-centered ligand field transitions are expected to occur. Our quantitative analysis of these spectral changes within the framework of time-dependent density functional theory (TD-DFT) calculations indicates that corrin-based pi --> pi transitions, which dominate the Co(2+)corrinoid Abs spectra, are essentially insulated from perturbations of the lower ligand environment. Contrastingly, the Co(2+)-centered ligand field transitions, which are observed here for the first time using MCD spectroscopy, are extremely sensitive to alterations in the Co(2+) ligand environment and thus may serve as excellent reporters of enzyme-induced perturbations of the Co(2+) state. The power of this combined spectroscopic/computational methodology for studying Co(2+)corrinoid/enzyme active site interactions is demonstrated by the dramatic changes in the MCD spectrum as Co(2+)Cbi(+) binds to the adenosyltransferase CobA.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|