1
|
Gong Z, Wang L, Xu Y, Xie D, Qi X, Nam W, Guo M. Enhanced Reactivities of Iron(IV)-Oxo Porphyrin Species in Oxidation Reactions Promoted by Intramolecular Hydrogen-Bonding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310333. [PMID: 38477431 PMCID: PMC11109629 DOI: 10.1002/advs.202310333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
High-valent iron-oxo species are one of the common intermediates in both biological and biomimetic catalytic oxidation reactions. Recently, hydrogen-bonding (H-bonding) has been proved to be critical in determining the selectivity and reactivity. However, few examples have been established for mechanistic insights into the H-bonding effect. Moreover, intramolecular H-bonding effect on both C-H activation and oxygen atom transfer (OAT) reactions in synthetic porphyrin model system has not been investigated yet. In this study, a series of heme-containing iron(IV)-oxo porphyrin species with or without intramolecular H-bonding are synthesized and characterized. Kinetic studies revealed that intramolecular H-bonding can significantly enhance the reactivity of iron(IV)-oxo species in OAT, C-H activation, and electron-transfer reactions. This unprecedented unified H-bonding effect is elucidated by theoretical calculations, which showed that intramolecular H-bonding interactions lower the energy of the anti-bonding orbital of iron(IV)-oxo porphyrin species, resulting in the enhanced reactivities in oxidation reactions irrespective of the reaction type. To the best of the knowledge, this is the first extensive investigation on the intramolecular H-bonding effect in heme system. The results show that H-bonding interactions have a unified effect with iron(IV)-oxo porphyrin species in all three investigated reactions.
Collapse
Affiliation(s)
- Zhe Gong
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Yiran Xu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Duanfeng Xie
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760South Korea
| | - Mian Guo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| |
Collapse
|
2
|
Teindl K, Patrick BO, Nichols EM. Linear Free Energy Relationships and Transition State Analysis of CO 2 Reduction Catalysts Bearing Second Coordination Spheres with Tunable Acidity. J Am Chem Soc 2023; 145:17176-17186. [PMID: 37499125 DOI: 10.1021/jacs.3c03919] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In molecular catalysts, protic functional groups in the secondary coordination sphere (SCS) work in conjunction with an exogenous acid to relay protons to the active site of electrochemical CO2 reduction; however, it is not well understood how the acidity of the SCS and exogenous acid together determine the kinetics of catalytic turnover. To evaluate the relative contributions of proton transfer driving forces, we synthesized a series of modular iron tetraphenylporphyrin electrocatalysts bearing SCS amides of tunable pKa (17.6 to 20.0 in dimethyl sulfoxide (DMSO)) and employed phenols of variable acidity (15.3 to 19.1) as exogenous acids. This system allowed us to (1) evaluate contributions from proton transfer driving forces associated with either the SCS or exogenous acid and (2) obtain mechanistic insights into CO2 reduction as a function of pKa. A series of linear free-energy relationships show that kinetics become increasingly sensitive to variations in SCS pKa when more acidic exogenous acids are used (0.82 ≥ Brønsted α ≥ 0.13), as well as to variations in exogenous acid pKa when SCS acidity is increased (0.62 ≥ Brønsted α ≥ 0.32). An Eyring analysis suggests that the rate-determining transition state becomes more ordered with decreasing SCS acidity, which is consistent with the proposal that SCS acidity modulates charge accumulation and solvation at the rate-limiting transition state. Together, these insights enable the optimization of activation barriers as a function of both SCS and exogenous acid pKa and can further guide the rational design of electrocatalytic systems wherein contributions from all participants in a proton relay are considered.
Collapse
Affiliation(s)
- Kaeden Teindl
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Hwang D, Wrigley LM, Lee M, Sobolewski AL, Domcke W, Schlenker CW. Local Hydrogen Bonding Determines Branching Pathways in Intermolecular Heptazine Photochemistry. J Phys Chem B 2023. [PMID: 37471476 DOI: 10.1021/acs.jpcb.3c01397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Heptazine is the molecular core of the widely studied photocatalyst carbon nitride. By analyzing the excited-state intermolecular proton-coupled electron-transfer (PCET) reaction between a heptazine derivative and a hydrogen-atom donor substrate, we are able to spectroscopically identify the resultant heptazinyl reactive radical species on a picosecond time scale. We provide detailed spectroscopic characterization of the tri-anisole heptazine:4-methoxyphenol hydrogen-bonded intermolecular complex (TAHz:MeOPhOH), using femtosecond transient absorption spectroscopy and global analysis, to reveal distinct product absorption signatures at ∼520, 1250, and 1600 nm. We assign these product peaks to the hydrogenated TAHz radical (TAHzH•) based on control experiments utilizing 1,4-dimethoxybenzene (DMB), which initiates electron transfer without concomitant proton transfer, i.e., no excited-state PCET. Additional control experiments with radical quenchers, protonation agents, and UV-vis-NIR spectroelectrochemistry also corroborate our product peak assignments. These spectral assignments allowed us to monitor the influence of the local hydrogen-bonding environment on the resulting evolution of photochemical products from excited-state PCET of heptazines. We observe that the preassociation of heptazine with the substrate in solution is extremely sensitive to the hydrogen-bond-accepting character of the solvent. This sensitivity directly influences which product signatures we detect with time-resolved spectroscopy. The spectral signature of the TAHzH• radical assigned in this work will facilitate future in-depth analysis of heptazine and carbon nitride photochemistry. Our results may also be utilized for designing improved PCET-based photochemical systems that will require precise control over local molecular environments. Examples include applications such as preparative synthesis involving organic photoredox catalysis, on-site solar water purification, as well as photocatalytic water splitting and artificial photosynthesis.
Collapse
Affiliation(s)
- Doyk Hwang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Liam M Wrigley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Micah Lee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States
- Clean Energy Institute, University of Washington, Seattle, Washington 98195-1653, United States
| |
Collapse
|
4
|
Bhunia S, Ghatak A, Rana A, Dey A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e -/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023; 145:3812-3825. [PMID: 36744304 DOI: 10.1021/jacs.2c13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron porphyrins with one or four tertiary amine groups in their second sphere are used to investigate the electrochemical O2 reduction reaction (ORR) in organic (homogeneous) and aqueous (heterogeneous) conditions. Both of these complexes show selective 4e-/4H+ reduction of oxygen to water at rates that are 2-3 orders of magnitude higher than those of iron tetraphenylporphyrin lacking these amines in the second sphere. In organic solvents, these amines get protonated, which leads to the lowering of overpotentials, and the rate of the ORR is enhanced almost 75,000 times relative to rates expected from the established scaling relationship for the ORR by iron porphyrins. In the aqueous medium, the same trend of higher ORR rates at a lower overpotential is observed. In situ resonance Raman data under heterogeneous aqueous conditions show that the presence of one amine group in the second sphere leads to a cleavage of the O-O bond in a FeIII-OOH intermediate as the rate-determining step (rds). The presence of four such amine groups enhances the rate of O-O bond cleavage such that this intermediate is no longer observed during the ORR; rather, the proton-coupled reduction of the FeIII-O2- intermediate with a H/D isotope effect of 10.6 is the rds. These data clearly demonstrate changes in the rds of the electrochemical ORR depending on the nature of second-sphere residues and explain their deviation from linear scaling relationships.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal700032, India
| |
Collapse
|
5
|
Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Kumar A, Zhang G, Liu W, Sun X. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hern M, Foley R, Bacsa J, Wallen CM. Binding polyprotic small molecules with second-sphere hydrogen bonds. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Morgan Hern
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Rebecca Foley
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Christian M. Wallen
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| |
Collapse
|
8
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
9
|
Armillotta F, Bidoggia D, Baronio S, Biasin P, Annese A, Scardamaglia M, Zhu S, Bozzini B, Modesti S, Peressi M, Vesselli E. Single Metal Atom Catalysts and ORR: H-Bonding, Solvation, and the Elusive Hydroperoxyl Intermediate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco Armillotta
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Davide Bidoggia
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Stefania Baronio
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Pietro Biasin
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Antonio Annese
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | | | - Suyun Zhu
- MAX IV Laboratory, Fotongatan 8, 224 84 Lund, Sweden
| | | | - Silvio Modesti
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
- CNR-IOM, Area Science Park, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Maria Peressi
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
| | - Erik Vesselli
- Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy
- CNR-IOM, Area Science Park, S.S. 14 km 163.5, 34149 Basovizza, Trieste, Italy
- Center for Energy, Environment and Transport Giacomo Ciamician, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
10
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
11
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
12
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
13
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
15
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Kumar A, Ibraheem S, Anh Nguyen T, Gupta RK, Maiyalagan T, Yasin G. Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
18
|
Ramuglia AR, Budhija V, Ly KH, Marquardt M, Schwalbe M, Weidinger IM. An Iron Porphyrin Complex with Pendant Pyridine Substituents Facilitates Electrocatalytic CO
2
Reduction via Second Coordination Sphere Effects. ChemCatChem 2021. [DOI: 10.1002/cctc.202100625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anthony R. Ramuglia
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Vishal Budhija
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Khoa H. Ly
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Michael Marquardt
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Matthias Schwalbe
- Institute of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Inez M. Weidinger
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| |
Collapse
|
19
|
Wang J, Yue D, Cui D, Zhang L, Dong X. Insights into Adsorption of Humic Substances on Graphitic Carbon Nitride. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7910-7919. [PMID: 34038104 DOI: 10.1021/acs.est.0c07681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphitic carbon nitride (CN) has been widely used in environmental pollution remediation. However, the adsorption of organic compounds on CNs, which has practical significance for the environmental application of CNs, is poorly understood. For the first time, this study systematically investigated the adsorption behaviors and mechanisms of humic substances (HSs), i.e., humic acid (HA) and fulvic acid (FA), on CNs derived from four typical precursors. Intriguingly, CN derived from urea (CN-U) showed a great capacity for HS adsorption due to its porous structure and large surface area, with maximum adsorption amounts of 73.24 and 51.62 mgC/g for HA and FA, respectively. The formation, influencing factors, and relative contributions of multiple interactions to HS adsorption on CNs were thoroughly elucidated. HS adsorption on CNs was mainly mediated by electrostatic interactions, π-π interactions, and H-bonding. The dominance of electrostatic interactions resulted in HS adsorption being highly dependent on pH and ionic strength. HS components with high aromaticity and high molecular weight were preferentially adsorbed due to π-π interactions. These multiple interactions were largely affected by amino groups and tri-s-triazine units of CNs, as well as the moieties of aromatic rings and oxygen-containing groups of HSs.
Collapse
Affiliation(s)
- Jianchao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongyu Cui
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingyue Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinwei Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Roubelakis MM, Bediako DK, Dogutan DK, Nocera DG. Influence of the proton relay spacer on hydrogen electrocatalysis by cobalt hangman porphyrins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150067x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt hangman porphyrin system with a phenyl spacer between the porphyrin ring and an internal carboxylic acid group as well as its non-hangman analogue were synthesized and utilized for the study of the proton-coupled electron transfer (PCET) kinetics attendant to electrocatalytic hydrogen evolution. Cyclic voltammetry (CV) together with simulations show that a short distance between the proton relay and the redox active cobalt center as well as the increased proton donating strength results in superior catalytic activity. The mechanism of hydrogen generation is at the nexus of proton transfer–electron transfer (PTET) and concerted proton–electron transfer (CPET), as opposed to an ETPT mechanism that is characteristic of hangman systems with longer proton relay networks.
Collapse
Affiliation(s)
- Manolis M. Roubelakis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - D. Kwabena Bediako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Dilek K. Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
22
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Pachisia S, Kishan R, Yadav S, Gupta R. Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorg Chem 2021; 60:2009-2022. [PMID: 33459009 DOI: 10.1021/acs.inorgchem.0c03505] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present synthesis and characterization of two half-sandwich Ru(II) complexes supported with amide-phosphine based ligands. These complexes presented a pyridine-2,6-dicarboxamide based pincer cavity, decorated with hydrogen bonds, that participated in the binding of nitro-substrates closer to the Ru(II) centers, which is further supported with binding and docking studies. These ruthenium complexes functioned as the noteworthy catalysts for the borohydride mediated reduction of assorted nitro-substrates. Mechanistic studies not only confirmed the intermediacy of [Ru-H] in the reduction but also asserted the involvement of several organic intermediates during the course of the catalysis. A similar Ru(II) complex that lacked pyridine-2,6-dicarboxamide based pincer cavity substantiated its unique role both in the substrate binding and the subsequent catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Kishan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Samanta Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
24
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
25
|
Wan H, Jensen AW, Escudero-Escribano M, Rossmeisl J. Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Wan
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Anders W. Jensen
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - María Escudero-Escribano
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Abstract
Two complementary rational synthetic routes have been developed in order to synthesize hangman chlorins, which differ with regard to the order of the installation (pre- and post-formation of the chlorin macrocycle) and position of the xanthene backbone about the chlorin periphery. The versatility of the synthetic method is demonstrated with the preparation of ten new hangman chlorins bearing a xanthene backbone and a pendant carboxylic acid. Cyclic voltammograms of hangman chlorins exhibit a hangman effect derived from intermolecular proton transfer. This hangman effect is manifested in catalytic hydrogen evolution production.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Dilek K Dogutan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Margarit CG, Asimow NG, Gonzalez MI, Nocera DG. Double Hangman Iron Porphyrin and the Effect of Electrostatic Nonbonding Interactions on Carbon Dioxide Reduction. J Phys Chem Lett 2020; 11:1890-1895. [PMID: 32022566 DOI: 10.1021/acs.jpclett.9b03897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hangman porphyrins influence the reaction rates of small molecule activation by positioning a functional group in the secondary coordination sphere of the metal center. Electrocatalysis by hangman porphyrins has examined only one face modification of the macrocycle with a hanging group, thus allowing for circumvention of secondary sphere effects by reaction of the small molecule on the opposite face of the hangman cleft. We now report the synthesis and characterization of a double hangman Fe porphyrin in which both faces of the macrocycle are modified with a hanging group. With this double hangman architecture, we are able to unequivocally examine the role of electrostatic interactions on the carbon dioxide reduction reaction (CO2RR) and show that CO2RR rates are significantly attenuated, consistent with the initial reduction of CO2 to generate the anion, whose binding is diminished within the negatively charged carboxylic groups of the hangman cleft. The results demonstrate the pronounced role that nonbonding electrostatic interactions may play in CO2RR and highlight the need to manage deleterious electrostatic interactions during catalytic turnover.
Collapse
Affiliation(s)
- Charles G Margarit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Naomi G Asimow
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Miguel I Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
28
|
Lee H, Jang HS, Cho DH, Lee J, Seong B, Kang G, Park YS, Nam KT, Lee YS, Byun D. Redox-Active Tyrosine-Mediated Peptide Template for Large-Scale Single-Crystalline Two-Dimensional Silver Nanosheets. ACS NANO 2020; 14:1738-1744. [PMID: 31999426 DOI: 10.1021/acsnano.9b07392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although self-assembly of various peptides has been widely applied, it is challenging to obtain single-crystalline and layer-by-layered nanostructures in a two-dimensional system. Here, we report a method for controlling the morphology and crystal growth at room temperature by a redox-active peptide template that can specifically co-assemble with metal ions. During the crystal growth, a silver ion-coordinated α-helical peptide (+3HN-YYACAYY-COO-) induces long-range atomic ordering at the air/water interface, which leads to multilayered single-crystalline silver nanosheets without an additional annealing process. Furthermore, this peptide template can facilitate efficient electron transfer between the independent metal nanosheets to improve electrochemical properties. We expect that this peptide template-based single-crystal growth method can be extended to synthesize other materials.
Collapse
Affiliation(s)
- Hyungdong Lee
- Department of Mechanical Engineering , Sungkyunkwan University , Jangan-gu, Suwon-si , Gyeonggi-do , Republic of Korea 16419
| | - Hyung-Seok Jang
- ZTI Biosciences, Inc. , Gangnam-gu, Seoul , Republic of Korea 06325
| | - Dae-Hyun Cho
- Department of Mechatronics , Gyeongnam National University of Science and Technology , Jinju-si , Gyeongsangnam-do , Republic of Korea 52725
| | - Jaehyun Lee
- Department of Mechanical Engineering , Sungkyunkwan University , Jangan-gu, Suwon-si , Gyeonggi-do , Republic of Korea 16419
| | - Baekhoon Seong
- Department of Mechanical Engineering , Sungkyunkwan University , Jangan-gu, Suwon-si , Gyeonggi-do , Republic of Korea 16419
| | - Giho Kang
- Department of Mechanical Engineering , Sungkyunkwan University , Jangan-gu, Suwon-si , Gyeonggi-do , Republic of Korea 16419
| | - Yong-Sun Park
- ZTI Biosciences, Inc. , Gangnam-gu, Seoul , Republic of Korea 06325
- Department of Material Science and Engineering , Seoul National University , Gwanak-gu, Seoul , Republic of Korea 08826
| | - Ki Tae Nam
- Department of Material Science and Engineering , Seoul National University , Gwanak-gu, Seoul , Republic of Korea 08826
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering , Seoul National University , Gwanak-gu, Seoul , Republic of Korea 08826
| | - Doyoung Byun
- Department of Mechanical Engineering , Sungkyunkwan University , Jangan-gu, Suwon-si , Gyeonggi-do , Republic of Korea 16419
| |
Collapse
|
29
|
Bhunia S, Rana A, Dey SG, Ivancich A, Dey A. A designed second-sphere hydrogen-bond interaction that critically influences the O-O bond activation for heterolytic cleavage in ferric iron-porphyrin complexes. Chem Sci 2020; 11:2681-2695. [PMID: 34084327 PMCID: PMC8157560 DOI: 10.1039/c9sc04388h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Anabella Ivancich
- CNRS, Aix-Marseille Univ, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479 Marseille France
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
30
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Nehrkorn J, Bonke SA, Aliabadi A, Schwalbe M, Schnegg A. Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorg Chem 2019; 58:14228-14237. [PMID: 31599581 DOI: 10.1021/acs.inorgchem.9b02348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferric hangman porphyrins are bioinspired models for haem hydroperoxidase enzymes featuring an acid/base group in close vicinity to the metal center, which results in improved catalytic activity for reactions requiring O-O bond activation. These functional biomimics are examined herein with a combination of EPR techniques to determine the effects of the hanging group on the electronics of the ferric center. These results are compared to those for ferric octaethylporphyrin chloride [Fe(OEP)Cl], tetramesitylporphyrin chloride [Fe(TMP)Cl], and the pentafluorophenyl derivative [Fe(TPFPP)Cl], which were also examined herein to study the electronic effects of various substituents. Frequency-domain Fourier-transform THz-EPR combined with field domain EPR in a broad frequency range from 9.5 to 629 GHz allowed the determination of zero-field splitting parameters, revealing minor rhombicity E/D and D values in a narrow range of 6.24(8) to 6.85(5) cm-1. Thus, the hangman porphyrins display D values in the expected range for ferric porphyrin chlorides, though D appears to be correlated with the Fe-Cl bond length. Extrapolating this trend to the ferric hangman porphyrin chlorides, for which no crystal structure has been reported, indicates a slightly elongated Fe-Cl bond length compared to the non-hangman equivalent.
Collapse
Affiliation(s)
- Joscha Nehrkorn
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut für Anorganische und Angewandte Chemie , Universität Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Shannon A Bonke
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Azar Aliabadi
- Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Matthias Schwalbe
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Alexander Schnegg
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| |
Collapse
|
32
|
Jackson MN, Kaminsky CJ, Oh S, Melville JF, Surendranath Y. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. J Am Chem Soc 2019; 141:14160-14167. [PMID: 31353897 PMCID: PMC6748662 DOI: 10.1021/jacs.9b04981] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The efficient interconversion
of electrical and chemical energy
requires the intimate coupling of electrons and small-molecule substrates
at catalyst active sites. In molecular electrocatalysis, the molecule
acts as a redox mediator which typically undergoes oxidation or reduction
in a separate step from substrate activation. These mediated pathways
introduce a high-energy intermediate, cap the driving force for substrate
activation at the reduction potential of the molecule, and impede
access to high rates at low overpotentials. Here we show that electronically
coupling a molecular hydrogen evolution catalyst to a graphitic electrode
eliminates stepwise pathways and forces concerted electron transfer
and proton binding. Electrochemical and X-ray absorption spectroscopy
data establish that hydrogen evolution catalysis at the graphite-conjugated
Rh molecule proceeds without first reducing the metal center. These
results have broad implications for the molecular-level design of
energy conversion catalysts.
Collapse
Affiliation(s)
- Megan N Jackson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Corey J Kaminsky
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Seokjoon Oh
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jonathan F Melville
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yogesh Surendranath
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
33
|
Jackson M, Pegis ML, Surendranath Y. Graphite-Conjugated Acids Reveal a Molecular Framework for Proton-Coupled Electron Transfer at Electrode Surfaces. ACS CENTRAL SCIENCE 2019; 5:831-841. [PMID: 31139719 PMCID: PMC6535968 DOI: 10.1021/acscentsci.9b00114] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 05/21/2023]
Abstract
Proton-coupled electron-transfer (PCET) steps play a key role in energy conversion reactions. Molecular PCET reactions are well-described by "square schemes" in which the overall thermochemistry of the reaction is broken into its constituent proton-transfer and electron-transfer components. Although this description has been essential for understanding molecular PCET, no such framework exists for PCET reactions that take place at electrode surfaces. Herein, we develop a molecular square scheme framework for interfacial PCET by investigating the electrochemistry of molecularly well-defined acid/base sites conjugated to graphitic electrodes. Using cyclic voltammetry, we first demonstrate that, irrespective of the redox properties of the corresponding molecular analogue, proton transfer to graphite-conjugated acid/base sites is coupled to electron transfer. We then show that the thermochemistry of surface PCET events can be described by the pK a of the molecular analogue and the potential of zero free charge (zero-field reduction potential) of the electrode. This work provides a general framework for analyzing and predicting the thermochemistry of interfacial PCET reactions.
Collapse
|
34
|
Yamada S, Matsumoto T, Chang HC. Impact of Group 10 Metals on the Solvent-Induced Disproportionation of o-Semiquinonato Complexes. Chemistry 2019; 25:8268-8278. [PMID: 30963643 DOI: 10.1002/chem.201900172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/29/2023]
Abstract
The oxidation of [MII (3,5-DTBCat)(DTBbpy)] (M=Ni ([Ni]), Pd ([Pd]), and Pt ([Pt]); 3,5-DTBCat=3,5-di-tert-butylcatecholato; DTBbpy=4,4'-di-tert-butyl-2,2'-bipyridine) afforded the dimeric {[NiII (3,5-DTBSQ)(DTBbpy)](PF6 )}2 ({[Ni](PF6 )}2 ; 3,5-DTBSQ=3,5-di-tert-butylsemiquinonato) and monomeric semiquinonato (SQ) complexes [MII (3,5-DTBSQ)(DTBbpy)](PF6 ) (M=Pd ([Pd](PF6 )) and Pt ([Pt](PF6 ))). The negative solvatochromic properties of the SQ complexes allowed us to estimate the relative order of their dipole moments: [Pd](PF6 )>[Pt](PF6 )>{[Ni](PF6 )}2 . The complexes [Pd](PF6 ) and [Pt](PF6 ) adopt monomeric structures and are stable in CH2 Cl2 and toluene, whereas they gradually disproportionate at room temperature to [M] and 3,5-di-tert-butylbenzoquinone (3,5-DTBBQ) in polar solvents such as THF, MeOH, EtOH, DMF, or DMSO. The results of spectroscopic studies suggested that the oxidized nickel complex adopts a monomeric structure ([Ni](PF6 )) in CH2 Cl2 , but a dimeric structure ({[Ni](PF6 )}2 ) in the other investigated solvents. In polar solvents, {[Ni](PF6 )}2 may disproportionate to [Ni] and 3,5-DTBBQ at 323 K, thereby demonstrating a significant solvent- and metal-dependence in temperature. The relative activities of {[Ni](PF6 )}2 and [M](PF6 ) toward disproportionation are related to the electrochemically estimated Kdis values in CH2 Cl2 and DMF. The present work demonstrates that solvent polarity and the dipole moments of the SQ complexes promote disproportionation, which can be controlled by a judicious choice of the metal ion, solvent, and temperature.
Collapse
Affiliation(s)
- Shota Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
35
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
37
|
Singha A, Mittra K, Dey A. Effect of hydrogen bonding on innocent and non-innocent axial ligands bound to iron porphyrins. Dalton Trans 2019; 48:7179-7186. [DOI: 10.1039/c8dt03852j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most known heme enzymes utilize hydrogen bonding interactions in their active sites to control electronic and geometric structures and the ensuing reactivity.
Collapse
Affiliation(s)
- Asmita Singha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Kaustuv Mittra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
38
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
39
|
Bellini M, Bevilacqua M, Marchionni A, Miller HA, Filippi J, Grützmacher H, Vizza F. Energy Production and Storage Promoted by Organometallic Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Bellini
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| | - Manuela Bevilacqua
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| | - Andrea Marchionni
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| | - Hamish Andrew Miller
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| | - Jonathan Filippi
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences; ETH Hönggerberg; Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Francesco Vizza
- Institute of Organometallic Compounds ICCOM; National Research Council CNR; Via Madonna del Piano 10 500019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
40
|
Russell MJ. Green Rust: The Simple Organizing 'Seed' of All Life? Life (Basel) 2018; 8:E35. [PMID: 30150570 PMCID: PMC6161180 DOI: 10.3390/life8030035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023] Open
Abstract
Korenaga and coworkers presented evidence to suggest that the Earth's mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 °C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 °C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them-the elements needed to effect the essential inanimate-to-animate transitions that launched life. Specifically, in the submarine alkaline vent model for the emergence of life, it is first suggested that the redox-flexible green rust micro- and nano-crysts spontaneously precipitated to form barriers to the complete mixing of carbonic ocean and alkaline hydrothermal fluids. These barriers created and maintained steep ionic disequilibria. Second, the hydrous interlayers of green rust acted as engines that were powered by those ionic disequilibria and drove essential endergonic reactions. There, aided by sulfides and trace elements acting as catalytic promoters and electron transfer agents, nitrate could be reduced to ammonia and carbon dioxide to formate, while methane may have been oxidized to methyl and formyl groups. Acetate and higher carboxylic acids could then have been produced from these C1 molecules and aminated to amino acids, and thence oligomerized to offer peptide nests to phosphate and iron sulfides, and secreted to form primitive amyloid-bounded structures, leading conceivably to protocells.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA.
| |
Collapse
|
41
|
Neumann B, Götz R, Wrzolek P, Scheller FW, Weidinger IM, Schwalbe M, Wollenberger U. Enhancement of the Electrocatalytic Activity of Thienyl‐Substituted Iron Porphyrin Electropolymers by a Hangman Effect. ChemCatChem 2018. [DOI: 10.1002/cctc.201800934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bettina Neumann
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Robert Götz
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Pierre Wrzolek
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| | - Inez M. Weidinger
- Department of Chemistry and Food ChemistryTechnische Universität Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Matthias Schwalbe
- Institute for ChemistryHumboldt-Universität zu Berlin Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Ulla Wollenberger
- Institute for Biochemistry and BiologyUniversity Potsdam Karl-Liebknecht-Str. 24–25 Potsdam 14476 Germany
| |
Collapse
|
42
|
Nichols EM, Derrick JS, Nistanaki SK, Smith PT, Chang CJ. Positional effects of second-sphere amide pendants on electrochemical CO 2 reduction catalyzed by iron porphyrins. Chem Sci 2018; 9:2952-2960. [PMID: 29732079 PMCID: PMC5915798 DOI: 10.1039/c7sc04682k] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin (Fe-TPP) derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the ortho position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous para-functionalized amide isomers or unfunctionalized Fe-TPP. Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the ortho-functionalized porphyrins can utilize the latter second-sphere property to promote CO2 reduction. Indeed, the distally-functionalized ortho-amide isomer shows a significantly larger through-space interaction than its proximal ortho-amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Eva M Nichols
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Jeffrey S Derrick
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Sepand K Nistanaki
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
| | - Peter T Smith
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Christopher J Chang
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
- Department of Molecular and Cell Biology , University of California , Berkeley , CA 94720 , USA
- Howard Hughes Medical Institute , University of California , Berkeley , CA 94720 , USA
| |
Collapse
|
43
|
Kielb P, Horch M, Wrzolek P, Goetz R, Ly KH, Kozuch J, Schwalbe M, Weidinger IM. Hydrogen evolution by cobalt hangman porphyrins under operating conditions studied by vibrational spectro-electrochemistry. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02253k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of cobalt hangman complexes adsorbed on electrodes during HER was analysed via surface enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Patrycja Kielb
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
- Division of Chemistry and Chemical Engineering
| | - Marius Horch
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Pierre Wrzolek
- Department of Chemistry
- Humboldt Universität zu Berlin
- 12489 Berlin
- Germany
| | - Robert Goetz
- Department of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Khoa H. Ly
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Jacek Kozuch
- Department of Chemistry
- Stanford University
- Stanford
- USA
| | - Matthias Schwalbe
- Department of Chemistry
- Humboldt Universität zu Berlin
- 12489 Berlin
- Germany
| | - Inez M. Weidinger
- Department of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
44
|
|
45
|
Götz R, Ly HK, Wrzolek P, Schwalbe M, Weidinger IM. Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods. Dalton Trans 2017; 46:13220-13228. [PMID: 28682383 DOI: 10.1039/c7dt01174a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drycast methods have been used frequently in recent decades to adsorb a range of synthetic catalysts on electrodes. The uncoordinated multilayers that are formed via this immobilization method can however have a strong impact on the electrocatalytic reaction pathway as slow electron transfer and intermolecular interactions can alter the chemistry of the catalysts on the surface. To gain insight into the structure of Fe porphyrin Hangman catalysts during electrocatalytic oxygen reduction a combination of electrochemistry and surface enhanced resonance Raman spectroscopy (SERRS) was applied. The Hangman complexes were attached to the electrodes via different methods and the influence of the immobilisation technique on oxygen chemistry was studied. In multilayer systems, new intermediates could be identified via potential dependent SERRS that were not present in solution or in monolayer systems under catalytic conditions. A comparison of Raman spectra obtained either via Soret or Q-band excitation showed that the porphyrin symmetry is strongly distorted under reducing conditions, which was interpreted by the transient formation of dimer complexes during catalysis.
Collapse
Affiliation(s)
- R Götz
- Fachbereich Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden, Germany.
| | | | | | | | | |
Collapse
|
46
|
Wrzolek P, Wahl S, Schwalbe M. Electrocatalytic investigation on the water oxidation ability of a hangman complex based on the [Ru(tpy)(bpy)(OH 2 )] 2+ motif. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Han Z, Horak KT, Lee HB, Agapie T. Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. J Am Chem Soc 2017; 139:9108-9111. [PMID: 28587453 DOI: 10.1021/jacs.7b03044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toward the development of structural and functional models of the oxygen evolving complex (OEC) of photosystem II, we report the synthesis of site-differentiated tetranuclear manganese complexes featuring three six-coordinate and one five-coordinate Mn centers. To incorporate biologically relevant second coordination sphere interactions, substituents capable of hydrogen bonding are included as pyrazolates with arylamine substituents. Complexes with terminal anionic ligands, OH- or Cl-, bound to the lower coordinate metal center are supported through the hydrogen-bonding network in a fashion reminiscent of the enzymatic active site. The hydroxide complex was found to be a competent electrocatalyst for O-O bond formation, a key transformation pertinent to the OEC. In an acetonitrile-water mixture, at neutral pH, electrochemical water oxidation to hydrogen peroxide was observed, albeit with low (15%) Faradaic yield, likely due to competing reactions with organics. In agreement, 9,10-dihydroanthracene is electrochemically oxidized in the presence of this cluster both via H-atom abstraction and oxygenation with ∼50% combined Faradaic yield.
Collapse
Affiliation(s)
- Zhiji Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Kyle T Horak
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Heui Beom Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
48
|
|
49
|
Li M, Zhang Q, Xu L, Zhu W, Mack J, May AK, Nyokong T, Kobayashi N, Liang X. Flexible Metal-Porphyrin Dimers (M=Mn III Cl, Co II , Ni II , Cu II ): Synthesis, Spectroscopy, Electrochemistry, Spectroelectrochemistry, and Theoretical Calculations. Chempluschem 2017; 82:598-606. [PMID: 31961595 DOI: 10.1002/cplu.201600475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/31/2016] [Indexed: 11/07/2022]
Abstract
Four metalloporphyrin dimers linked by bridging amide-bonded xanthene moieties and that contain either MnIII , CoII , NiII , or CuII metal centers were synthesized. Various spectroscopic, electrochemical, and spectroelectrochemical methods were used to study trends in their properties. Their electronic structure and optical properties were analyzed through a comparison of the electronic absorption and magnetic circular dichroism (MCD) spectral data with the results of time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Minzhi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - John Mack
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Aviwe K May
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
50
|
Creutz SE, Peters JC. Exploring secondary-sphere interactions in Fe-N x H y complexes relevant to N 2 fixation. Chem Sci 2017; 8:2321-2328. [PMID: 28451336 PMCID: PMC5363375 DOI: 10.1039/c6sc04805f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Hydrogen bonding and other types of secondary-sphere interactions are ubiquitous in metalloenzyme active sites and are critical to the transformations they mediate. Exploiting secondary sphere interactions in synthetic catalysts to study the role(s) they might play in biological systems, and to develop increasingly efficient catalysts, is an important challenge. Whereas model studies in this broad context are increasingly abundant, as yet there has been relatively little progress in the area of synthetic catalysts for nitrogen fixation that incorporate secondary sphere design elements. Herein we present our first study of Fe-N x H y complexes supported by new tris(phosphine)silyl ligands, abbreviated as [SiPNMe3] and [SiPiPr2PNMe], that incorporate remote tertiary amine hydrogen-bond acceptors within a tertiary phosphine/amine 6-membered ring. These remote amine sites facilitate hydrogen-bonding interactions via a boat conformation of the 6-membered ring when certain nitrogenous substrates (e.g., NH3 and N2H4) are coordinated to the apical site of a trigonal bipyramidal iron complex, and adopt a chair conformation when no H-bonding is possible (e.g., N2). Countercation binding at the cyclic amine is also observed for anionic {Fe-N2}- complexes. Reactivity studies in the presence of proton/electron sources show that the incorporated amine functionality leads to rapid generation of catalytically inactive Fe-H species, thereby substantiating a hydride termination pathway that we have previously proposed deactivates catalysts of the type [EPR3]FeN2 (E = Si, C).
Collapse
Affiliation(s)
- Sidney E Creutz
- California Institute of Technology , Division , of Chemistry and Chemical Engineering , Pasadena , California 91125 , USA .
| | - Jonas C Peters
- California Institute of Technology , Division , of Chemistry and Chemical Engineering , Pasadena , California 91125 , USA .
| |
Collapse
|