1
|
Song J, Huang R, Cai J, Wu Z, Hu L, Sun W, Huang X, He R, Tang W, Ye W, Wang Y. Targeted isolation of antiviral cinnamoylphloroglucinol-terpene adducts from Cleistocalyx operculatus by building blocks-based molecular networking approach. Acta Pharm Sin B 2024; 14:4443-4460. [PMID: 39525571 PMCID: PMC11544174 DOI: 10.1016/j.apsb.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 11/16/2024] Open
Abstract
The building blocks-based molecular network (BBMN) strategy was applied to the phytochemical investigation of Cleistocalyx operculatus, leading to the targeted isolation of eighteen novel cinnamoylphloroglucinol-terpene adducts (CPTAs) with diverse skeleton types (cleistoperones A-R, 1-18). Their structures including absolute configurations were determined by extensive spectroscopic methods, quantum chemical calculations, and single-crystal X-ray crystallographic experiments. Cleistoperone A (1), consisting of a cinnamoylphloroglucinol motif and two linear monoterpene moieties, represents an unprecedented macrocyclic CPTA, whose densely functionalized tricyclo[15.3.1.03,8]heneicosane bridge ring skeleton contains an enolizable β,β'-triketone system and two different kinds of stereogenic elements (including five point and three planar chiralities). Cleistoperones B and C (2 and 3) are two new skeletal CPTAs with an unusual coupling pattern between the (nor)monoterpene moiety and the cinnamoyl chain of the cinnamoylphloroglucinol unit. Cleistoperone D (4) possesses an unprecedented cage-like 6/6/6/4/6-fused heteropentacyclic scaffold. The plausible biosynthetic pathways for 1-18 were also proposed. Notably, compounds 1, 4, 7, 8, and 18 exhibited significant antiviral activity against respiratory syncytial virus (RSV). The most potent one, cleistoperone A (1) with IC50 value of 1.71 ± 0.61 μmol/L, could effectively inhibit virus replication via affecting the Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Jianguo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ruili Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jialiao Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Zhenlong Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lijun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wanyang Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiaojun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rongrong He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Afonin AV, Rusinska-Roszak D. Evidence for the O-H⋅⋅⋅O=C Resonance-Assisted Hydrogen Bond in Tropolones and Quantification of its σ- and π-Components Using Molecular Tailoring Approach. Chemphyschem 2024:e202400698. [PMID: 39147713 DOI: 10.1002/cphc.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
For a series of tropolones, the nature of the intramolecular O-H⋅⋅⋅O=C hydrogen bond closing the five-membered quasi-cycle was studied. Enhancement of conjugation in the hydrogen-bonded rotamer was revealed. Quantification of hydrogen bond energy in tropolones via the molecular tailoring approach yields values in the range from 15 to 20 kcal/mol suggesting that the intramolecular interaction in tropolones has nature of the resonance-assisted hydrogen bond. The total resonance-assisted hydrogen bond energy in the tropolones was divided into σ- and π-components. The magnitudes of total energy of resonance-assisted hydrogen bond in the substituted tropolones can be controlled by the electronic properties of the substituents at the tropone ring. In 3-, 4-, and 5-substituted tropolones, the resonance-assisted hydrogen bond energy is raised due to electron-donating substituents and lowered due to electron-withdrawing ones. The opposite trend is observed in 7-substituted tropolones. The size of the π-shares plays a crucial role in establishing the total energy of resonance-assisted hydrogen bond. The reason for the occurrence of a resonance-assisted hydrogen bond in the tropolones is the molecular backbone aromaticity, since, in accordance with the Hückel rule, 10 π-electrons are delocalized.
Collapse
Affiliation(s)
- Andrei V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russian Federation
| | - Danuta Rusinska-Roszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| |
Collapse
|
3
|
Yang C, Dong H, Li X, Zhou N, Liu Y, Jin J, Wang Y. The σ+π dual aromaticity of typical bi-tetrazole ring molecule TKX-50. Chemphyschem 2024; 25:e202400005. [PMID: 38259129 DOI: 10.1002/cphc.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Two complexes of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) were employed to evaluate the aromaticity of their tetrazole rings via deep analysis such as the electronic structure, the ZZ component of the natural chemical shielding tensor (NICSZZ) and component orbitals, localized orbital locator purely contributed by σ-orbitals (LOL-σ) and localized orbital locator purely contributed by π-orbitals (LOL-π), the anisotropy of the induced current density (AICD) and the ZZ component of iso-chemical shielding surface (ICSSZZ) of these tetrazole rings thereof. The conclusion shows: that all tetrazole rings and bi-tetrazole rings in complexes have strong σ and a comparable strength π double aromaticity; all these magnetic shields almost symmetrically increase from the central axis to the tetrazole ring atoms; tetrazole rings in complex II show a little stronger dual aromaticity than that in complex I mainly due to the different orientation of the fragment 2 encompassing two hydroxylamine groups resulting in different effects on the contributions of σ orbitals and π orbitals to total aromaticity of tetrazole rings thereof; the difference in aromaticity is fundamentally caused by the atoms O with stronger electron-withdrawing than atom N in fragment 2 interact with bi-tetrazole ring through O in complex I but through N in complex II.
Collapse
Affiliation(s)
- Chunhai Yang
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Xue Li
- School of Petroleum Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning Zhou
- School of Petroleum Engineering, Changzhou University, Changzhou, 213164, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxun Jin
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Yinjun Wang
- BGRIMM Explosive & Blasting Technology Co., Ltd., Beijing, 100160, China
| |
Collapse
|
4
|
Wagaye AM, Yohannes T, Workneh GA. Structural and Electronic Insights into 1-Ethyl-3-Methylimidazolium Bis(fluorosulfonyl)imide Ion Pair Conformers: Ab Initio DFT Study. ACS OMEGA 2024; 9:14406-14418. [PMID: 38559957 PMCID: PMC10975623 DOI: 10.1021/acsomega.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
An understanding of the nature of molecular interactions among the ion pairs of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide [EMI[FSI]] can offer a starting point and significant insight into the more dynamic and multiple interactions within the bulk liquid state. In this context, close inspection of ion pair conformers can offer insight into the effects in bulk [EMI][FSI] liquid. The current work, therefore, gives a detailed analysis of the [EMI][FSI] ion pair conformers through analysis of the interaction energies, stabilization energies, and natural orbital of the ion pair conformers. The structures of the cations, anions, and cation-anion ion pairs of the conformers are optimized systematically by the ωB97X-D method with the DGDZVP basis sets, considering both the empirical dispersion corrections and the presence of a polar solvent, and the most stable geometries are obtained. The [FSI]- anions, unlike [TFSI]- anions, exist at the top position with respect to imidazolium rings. The presence of out-of-plane interactions between the [EMI]+ and [FSI]- ions is in good agreement with the stronger interactions of the [FSI]- anions with alkyl group hydrogens. The presence of out-of-plane conformers could also be related to the interaction of the anion with the π clouds of the [EMI]+ ring. In the [EMI]+ cation, the aromatic ring is π-acidic due to the presence of a positive charge in the N1-C1-N2 ring, which leads to the presence of [FSI]- anion donor [EMI]+ π-acceptor type interactions. The [EMI]+ cation and [FSI]- anions tend to form multiple σ* and π* interactions but reduce the strength of the individual contributions from a potential (linear) maximum. For the ion pair [EMI][FSI], the absolute value of the interaction energies is lower than the normal hydrogen bond energy (50 kJ/mol), which indicates that there is a very weak electrostatic interaction between the [EMI]+ cations and [FSI]- anions. The weaker attraction between the [EMI]+ and [FSI]- ions is suggested to contribute to the larger diffusion coefficients of the ions.
Collapse
Affiliation(s)
- Abraham Molla Wagaye
- Department
of Industrial Chemistry, College of Applied Science, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department
of Chemistry, College of Natural and Computational Science, Hawasa University, P.O. Box 16, Hawasa, Ethiopia
| | - Teketel Yohannes
- Department
of Chemistry, College of Natural and Computational Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Getachew Adam Workneh
- Department
of Industrial Chemistry, College of Applied Science, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Jelsch C, Bibila Mayaya Bisseyou Y. Deciphering the driving forces in crystal packing by analysis of electrostatic energies and contact enrichment ratios. IUCRJ 2023; 10:557-567. [PMID: 37449972 PMCID: PMC10478513 DOI: 10.1107/s2052252523005675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Hirshfeld surface analysis is a widely used tool for identifying the types of intermolecular contacts that contribute most significantly to crystal packing stabilization. One useful metric for analyzing these contacts is the contact enrichment descriptor, which indicates the types of contacts that are over- or under-represented. In this statistical study, enrichment ratios were combined with electrostatic energy (Eelec) data for a variety of compound families. To compute the electrostatic interaction energy between atoms, charge density models from the ELMAM2 database of multipolar atoms were used. As expected, strong hydrogen bonds such as O/N-H...N and O/N-H...O typically display large enrichment values and have the most negative (i.e. favorable) electrostatic energies. Conversely, contacts that are repulsive from an electrostatic perspective are usually the most under-represented. Analyzing the enrichment ratio and electrostatic energy indicators was shown to help identify which favorable contacts are the most competitive with each other. For weaker interactions, such as hydrophobic contacts, the behavior is less clear cut and can depend on other factors such as the chemical content of the molecule. The anticorrelation between contact enrichment and Eelec is generally lost for weaker contacts. However, we observed that C...C contacts are often enriched in crystal structures containing heterocycles, despite the low electrostatic attraction. For molecules with only weak hydrogen bond donors/acceptors and hydrophobic groups, the correlation between contact enrichment and Eelec is still evident for the strongest of these interactions. However, there are some exceptions where the most favorable contacts from an electrostatic perspective are not the most over-represented. This can occur in cases where the shape of the molecule is complex or elongated, favoring dispersion forces and shape complementarity in the packing.
Collapse
Affiliation(s)
- Christian Jelsch
- CRM2, UMR CNRS 7036, Université de Lorraine, Nancy 54500, France
| | - Yvon Bibila Mayaya Bisseyou
- Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Cote d’Ivoire
| |
Collapse
|
6
|
Perrin CL. Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers. Molecules 2023; 28:molecules28114462. [PMID: 37298938 DOI: 10.3390/molecules28114462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Short, strong, symmetric, low-barrier hydrogen bonds (H-bonds) are thought to be of special significance. We have been searching for symmetric H-bonds by using the NMR technique of isotopic perturbation. Various dicarboxylate monoanions, aldehyde enols, diamines, enamines, acid-base complexes, and two sterically encumbered enols have been investigated. Among all of these, we have found only one example of a symmetric H-bond, in nitromalonamide enol, and all of the others are equilibrating mixtures of tautomers. The nearly universal lack of symmetry is attributed to the presence of these H-bonded species as a mixture of solvatomers, meaning isomers (or stereoisomers or tautomers) that differ in their solvation environment. The disorder of solvation renders the two donor atoms instantaneously inequivalent, whereupon the hydrogen attaches to the less well solvated donor. We therefore conclude that there is no special significance to short, strong, symmetric, low-barrier H-bonds. Moreover, they have no heightened stability or else they would have been more prevalent.
Collapse
Affiliation(s)
- Charles L Perrin
- Department of Chemistry & Biochemistry University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
7
|
Rafat R, Nakhaei E, Zargari F, Gorgichi F, Nowroozi A. Quantum chemical study of tautomeric equilibriums, intramolecular hydrogen bonds, and π-electron delocalization in the first singlet and triplet excited states of 2-selenoformyl-3-thioxo-propionaldehyde. J Sulphur Chem 2023. [DOI: 10.1080/17415993.2023.2171292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Ramin Rafat
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Ebrahim Nakhaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Farshid Zargari
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Faezeh Gorgichi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| |
Collapse
|
8
|
Revealing the Reasons for Degeneration of Resonance-Assisted Hydrogen Bond on the Aromatic Platform: Calculations of Ortho-, Meta-, Para-Disubstituted Benzenes, and ( Z)-( E)-Olefins. Molecules 2023; 28:molecules28020536. [PMID: 36677595 PMCID: PMC9860835 DOI: 10.3390/molecules28020536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The energies of the O-H∙∙∙O=C intramolecular hydrogen bonds were compared quantitatively for the series of ortho-disubstituted benzenes and Z-isomers of olefins via a molecular tailoring approach. It was established that the hydrogen bond energy in the former series is significantly less than that in the latter one. The reason for lowering the hydrogen bond energy in the ortho-disubstituted benzenes compared to the Z-isomers of olefins is the decrease in the π-contribution to the total energy of the complex interaction, in which the hydrogen bond per se is enhanced by the resonance effect. By the example of the para- and meta-disubstituted benzenes, as well as E-isomers of olefins, it was explicitly shown that the aromatic ring is a much poorer conductor of the resonance effect compared to the double bond. The hydrogen bond in the ortho-disubstituted benzenes has a lower energy than a typical resonance-assisted hydrogen bond because the aromatic moiety cannot properly assist the hydrogen bond with a resonance effect. Thus, a hydrogen bond on an aromatic platform should fall into a special category, namely an aromaticity-assisted hydrogen bond, which is closer by nature to a simple hydrogen bond rather than to a resonance-assisted one.
Collapse
|
9
|
Afonin AV, Rusinska‐Roszak D. Molecular tailoring approach as tool for revealing resonance‐assisted hydrogen bond: Case study of
Z
‐pyrrolylenones with the NH⋯OС intramolecular hydrogen bond. J Comput Chem 2022; 43:1596-1607. [DOI: 10.1002/jcc.26960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Andrei V. Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Division of Russian Academy of Sciences Irkutsk Russia
| | - Danuta Rusinska‐Roszak
- Institute of Chemical Technology and Engineering Poznan University of Technology Poznan Poland
| |
Collapse
|
10
|
Liu N, Li Q, Scheiner S, Xie X. Resonance-assisted intramolecular triel bonds. Phys Chem Chem Phys 2022; 24:15015-15024. [PMID: 35695162 DOI: 10.1039/d2cp01244h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The possibility that the intramolecular Tr⋯S triel bond is strengthened by resonance is examined by quantum chemical calculations within the planar five-membered ring of TrH2-CRCR-CRS (Tr = Al, Ga, In; R = NO2, CH3). This internal bond is found to be rather short (2.4-2.7 Å) with a large bond energy between 12 and 21 kcal mol-1. The pattern of bond length alternation and atomic charges within the ring is consistent with resonance involving the conjugated double bonds. This resonance enhances the triel bond strength by some 25%. The electron-withdrawing NO2 group weakens the bond, but it is strengthened by the electron-donating CH3 substituent. NICS analysis suggests the presence of a certain degree of aromaticity within the ring.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| | - Xiaoying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
11
|
Wojtkowiak K, Jezierska A, Panek JJ. Revealing Intra- and Intermolecular Interactions Determining Physico-Chemical Features of Selected Quinolone Carboxylic Acid Derivatives. Molecules 2022; 27:2299. [PMID: 35408698 PMCID: PMC9000753 DOI: 10.3390/molecules27072299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical formulation to develop gas-phase and solvent reaction field (PCM) models describing geometric, energetic and electronic structure parameters for monomers and dimers. The electronic structure was investigated based on the atoms in molecules (AIM) and natural bond orbital (NBO) theories. Special attention was devoted to the intramolecular hydrogen bonds (HB) present in the investigated compounds. The characterization of energy components was performed using symmetry-adapted perturbation theory (SAPT). Finally, the time-evolution methods of Car-Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) were employed to describe the hydrogen bond dynamics as well as the spectroscopic signatures. The vibrational features of the O-H stretching were studied using Fourier transformation of the autocorrelation function of atomic velocity. The inclusion of quantum nuclear effects provided an accurate depiction of the bridged proton delocalization. The CPMD and PIMD simulations were carried out in the gas and crystalline phases. It was found that the polar environment enhances the strength of the intramolecular hydrogen bonds. The SAPT analysis revealed that the dispersive forces are decisive factors in the intermolecular interactions. In the electronic ground state, the proton-transfer phenomena are not favourable. The CPMD results showed generally that the bridged proton is localized at the donor side, with possible proton-sharing events in the solid-phase simulation of stronger hydrogen bridges. However, the PIMD enabled the quantitative estimation of the quantum effects inclusion-the proton position was moved towards the bridge midpoint, but no qualitative changes were detected. It was found that the interatomic distance between the donor and acceptor atoms was shortened and that the bridged proton was strongly delocalized.
Collapse
Affiliation(s)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| |
Collapse
|
12
|
Li Y, Zhou Y, Zhang J, Liu R, Zhao X, Wang Y. A DFT Study on Gold-Catalyzed Domino Cyclization for Post-Ugi Synthesis of Spiroindolines: Insights on the Origin of Remarkable Diastereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01453f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a comprehensive DFT study on gold-catalyzed domino cyclization to spiroindolines. The diastereoselectivity was analyzed based on the established coordination spheres. These computational results not only explain the origin...
Collapse
|
13
|
Karimi P, Sanchooli M. Tuning the resonance-assisted hydrogen bond (RAHB) of malonaldehyde using π-conjugated substituents and presentation of its energy decomposition. J Mol Graph Model 2022; 112:108142. [DOI: 10.1016/j.jmgm.2022.108142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
14
|
Sayyar Z, Vakili M, Kanaani A, Vakili SS, Eshghi H. Molecular structure, hydrogen bond strength, and infrared Fourier transform vibrational assignment of 2,6-dimethylheptane-3,5-dione. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Saunders LK, Pallipurath AR, Gutmann MJ, Nowell H, Zhang N, Allan DR. A quantum crystallographic approach to short hydrogen bonds. CrystEngComm 2021; 23:6180-6190. [PMID: 34588923 PMCID: PMC8436739 DOI: 10.1039/d1ce00355k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
In this work we use high-resolution synchrotron X-ray diffraction for electron density mapping, in conjunction with ab initio modelling, to study short O-H⋯O and O+-H⋯O- hydrogen bonds whose behaviour is known to be tuneable by temperature. The short hydrogen bonds have donor-acceptor distances in the region of 2.45 Å and are formed in substituted urea and organic acid molecular complexes of N,N'-dimethylurea oxalic acid 2 : 1 (1), N,N-dimethylurea 2,4-dinitrobenzoate 1 : 1 (2) and N,N-dimethylurea 3,5-dinitrobenzoic acid 2 : 2 (3). From the combined analyses, these complexes are found to fall within the salt-cocrystal continuum and exhibit short hydrogen bonds that can be characterised as both strong and electrostatic (1, 3) or very strong with a significant covalent contribution (2). An additional charge assisted component is found to be important in distinguishing the relatively uncommon O-H⋯O pseudo-covalent interaction from a typical strong hydrogen bond. The electron density is found to be sensitive to the extent of static proton transfer, presenting it as a useful parameter in the study of the salt-cocrystal continuum. From complementary calculated hydrogen atom potentials, we attribute changes in proton position to the molecular environment. Calculated potentials also show zero barrier to proton migration, forming an 'energy slide' between the donor and acceptor atoms. The better fundamental understanding of the short hydrogen bond in the 'zone of fluctuation' presented in a salt-cocrystal continuum, enabled by studies like this, provide greater insight into their related properties and can have implications in the regulation of pharmaceutical materials.
Collapse
Affiliation(s)
- Lucy K Saunders
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Anuradha R Pallipurath
- School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
- Research Complex at Harwell Didcot Oxfordshire OX11 0DE UK
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Advanced Crystallization, University of Strathclyde G1 1RD UK
| | - Matthias J Gutmann
- ISIS Pulsed Muon and Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford Didcot OX11 0QX UK
| | - Harriott Nowell
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Ningjin Zhang
- Chemistry, Faculty of Natural and Environmental Sciences, Highfield Campus, University of Southampton Southampton SO17 1HE UK
| | - David R Allan
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| |
Collapse
|
16
|
Guevara-Vela JM, Gallegos M, Valentín-Rodríguez MA, Costales A, Rocha-Rinza T, Pendás ÁM. On the Relationship between Hydrogen Bond Strength and the Formation Energy in Resonance-Assisted Hydrogen Bonds. Molecules 2021; 26:4196. [PMID: 34299473 PMCID: PMC8303970 DOI: 10.3390/molecules26144196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Resonance-assisted hydrogen bonds (RAHB) are intramolecular contacts that are characterised by being particularly energetic. This fact is often attributed to the delocalisation of π electrons in the system. In the present article, we assess this thesis via the examination of the effect of electron-withdrawing and electron-donating groups, namely -F, -Cl, -Br, -CF3, -N(CH3)2, -OCH3, -NHCOCH3 on the strength of the RAHB in malondialdehyde by using the Quantum Theory of Atoms in Molecules (QTAIM) and the Interacting Quantum Atoms (IQA) analyses. We show that the influence of the investigated substituents on the strength of the investigated RAHBs depends largely on its position within the π skeleton. We also examine the relationship between the formation energy of the RAHB and the hydrogen bond interaction energy as defined by the IQA method of wave function analysis. We demonstrate that these substituents can have different effects on the formation and interaction energies, casting doubts regarding the use of different parameters as indicators of the RAHB formation energies. Finally, we also demonstrate how the energy density can offer an estimation of the IQA interaction energy, and therefore of the HB strength, at a reduced computational cost for these important interactions. We expected that the results reported herein will provide a valuable understanding in the assessment of the energetics of RAHB and other intramolecular interactions.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Miguel Gallegos
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| | - Mónica A. Valentín-Rodríguez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain;
| | - Aurora Costales
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| | - Tomás Rocha-Rinza
- Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico; (J.M.G.-V.); (T.R.-R.)
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (M.G.); (A.C.)
| |
Collapse
|
17
|
Lozynski M, Rusinska-Roszak D. Finding the direct energy-structure correlations in intramolecular aromaticity assisted hydrogen bonding (AAHB). J Mol Graph Model 2021; 105:107884. [PMID: 33725643 DOI: 10.1016/j.jmgm.2021.107884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
A predictive model for intramolecular hydrogen bond energy (EHB) calculation of polyaromatic ortho-hydroxyaldehydes based on a set of small, functionalized hydrocarbons is developed. The complete data set of 18 compounds was used for this study. The model is based on one of four optional categories of molecular descriptors: geometric, spectroscopic, bond order and topological indices. The model of Wiberg bond indices (WBIs) as descriptors of the CC involved bond based on stepwise regression has acceptable prediction abilities for 14 structures of ortho-hydroxyformylobenzo[a]pyrene derivatives already at the semiempirical level. The presented correlation enables a significantly more rapid and quantitative description of the hydrogen bonding strength than the much more time-consuming MTA method. Thus, WBIs are shown to provide a reliable means for fast prescreening of the energy of chelate hydrogen bonds potentially for any polyaromatic derivatives.
Collapse
Affiliation(s)
- Marek Lozynski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Danuta Rusinska-Roszak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| |
Collapse
|
18
|
Karimi P, Sanchooli M, Kiyanee-Ghaleno M. Assessment of O-H⋯O and O-H⋯S intramolecular hydrogen bond energies in some substituted pyrimidines using quantum chemistry methods. J Mol Graph Model 2021; 104:107847. [PMID: 33548910 DOI: 10.1016/j.jmgm.2021.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
Resonance-assisted hydrogen bond (RAHB) theory was studied in some substituted pyrimidines in which encompass O-H⋯Y unit (Y= O and S). Alteration of substituents (R 1, R2, R3 = H, C2H, C2F) on pyrimidine ring changes properties of electron charge density at this ring and influences indirectly on strength of intramolecular hydrogen bond (IHB) interactions in the mentioned structures. Then, IHB energies were estimated using cis-trans method (CTM), related rotamers method (RRM), Espinosa' method (EM), and a viewpoint based on properties of electron charge densities at ring critical point (RCP) of RAHB ring. Moreover, the estimated IHB energies with these methods were compared with those obtained using modified Espinosa' method (MEM), Iogansen's relationship, and chemical shift-based method to find more consistent method with the proposed viewpoint based on RCP characteristics. The linear correlations between the all estimated IHB energies and some hydrogen bonding descriptors such as geometrical, spectroscopic, topological, and molecular orbital factors were examined. Results indicated that the IHB energies that obtained by way of MEM and Iogansen's relationship have better correlations with hydrogen bonding descriptors. Also, there are good consistencies between results of these two methods with viewpoint based on properties of RCPs. Therefore, IHB energies can suitably estimate using properties of RCPs in heterocyclic molecular systems especially in cases that rotation around C-C/CC bonds makes additional interactions in isomers and influences on accuracy of calculated IHB energies using approaches such as CTM and RRM.
Collapse
Affiliation(s)
- Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - Mahmood Sanchooli
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 98615-538, Zabol, Iran
| | | |
Collapse
|
19
|
Surface chain dependent arrangement and self-assembly of polyhedral oligomeric silsesquioxane for supramolecular gels. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Nowroozi A, Housaindokht MR, Nakhaei E. A detail investigation of synergistic effects between the intramolecular hydrogen bond and π-electron delocalization in 3-hydroxy prop-2-en thial and its derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Du J, Wang C, Yin S, Wang W, Mo Y. Resonance-assisted/impaired anion-π interaction: towards the design of novel anion receptors. RSC Adv 2020; 10:36181-36191. [PMID: 35517107 PMCID: PMC9056982 DOI: 10.1039/d0ra07877h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023] Open
Abstract
Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation. The change of the π electron density distribution subsequently impacts the interaction of substituted benzenes or other cyclic conjugated rings with anions. Currently the design and synthesis of conjugated cyclic receptors capable of binding anions is an active field due to their applications in the sensing and removal of environmental contaminants and molecular recognition. By using the block-localized wavefunction (BLW) method, which is a variant of ab initio valence bond (VB) theory and can derive the reference resonance-free state self-consistently, we quantified the resonance-assisted (RA) or resonance-impaired (RI) phenomena in anion–π interactions from both structural and energetic perspectives. The frozen interaction, in which the electrostatic attraction is involved, has been shown to be the governing factor for the RA or RI interactions with anions. Energy analyses based on the empirical point charge (EPC) model indicated that the anion–π interactions can be simplified as the attraction between a negative point charge (anion) and a group of local dipoles, affected by the enriched or diminished π-cloud due to the resonance between the substituents and the conjugated ring. Hence, two strategies for the design of novel anion receptors can be envisioned. One is the enhancement of the magnitudes and/or numbers of local dipoles (polarized σ bonds), and the other is the reduction of π electron density in conjugated rings. For cases with the RI characteristics, “curved” aromatic molecules are preferred to be anion receptors. Indeed, extremely strong binding was found in complexes formed with fluorinated corannulene (F-CDD) and fluorinated [5]cycloparaphenylene (F-[5]CPP). Inspired by the RA phenomenon, complexes of p-, o- and m-benzoquinones with halides were revisited. Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation.![]()
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yirong Mo
- Department of Nanoscience Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
22
|
Kobayashi Y, Hirata K, Hood SN, Yang H, Walsh A, Matsushita Y, Ishioka K. Crystal structure and metallization mechanism of the π-radical metal TED. Chem Sci 2020; 11:11699-11704. [PMID: 34123200 PMCID: PMC8162741 DOI: 10.1039/d0sc03521a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/22/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
Abstract
Radical electrons tend to localize on individual molecules, resulting in an insulating (Mott-Hubbard) bandgap in the solid state. Herein, we report the crystal structure and intrinsic electronic properties of the first single crystal of a π-radical metal, tetrathiafulvalene-extended dicarboxylate (TED). The electrical conductivity is up to 30 000 S cm-1 at 2 K and 2300 S cm-1 at room temperature. Temperature dependence of resistivity obeys a T 3 power-law above T > 100 K, indicating a new type of metal. X-ray crystallographic analysis clarifies the planar TED molecule, with a symmetric intramolecular hydrogen bond, is stacked along longitudinal (the a-axis) and transverse (the b-axis) directions. The π-orbitals are distributed to avoid strong local interactions. First-principles electronic calculations reveal the origin of the metallization giving rise to a wide bandwidth exceeding 1 eV near the Fermi level. TED demonstrates the effect of two-dimensional stacking of π-orbitals on electron delocalization, where a high carrier mobility of 31.6 cm2 V-1 s-1 (113 K) is achieved.
Collapse
Affiliation(s)
- Yuka Kobayashi
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki Japan
| | - Kazuto Hirata
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki Japan
| | - Samantha N Hood
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Hui Yang
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Aron Walsh
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Yoshitaka Matsushita
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki Japan
| | - Kunie Ishioka
- National Institute for Materials Science (NIMS) Sengen 1-2-1 Tsukuba Ibaraki Japan
| |
Collapse
|
23
|
Noroozi Pesyan N, Rashidnejad H, Esmaeili MA, Safari E, Tunç T, Alilou M, Safavi‐Sohi R, Şahin E. 4‐Methyl
morpholinium bis‐(thio)barbiturates: Synthesis, structure, anticancer evaluation, and
CoMFA
study. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| | - Hamid Rashidnejad
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| | - Mohammad Ali Esmaeili
- Department of Biology Medicinal Plants and Drugs Research Institute, Shahid Beheshti University Tehran Iran
| | - Elnaz Safari
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| | - Tuncay Tunç
- Department of Science Education, Faculty of Education Aksaray University Aksaray Turkey
| | - Mostafa Alilou
- Institute of Pharmacy, Pharmacognosy University of Innsbruck Innsbruck Austria
| | - Reihaneh Safavi‐Sohi
- Department of Phytochemistry Medicinal Plants and Drug Research Institute, Shahid Beheshti University Tehran Iran
| | - Ertan Şahin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
24
|
Afonin AV, Vashchenko AV. Quantitative decomposition of resonance-assisted hydrogen bond energy in β-diketones into resonance and hydrogen bonding (π- and σ-) components using molecular tailoring and function-based approaches. J Comput Chem 2020; 41:1285-1298. [PMID: 32061114 DOI: 10.1002/jcc.26175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
Using the molecular tailoring and function-based approaches allows one to divide the energy of the O─H⋯O═C resonance-assisted hydrogen bond in a series of the β-diketones into resonance and hydrogen bonding components. The magnitude of the resonance component is assessed as about 6 kcal mol-1 . This value increases by ca. 1 kcal mol-1 on going from the weak to strong resonance-assisted hydrogen bonding. The magnitude of the hydrogen bonding component varies in the wide range from 2 to 20 kcal mol-1 depending on the structure of the β-diketone in question.
Collapse
Affiliation(s)
- Andrei V Afonin
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, Irkutsk, Russia
| | - Alexander V Vashchenko
- Institute of Chemistry, Siberian Division of Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
25
|
Anzline C, Sivakumar P, Israel S, Sujatha K. Comprehensive study on the topological properties of 5-Amino-2-Methyl Benzene Sulfonamide involving inter and intra molecular hydrogen bonds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Gurbanov AV, Kuznetsov ML, Demukhamedova SD, Alieva IN, Godjaev NM, Zubkov FI, Mahmudov KT, Pombeiro AJL. Role of substituents on resonance assisted hydrogen bonding vs. intermolecular hydrogen bonding. CrystEngComm 2020. [DOI: 10.1039/c9ce01744e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resonance assisted hydrogen bond (RAHB) ring can be weakened/opened by a strong electron-donor (ED) group.
Collapse
Affiliation(s)
- Atash V. Gurbanov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049–001 Lisboa
- Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049–001 Lisboa
- Portugal
| | | | - Irada N. Alieva
- Institute for Physical Problems
- Baku State University
- Az 1148 Baku
- Azerbaijan
| | - Niftali M. Godjaev
- Institute for Physical Problems
- Baku State University
- Az 1148 Baku
- Azerbaijan
| | - Fedor I. Zubkov
- Organic Chemistry Department
- Faculty of Science
- Peoples' Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
| | - Kamran T. Mahmudov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049–001 Lisboa
- Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049–001 Lisboa
- Portugal
| |
Collapse
|
27
|
Espitia Cogollo E, Piro OE, Echeverría GA, Tuttolomondo ME, Pérez H, Jios JL, Ulic SE. Hydrogen bonding interactions in fluorinated 1,2,3-triazole derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02914a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Comprehensive theoretical, structural and spectroscopic investigations on new substituted 1,2,3-triazoles in the solid state.
Collapse
Affiliation(s)
- E. Espitia Cogollo
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- (1900) La Plata
- Argentina
| | - O. E. Piro
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- (1900) La Plata
- Argentina
| | - G. A. Echeverría
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- (1900) La Plata
- Argentina
| | - M. E. Tuttolomondo
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - H. Pérez
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de La Habana
- La Habana 10400
- Cuba
| | - J. L. Jios
- Laboratorio UPL (UNLP-CIC)
- Campus Tecnológico Gonnet (CIC-BA)
- (1897) Gonnet
- Argentina
- Departamento de Química
| | - S. E. Ulic
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- (1900) La Plata
- Argentina
| |
Collapse
|
28
|
Pareras G, Szczepanik DW, Duran M, Solà M, Simon S. Tuning the Strength of the Resonance-Assisted Hydrogen Bond in Acenes and Phenacenes with Two o-Hydroxyaldehyde Groups—The Importance of Topology. J Org Chem 2019; 84:15538-15548. [DOI: 10.1021/acs.joc.9b02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gerard Pareras
- School of Chemistry, University College Cork, College Road, Cork T12 K8AF, Ireland
| | - Dariusz W. Szczepanik
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
29
|
Lin X, Wu W, Mo Y. How Resonance Modulates Multiple Hydrogen Bonding in Self-Assembled Systems. J Org Chem 2019; 84:14805-14815. [DOI: 10.1021/acs.joc.9b02381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuhui Lin
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
30
|
Milovanović B, Stanković IM, Petković M, Etinski M. Elucidating Solvent Effects on Strong Intramolecular Hydrogen Bond: DFT-MD Study of Dibenzoylmethane in Methanol Solution. Chemphyschem 2019; 20:2852-2859. [PMID: 31544323 DOI: 10.1002/cphc.201900704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/31/2019] [Indexed: 11/10/2022]
Abstract
The dynamic aspect of solvation plays a crucial role in determining properties of strong intramolecular hydrogen bonds since solvent fluctuations modify instantaneous hydrogen-bonded proton transfer barriers. Previous studies pointed out that solvent-solute interactions in the first solvation shell govern the position of the proton but the ability of the electric field due to other solvent molecules to localize the proton remains an important issue. In this work, we examine the structure of the O-H⋅⋅⋅O intramolecular hydrogen bond of dibenzoylmethane in methanol solution by employing density functional theory-based molecular dynamics and quantum chemical calculations. Our computations showed that homogeneous electric fields with intensities corresponding to those found in polar solvents are able to considerably alter the proton transfer barrier height in the gas phase. In methanol solution, the proton position is correlated with the difference in electrostatic potentials on the oxygen atoms of dibenzoylmethane even when dibenzoylmethane-methanol hydrogen bonding is lacking. On a timescale of our simulation, the hydrogen bonding and solvent electrostatics tend to localize the proton on different oxygen atoms. These findings provide an insight into the importance of the solvent electric field on the structure of a strong intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | | | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
31
|
Montero MDA, Martínez FA, Aucar GA. Magnetic descriptors of hydrogen bonds in malonaldehyde and its derivatives. Phys Chem Chem Phys 2019; 21:19742-19754. [PMID: 31378797 DOI: 10.1039/c9cp02995h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nature of the hydrogen bond, HB, as such is still unknown, though a few of its most fundamental features has been uncovered during the last few decades. At the moment, it is possible to obtain reliable results for only a few of its broadest properties, like magnetic properties. They could give new insights into the physics underlying the strength and features of HBs. In this article we analyze the electronic origin of the NMR spectroscopic parameters of malonaldehyde, MA, and some substituted MAs. These substituted MAs are such that the H-bonds are assisted by one of two phenomena: resonance, RAHB, or charge, CAHB. We have studied the dependences of these parameters on two of the main factors which contribute the most to both phenomena, the geometrical and electronic factors, and found out how they can be used to characterize RAHB or CAHB by means of reliable theoretical calculations. We show that in the set of compounds analyzed here (i) the shielding of the proton of the H-bond can be used as a measure of the strength of the HB and (ii) the relation between the contact and non-contact mechanisms of J-couplings between donor and acceptor atoms is a reliable descriptor of whether the H-bond is resonance assisted or charge assisted.
Collapse
Affiliation(s)
- Marcos D A Montero
- Institute of Modelling and Innovation on Technology, IMIT CONICET-UNNE, Corrientes, Argentina.
| | | | | |
Collapse
|
32
|
Sojka M, Tousek J, Badri Z, Foroutan-Nejad C, Necas M. Bifurcated hydrogen bonds in platinum(II) complexes with phosphinoamine ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Lu C, Htan B, Fu S, Ma C, Gan Q. Substituent effects on the isomerization of hydrazone switches driven by the intramolecular hydrogen bond. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Synthesis, Structures and Co-Crystallizations of Perfluorophenyl Substituted β-Diketone and Triketone Compounds. CRYSTALS 2019. [DOI: 10.3390/cryst9030175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Perfluorophenyl-substituted compounds, 3-hydroxy-1,3-bis(pentafluorophenyl)-2- propen-1-one (H1) and 1,5-dihydroxy-1,5-bis(pentafluorophenyl)-1,4-pentadien-3-one (H22), were prepared in 56 and 30% yields, respectively, and only the enol forms were preferentially obtained among the keto-enol tautomerism. Molecular conformations and tautomerism of the fluorine-substituted compounds were certified based on X-ray crystallographic studies and density functional calculations. The solvent dependency of the absorption spectra was only observed for the fluorinated compounds. The compounds H1 and H22 quantitatively formed co-crystals with the corresponding non-perfluorinated compounds, dibenzoylmethane (H3) and 1,5-dihydroxy-1,5-diphenyl-1,4-pentadien-3-one (H24), respectively, through the arene–perfluoroarene interaction to give the 1:1 co-crystals H1•H3 and H22•H24, which were characterized by X-ray crystallographic and elemental analysis studies.
Collapse
|
35
|
Omelchenko IV, Shishkin OV, Dopieralski P, Latajka Z. About the Aromaticity of symm-Triaminotrinitrobenzene. J Phys Chem A 2019; 123:2244-2251. [DOI: 10.1021/acs.jpca.9b00433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Iryna V. Omelchenko
- Department of X-ray Diffraction Study and Quantum Chemistry, SSI “Institute for Single Crystals” NAS of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
- Faculty of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
| | - Oleg V. Shishkin
- Department of X-ray Diffraction Study and Quantum Chemistry, SSI “Institute for Single Crystals” NAS of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
- Faculty of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
| | | | - Zdzislaw Latajka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
36
|
Masumian E, Nowroozi A. Comparative study of resonance-inhibited hydrogen bonded (RIHB) systems with different atoms involved: the leading role of σ-planarity. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1557350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ehsan Masumian
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
37
|
Kojić M, Lyskov I, Milovanović B, Marian CM, Etinski M. The UVA response of enolic dibenzoylmethane: beyond the static approach. Photochem Photobiol Sci 2019; 18:1324-1332. [DOI: 10.1039/c9pp00005d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nπ* and ππ* states of dibenzoylmethane are vibronically coupled and their crossing occurs during the excited-state intramolecular proton transfer.
Collapse
Affiliation(s)
- Marko Kojić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Igor Lyskov
- Chemical and Quantum Physics Group
- ARC Centre of Excellence in Exciton Science
- School of Science
- RMIT University
- Melbourne
| | | | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry
- Heinrich Heine University Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Mihajlo Etinski
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
38
|
Durlak P, Latajka Z. Investigations of the hydrogen bond in the crystals of tropolone and thiotropolone via car‐parrinello and path integral molecular dynamics. J Comput Chem 2018; 40:671-687. [DOI: 10.1002/jcc.25753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Piotr Durlak
- Faculty of ChemistryUniversity of Wrocław Wrocław 50‐383 Poland
| | | |
Collapse
|
39
|
Lin X, Jiang X, Wu W, Mo Y. Induction, Resonance, and Secondary Electrostatic Interaction on Hydrogen Bonding in the Association of Amides and Imides. J Org Chem 2018; 83:13446-13453. [DOI: 10.1021/acs.joc.8b02247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuhui Lin
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoyu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
40
|
Etinski M, Ensing B. Puzzle of the Intramolecular Hydrogen Bond of Dibenzoylmethane Resolved by Molecular Dynamics Simulations. J Phys Chem A 2018; 122:5945-5954. [DOI: 10.1021/acs.jpca.8b01930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11000 Belgrade, Serbia
| | - Bernd Ensing
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
41
|
Zharinova IS, Bilyalova AA, Bezzubov SI. Synthesis and crystal structure of methyl 3-(3-hy-droxy-3-phenyl-prop-2-eno-yl)benzoate. Acta Crystallogr E Crystallogr Commun 2018; 74:816-819. [PMID: 29951237 PMCID: PMC6002825 DOI: 10.1107/s2056989018007259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 11/23/2022]
Abstract
The title compound, C17H14O4, was synthesized under mild conditions and characterized by various analytical techniques. Combined NMR and X-ray diffraction data show that the substance exists exclusively in the enol tautomeric form. An intra-molecular ⋯O=C-C=C-OH⋯ hydrogen bond is present in the mol-ecular structure. The analysis of the difference density map disclosed two adjacent positions of a disordered hydrogen atom taking part in this hydrogen bond, indicating the presence of two enol tautomers in the crystal. The enol mol-ecules are assembled through numerous C-H⋯π and π-π as well as weak C(ar-yl)-H⋯O inter-actions, thus forming a dense crystal packing. The obtained substance was also studied by UV-Vis spectroscopy and cyclic voltammetry.
Collapse
Affiliation(s)
- Irina S. Zharinova
- Department of Chemistry, Lomonosov Moscow State University, Lenin’s Hills 1/3, Moscow 119991, Russian Federation
| | - Alfiya A. Bilyalova
- Department of Chemistry, Lomonosov Moscow State University, Lenin’s Hills 1/3, Moscow 119991, Russian Federation
| | - Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991, Russian Federation
| |
Collapse
|
42
|
Abstract
Nanomedicine is a discipline that applies nanoscience and nanotechnology principles to the prevention, diagnosis, and treatment of human diseases. Self-assembly of molecular components is becoming a common strategy in the design and syntheses of nanomaterials for biomedical applications. In both natural and synthetic self-assembled nanostructures, molecular cooperativity is emerging as an important hallmark. In many cases, interplay of many types of noncovalent interactions leads to dynamic nanosystems with emergent properties where the whole is bigger than the sum of the parts. In this review, we provide a comprehensive analysis of the cooperativity principles in multiple self-assembled nanostructures. We discuss the molecular origin and quantitative modeling of cooperative behaviors. In selected systems, we describe the examples on how to leverage molecular cooperativity to design nanomedicine with improved diagnostic precision and therapeutic efficacy in medicine.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States.,Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing , 100191 , China
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| |
Collapse
|
43
|
A comprehensive theoretical study of conformational analysis, intramolecular hydrogen bond, π-electron delocalization, and tautomeric preferences in 2-selenoformyl-3-thioxo-propionaldehyde. Struct Chem 2018. [DOI: 10.1007/s11224-018-1088-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Madeira PP, Passos H, Gomes J, Coutinho JAP, Freire MG. Alternative probe for the determination of the hydrogen-bond acidity of ionic liquids and their aqueous solutions. Phys Chem Chem Phys 2018; 19:11011-11016. [PMID: 28405644 DOI: 10.1039/c6cp08210f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although highly relevant to a priori select adequate solvents for a given application, the determination of the hydrogen-bond acidity or proton donor ability of aqueous solutions of ionic liquids is a difficult task due to the poor solubility of the commonly used probes in aqueous media. In this work, we demonstrate the applicability of the pyridine-N-oxide probe to determine the hydrogen-bond acidity of both neat ionic liquids and their aqueous solutions, based on 13C NMR chemical shifts, and the suitability of these values to appraise the ability of ionic liquids to form aqueous two-phase systems.
Collapse
Affiliation(s)
- Pedro P Madeira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
45
|
Feyer V, Prince KC, Coreno M, Melandri S, Maris A, Evangelisti L, Caminati W, Giuliano BM, Kjaergaard HG, Carravetta V. Quantum Effects for a Proton in a Low-Barrier, Double-Well Potential: Core Level Photoemission Spectroscopy of Acetylacetone. J Phys Chem Lett 2018; 9:521-526. [PMID: 29314844 DOI: 10.1021/acs.jpclett.7b03175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have performed core level photoemission spectroscopy of gaseous acetylacetone, its fully deuterated form, and two derivatives, benzoylacetone and dibenzoylmethane. These molecules show intramolecular hydrogen bonds, with a proton located in a double-well potential, whose barrier height is different for the three compounds. This has allowed us to examine the effect of the double-well potential on photoemission spectra. Two distinct O 1s core hole peaks are observed, previously assigned to two chemical states of oxygen. We provide an alternative assignment of the double-peak structure of O 1s spectra by taking full account of the extended nature of the wave function associated with the nuclear motion of the proton, the shape of the ground and final state potentials in which the proton is located, and the nonzero temperature of the samples. The peaks are explained in terms of an unusual Franck-Condon factor distribution.
Collapse
Affiliation(s)
- Vitaliy Feyer
- Elettra-Sincrotrone Trieste , in Area Science Park, I-34149 Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste , in Area Science Park, I-34149 Trieste, Italy
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Swinburne University of Technology , 3122 Melbourne, Australia
| | - Marcello Coreno
- ISM-CNR - Istituto di Struttura della Materia , LD2 unit, I-34149 Trieste, Italy
| | - Sonia Melandri
- Dipartimento di Chimica, "G. Ciamician" dell'Università , I-40126 Bologna, Italy
| | - Assimo Maris
- Dipartimento di Chimica, "G. Ciamician" dell'Università , I-40126 Bologna, Italy
| | - Luca Evangelisti
- Dipartimento di Chimica, "G. Ciamician" dell'Università , I-40126 Bologna, Italy
| | - Walther Caminati
- Dipartimento di Chimica, "G. Ciamician" dell'Università , I-40126 Bologna, Italy
| | - Barbara M Giuliano
- Departamento de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen , 2100 Copenhagen, Denmark
| | | |
Collapse
|
46
|
Horn JAVD, Lutz M. Triethanolaminate iron perchlorate revisited: change of space group, chemical composition and oxidation states in [Fe 7(tea) 3(tea-H) 3](ClO 4) 2 (tea-H 3 is triethanolamine). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:125-130. [PMID: 29400325 DOI: 10.1107/s2053229617018460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Abstract
The X-ray crystal structure of tris[N-(2-hydroxyethyl)-2,2'-iminodiethanolato]tris(2,2',2''-nitrilotriethanolato)tetrairon(II)triiron(III) bis(perchlorate), [Fe7(C6H12NO3)3(C6H13NO3)3](ClO4)2 or [Fe7(tea)3(tea-H)3](ClO4)2 (tea-H3 is triethanolamine), is known from the literature [Liu et al. (2008). Z. Anorg. Allg. Chem. 634, 778-783] as a heptanuclear coordination cluster. The space group was given as I213 and is reinvestigated in the present study. We find a new space-group symmetry of Pa-3 and could detect O-H hydrogens, which were missing in the original publication. Consequences on the Fe oxidation states are investigated with the bond-valence method, resulting in a mixed-valence core of four FeII and three FeIII centres. Symmetry relationships between the two space groups and the average supergroup Ia-3 are discussed in detail.
Collapse
Affiliation(s)
- Jitschaq A van der Horn
- Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Martin Lutz
- Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
47
|
Lin X, Wu W, Mo Y. A Direct Proof of the Resonance-Impaired Hydrogen Bond (RIHB) Concept. Chemistry 2017; 24:1053-1056. [PMID: 29206309 DOI: 10.1002/chem.201705424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/08/2022]
Abstract
The concept of resonance-enhanced hydrogen bond (RAHB) has been widely accepted and applied as it highlights the positive impact of π-conjugation on intramolecular H-bonds. However, electron delocalization is directional and there is a possibility that π-resonance goes from the H-bond acceptor to the H-bond donor, leading to a negative impact on H-bonds. Here we used the block-localized wavefunction (BLW) method which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently, to quantify the interplay between H-bond and π-resonance in the terms of geometry, energetics and spectral properties. The comparison of geometrical optimizations with and without π-resonance shows that conjugation can indeed either enhance or weaken intramolecular H-bonds. We further experimented with various substituents attached to either the H-bond acceptor and/or H-bond donor side(s) to tune the H-bonding strength in both directions.
Collapse
Affiliation(s)
- Xuhui Lin
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and State Key Laboratory of, Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and State Key Laboratory of, Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen, 361005, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008, USA
| |
Collapse
|
48
|
Crystallization, Structure Determination and Reticular Twinning in Iron(III) Salicylate: Fe[(HSal)(Sal)(H2O)2]. CRYSTALS 2017. [DOI: 10.3390/cryst7120377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Jiang X, Zhang H, Wu W, Mo Y. A Critical Check for the Role of Resonance in Intramolecular Hydrogen Bonding. Chemistry 2017; 23:16885-16891. [PMID: 29106781 DOI: 10.1002/chem.201703952] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 11/10/2022]
Abstract
Although resonance-assisted H-bonds (RAHBs) are well recognized, the role of π resonance in RAHBs is controversial, as the seemingly enhanced H-bonds in unsaturated compounds may result from the constraints imposed by the σ skeleton. Herein the block-localized wave function (BLW) method, which can derive optimal yet resonance-quenched structures with related physiochemical properties, was employed to examine the correlation between π resonance and the strength of intramolecular RAHBs. Examination of a series of paradigmatic molecules with RAHBs and their saturated analogues showed that it is inappropriate to compare a conjugated system with its saturated counterpart, as they may have quite different σ frameworks. Nevertheless, comparison between a conjugated system and its resonance-quenched (i.e., electron-localized) state, which have identical σ skeletons, shows that in all studied cases, π resonance unanimously reduces the bonding distance by 0.111-0.477 Å, strengthens the bonding by 40-56 %, and redshifts the D-H vibrational frequency by 104-628 cm-1 . Furthermore, there is an excellent correlation between hydrogen-bonding strength and the classical Coulomb attraction between the hydrogen-bond donor and the acceptor, which suggests that the dominant role of the electrostatic interaction in H-bonds and RAHBs originates from the charge flow from H-bond donors to acceptors through π conjugation.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, P. R. China
| | - Huaiyu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008, USA
| |
Collapse
|
50
|
Lin X, Zhang H, Jiang X, Wu W, Mo Y. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems. J Phys Chem A 2017; 121:8535-8541. [PMID: 29048895 DOI: 10.1021/acs.jpca.7b09425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.
Collapse
Affiliation(s)
- Xuhui Lin
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
| | - Huaiyu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
| | - Xiaoyu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology , Fuzhou 350108, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian 361005, China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University , Kalamazoo, Michigan 49008, United States
| |
Collapse
|