1
|
Bhattacharya A, Pandit S, Lee S, Ebrahimi SB, Samanta D. Modulating Enzyme Activity using Engineered Nanomaterials. Chembiochem 2024:e202400520. [PMID: 39117568 DOI: 10.1002/cbic.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Enzymes serve as pivotal components in various biotechnological applications across several industries. Understanding enzyme inhibition sheds light on how certain compounds disrupt biochemical pathways, facilitating the design of targeted drugs for combating diseases. On the other hand, reversible inhibition or enhancement of activity can unlock new ways of controlling industrial reactions and boosting the catalytic activity of native enzymes that are taken out of their natural environments. Over the last two decades, immobilizing enzymes on nanomaterial-based solid supports has emerged as an especially promising approach for tuning enzyme activity. Nanomaterials not only inhibit enzymes but also enhance their performance, showcasing their versatility. This Concept highlights significant advancements in utilizing nanomaterials for enzyme modulation and discusses future prospects for leveraging this phenomenon in developing sophisticated molecular systems and downstream applications.
Collapse
Affiliation(s)
- Atri Bhattacharya
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Emerging Drug Delivery Platforms, Drug Product Development, GSK, 1250 S Collegeville Rd, Collegeville, PA-19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Yu YQ, Chen WQ, Li XH, Liu M, He XH, Liu Y, Jiang FL. Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3967-3978. [PMID: 36877959 DOI: 10.1021/acs.langmuir.2c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal quantum dots (QDs) are a class of representative fluorescent nanomaterials with tunable, bright, and sharp fluorescent emission, with promising biomedical applications. However, their effects on biological systems are not fully elucidated. In this work, we investigated the interactions between QDs with different surface ligands and different particle sizes and α-chymotrypsin (ChT) from the thermodynamic and kinetic perspectives. Enzymatic activity experiments demonstrated that the catalytic activity of ChT was strongly inhibited by QDs coated with dihydrolipoic acid (DHLA-QDs) with noncompetitive inhibitions, whereas the QDs coated with glutathione (GSH-QDs) had weak effects. Furthermore, kinetics studies showed that different particle sizes of DHLA-QDs all had high suppressive effects on the catalytic activity of ChT. It was found that DHLA-QDs with larger particle sizes had stronger inhibition effects because more ChT molecules were bound onto the surface of QDs. This work highlights the importance of hydrophobic ligands and particle sizes of QDs, which should be considered as the primary influencing factors in the assessment of biosafety. Meanwhile, the results herein can also inspire the design of nano inhibitors.
Collapse
Affiliation(s)
- Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Han Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Meng Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
3
|
Tapdigov SZ. The bonding nature of the chemical interaction between trypsin and chitosan based carriers in immobilization process depend on entrapped method: A review. Int J Biol Macromol 2021; 183:1676-1696. [PMID: 34015409 DOI: 10.1016/j.ijbiomac.2021.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022]
Abstract
The review article is dedicated to a comprehensive study of the chemical bond formed during the immobilization of the proteolytic enzyme pancreatic trypsin in chitosan-based polymer matrixes and its derivatives. The main focus of the study is to describe the chemical bond that causes immobilization between chitosan based carriers and trypsin. Because the nature of the chemical bond between the carrier and trypsin is a key factor in determining the area of application of the conjugate. It has been found out that after the chemical nature of functional groups, their degree of ionization, the structure of the chemical cross-linking, the medium pH and ionic strength of chitosan are modified, the mechanism of trypsin immobilization is affected. As a result, the attraction enzyme to the matrix occurs due to polar covalent and hydrogen bonds, as well as electrostatic, hydrophobic, Van der Waals forces. The collected research works on the immobilization of trypsin on chitosan-based carriers have been systematized in the paper and shown schematically in subsystems according to the type of chemical interaction. It has been shown that the immobilization of trypsin on chitosan based matrixes occur more often due to the covalent and hydrogen bonds between the protein and the carrier.
Collapse
Affiliation(s)
- Shamo Zokhrab Tapdigov
- Department of Nanostructured Metal-polymer Catalysist, Institute Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, H. Javid ave. 113, AZ1143, Azerbaijan; Department of Prevention of Sand and Water Appearance, Oil-gas Research and Design Institute, The State Oil Company of the Azerbaijan Republic, H. Zardabi ave. 88, AZ1012 Baku, Azerbaijan.
| |
Collapse
|
4
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
5
|
Huang R, Luther DC, Zhang X, Gupta A, Tufts SA, Rotello VM. Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1001. [PMID: 33924735 PMCID: PMC8069843 DOI: 10.3390/nano11041001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with "small" organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; (R.H.); (D.C.L.); (X.Z.); (A.G.); (S.A.T.)
| |
Collapse
|
6
|
Di Giosia M, Marforio TD, Cantelli A, Valle F, Zerbetto F, Su Q, Wang H, Calvaresi M. Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. J Colloid Interface Sci 2020; 571:174-184. [DOI: 10.1016/j.jcis.2020.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
|
7
|
Chen WQ, Yin MM, Song PJ, He XH, Liu Y, Jiang FL. Thermodynamics, Kinetics and Mechanisms of Noncompetitive Allosteric Inhibition of Chymotrypsin by Dihydrolipoic Acid-Coated Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6447-6457. [PMID: 32460493 DOI: 10.1021/acs.langmuir.0c00699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enzymes are an important class of biomacromolecules which catalyze many metabolic processes in living systems. Nanomaterials can be synthesized with tailored sizes as well as desired surface modifications, thus acting as promising enzyme regulators. Fluorescent gold nanoclusters (AuNCs) are a representative class of ultrasmall nanoparticles (USNPs) with sizes of ∼2 nm, smaller than most of proteins including enzymes. In this work, we chose α-chymotrypsin (ChT) and AuNCs as the model system. Activity assays and inhibition kinetics studies showed that dihydrolipoic acid (DHLA)-coated AuNCs (DHLA-AuNCs) had a high inhibitory potency (IC50 = 3.4 μM) and high inhibitory efficacy (>80%) on ChT activity through noncompetitive inhibition mechanism. In distinct contrast, glutathione (GSH)-coated AuNCs (GSH-AuNCs) had no significant inhibition effects. Fluorescence spectroscopy, agarose gel electrophoresis and circular dichroism (CD) spectroscopy were conducted to explore the underlying mechanisms. A two-step interaction model was proposed. First, both DHLA-AuNCs and GSH-AuNCs might be bound to the positively charged sites of ChT through electrostatic forces. Second, further hydrophobic interactions occurred between three tyrosine residues of ChT and the hydrophobic carbon chain of DHLA, leading to a significant structural change thus to deactivate ChT on the allosteric site. On the contrary, no such interactions occurred with GSH of zwitterionic characteristic, which explained no inhibitory effect of GSH-AuNCs on ChT. To the best of our knowledge, this is the first example of the allosteric inhibition of ChT by nano regulators. These findings provide a fundamental basis for the design and development of nano regulators.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Miao-Miao Yin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Peng-Jun Song
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Hang He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
8
|
Sharifi M, Sohrabi MJ, Hosseinali SH, Hasan A, Kani PH, Talaei AJ, Karim AY, Nanakali NMQ, Salihi A, Aziz FM, Yan B, Khan RH, Saboury AA, Falahati M. Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. Int J Biol Macromol 2020; 143:665-676. [DOI: 10.1016/j.ijbiomac.2019.12.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/04/2023]
|
9
|
Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019; 59:962-979. [PMID: 34045771 PMCID: PMC8152826 DOI: 10.1002/ijch.201900080] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for in situ analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
Collapse
Affiliation(s)
- Y Randika Perera
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Rebecca A Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
10
|
Ji Y, Mertens AM, Gertler C, Fekiri S, Keser M, Sauer DF, Smith KEC, Schwaneberg U. Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry 2018; 24:16865-16872. [DOI: 10.1002/chem.201803806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Ji
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Alan Maurice Mertens
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Christoph Gertler
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Sallama Fekiri
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Merve Keser
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Kilian E. C. Smith
- Institute for Environmental Research RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
11
|
Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione. J Colloid Interface Sci 2017; 494:74-81. [DOI: 10.1016/j.jcis.2017.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
|
12
|
Zhao D, Zhou J. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes. Phys Chem Chem Phys 2017; 19:986-995. [DOI: 10.1039/c6cp04962a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Daohui Zhao
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
13
|
Hewitt SH, Filby MH, Hayes E, Kuhn LT, Kalverda AP, Webb ME, Wilson AJ. Protein Surface Mimetics: Understanding How Ruthenium Tris(Bipyridines) Interact with Proteins. Chembiochem 2016; 18:223-231. [PMID: 27860106 PMCID: PMC5347857 DOI: 10.1002/cbic.201600552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Protein surface mimetics achieve high-affinity binding by exploiting a scaffold to project binding groups over a large area of solvent-exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface-exposed basic residues on cyt c. High-field natural abundance 1 H,15 N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Maria H Filby
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Ed Hayes
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Lars T Kuhn
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Arnout P Kalverda
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael E Webb
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Klein G, Mathé C, Biola-Clier M, Devineau S, Drouineau E, Hatem E, Marichal L, Alonso B, Gaillard JC, Lagniel G, Armengaud J, Carrière M, Chédin S, Boulard Y, Pin S, Renault JP, Aude JC, Labarre J. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology 2016; 10:1555-1564. [PMID: 27705051 DOI: 10.1080/17435390.2016.1244299] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upon contact with biological fluids, nanoparticles (NPs) are readily coated by cellular compounds, particularly proteins, which are determining factors for the localization and toxicity of NPs in the organism. Here, we improved a methodological approach to identify proteins that adsorb on silica NPs with high affinity. Using large-scale proteomics and mixtures of soluble proteins prepared either from yeast cells or from alveolar human cells, we observed that proteins with large unstructured region(s) are more prone to bind on silica NPs. These disordered regions provide flexibility to proteins, a property that promotes their adsorption. The statistical analyses also pointed to a marked overrepresentation of RNA-binding proteins (RBPs) and of translation initiation factors among the adsorbed proteins. We propose that silica surfaces, which are mainly composed of Si-O- and Si-OH groups, mimic ribose-phosphate molecules (rich in -O- and -OH) and trap the proteins able to interact with ribose-phosphate containing molecules. Finally, using an in vitro assay, we showed that the sequestration of translation initiation factors by silica NPs results in an inhibition of the in vitro translational activity. This result demonstrates that characterizing the protein corona of various NPs would be a relevant approach to predict their potential toxicological effects.
Collapse
Affiliation(s)
- Géraldine Klein
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Christelle Mathé
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Mathilde Biola-Clier
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphanie Devineau
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Emilie Drouineau
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Elie Hatem
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Laurent Marichal
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France.,b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Béatrice Alonso
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Jean-Charles Gaillard
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Gilles Lagniel
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Armengaud
- d CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', BP 17171 , Bagnols-sur-Cèze , France
| | - Marie Carrière
- c Univ. Grenoble Alpes, CEA, INAC-SyMMES, Laboratoire Lésions des Acides Nucléiques , Grenoble , France , and
| | - Stéphane Chédin
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Yves Boulard
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Serge Pin
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Philippe Renault
- b LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay , Gif-sur-Yvette , France
| | - Jean-Christophe Aude
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Jean Labarre
- a I2BC, IBITEC-S, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette , France
| |
Collapse
|
15
|
Kuwada K, Kurinomaru T, Tomita S, Shiraki K. Noncovalent PEGylation-based enzyme switch in physiological saline conditions using quaternized polyamines. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3916-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Lin Y, Chen Z, Liu XY. Using Inorganic Nanomaterials to Endow Biocatalytic Systems with Unique Features. Trends Biotechnol 2016; 34:303-315. [DOI: 10.1016/j.tibtech.2015.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/20/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
|
17
|
Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA. Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS NANO 2015; 9:9097-9105. [PMID: 26325486 DOI: 10.1021/acsnano.5b03247] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enzyme inhibitors are ubiquitous in all living systems, and their biological inhibitory activity is strongly dependent on their molecular shape. Here, we show that small zinc oxide nanoparticles (ZnO NPs)-pyramids, plates, and spheres-possess the ability to inhibit activity of a typical enzyme β-galactosidase (GAL) in a biomimetic fashion. Enzyme inhibition by ZnO NPs is reversible and follows classical Michaelis-Menten kinetics with parameters strongly dependent on their geometry. Diverse spectroscopic, biochemical, and computational experimental data indicate that association of GAL with specific ZnO NP geometries interferes with conformational reorganization of the enzyme necessary for its catalytic activity. The strongest inhibition was observed for ZnO nanopyramids and compares favorably to that of the best natural GAL inhibitors while being resistant to proteases. Besides the fundamental significance of this biomimetic function of anisotropic NPs, their capacity to serve as degradation-resistant enzyme inhibitors is technologically attractive and is substantiated by strong shape-specific antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), endemic for most hospitals in the world.
Collapse
Affiliation(s)
- Sang-Ho Cha
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, Kyonggi University , Suwon 443-760, South Korea
| | - Jin Hong
- Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan48109, United States
- China Pharmaceutical University , 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, China
| | - Matt McGuffie
- Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan48109, United States
- Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Bongjun Yeom
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan48109, United States
- Department of Chemical Engineering, Myongji University , Yongin 449-728, South Korea
| | - J Scott VanEpps
- Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan48109, United States
- Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan48109, United States
- Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48198, United States
| |
Collapse
|
18
|
Modulatory Effect of Citrate Reduced Gold and Biosynthesized Silver Nanoparticles on α-Amylase Activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/829718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amylase is one of the important digestive enzymes involved in hydrolysis of starch. In this paper, we describe a novel approach to study the interaction of amylase enzyme with gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) and checked its catalytic function. AuNPs are synthesized using citrate reduction method and AgNPs were synthesized using biological route employing Ficus benghalensis and Ficus religiosa leaf extract as a reducing and stabilizing agent to reduce silver nitrate to silver atoms. A modulatory effect of nanoparticles on amylase activity was observed. Gold nanoparticles are excellent biocompatible surfaces for the immobilization of enzymes. Immobilized amylase showed 1- to 2-fold increase of activity compared to free enzyme. The biocatalytic activity of amylase in the bioconjugate was marginally enhanced relative to the free enzyme in solution. The bioconjugate material also showed significantly enhanced pH and temperature stability. The results indicate that the present study paves way for the modulator degradation of starch by the enzyme with AuNPs and biogenic AgNPs, which is a promising application in the medical and food industry.
Collapse
|
19
|
Yeh YC, Rana S, Mout R, Yan B, Alfonso FS, Rotello VM. Supramolecular tailoring of protein-nanoparticle interactions using cucurbituril mediators. Chem Commun (Camb) 2015; 50:5565-8. [PMID: 24728346 DOI: 10.1039/c4cc01257g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supramolecular modification of nanoparticle surfaces through threading of cucurbit[7]uril (CB[7]) onto surface ligands is used to regulate protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Das A, Chakrabarti A, Das PK. Suppression of protein aggregation by gold nanoparticles: a new way to store and transport proteins. RSC Adv 2015. [DOI: 10.1039/c4ra17026a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Suppression of protein aggregation by gold nanoparticles under physiological conditions and its dependence on the nanoparticle size.
Collapse
Affiliation(s)
- Anindita Das
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
| | - Puspendu K. Das
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
21
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
22
|
Mout R, Tonga GY, Ray M, Moyano DF, Xing Y, Rotello VM. Environmentally responsive histidine-carboxylate zipper formation between proteins and nanoparticles. NANOSCALE 2014; 6:8873-7. [PMID: 24960536 PMCID: PMC4113908 DOI: 10.1039/c4nr02097a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Interfacing synthetic materials with biomacromolecules provides new systems for biological applications. We report the creation of a reversible multivalent supramolecular "zipper" recognition motif between gold nanoparticles and proteins. In this assembly, carboxylate-functionalized nanoparticles interact strongly with oligohistidine tags. This interaction can be tuned through His-tag length, and offers unique binding profiles based on the pH and electrolyte concentration of the medium.
Collapse
Affiliation(s)
- Rubul Mout
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Latza P, Gilles P, Schaller T, Schrader T. Affinity Polymers Tailored for the Protein A Binding Site of Immunoglobulin G Proteins. Chemistry 2014; 20:11479-87. [DOI: 10.1002/chem.201402399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 01/01/2023]
|
24
|
Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polym J 2014. [DOI: 10.1038/pj.2014.33] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Ekmekci Z, Saha K, Moyano DF, Tonga GY, Wang H, Mout R, Rotello VM. Probing the Protein-Nanoparticle Interface: The Role of Aromatic Substitution Pattern on Affinity. Supramol Chem 2014; 27:123-126. [PMID: 27122961 DOI: 10.1080/10610278.2014.914627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new class of cationic gold nanoparticles has been synthesized bearing benzyl moieties featuring -NO2 and -OMe groups to investigate the regioisomeric control of aromatic nanoparticle-protein recognition. In general, nanoparticles bearing electron withdrawing group demonstrated higher binding affinities towards green fluorescent protein (GFP) compared to electron-donating groups. Significantly, a ~7.5 and ~4.3 fold increase in binding with GFP was observed for -NO2 groups in meta- and para-position respectively, while ortho-substitution showed similar binding compared to the unsubstituted ring. These findings demonstrated that nanoparticle-protein interaction can be controlled by the tuning the spatial orientation and the relative electronic properties of the aromatic substituents. This improved biomolecular recognition provides opportunities for enhanced biosensing and functional protein delivery to the cells.
Collapse
Affiliation(s)
- Zeynep Ekmekci
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; Department of Biomedical Engineering, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Daniel F Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Hao Wang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Kurinomaru T, Tomita S, Hagihara Y, Shiraki K. Enzyme hyperactivation system based on a complementary charged pair of polyelectrolytes and substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3826-3831. [PMID: 24635224 DOI: 10.1021/la500575c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Artificial enzyme activators are of great interest for enzyme applications in a wide range of research fields. Here, we report an enzyme hyperactivation system using polyelectrolytes that are complementary to charged substrates. The enzyme activity of α-chymotrypsin (ChT) for a cationic substrate increased 7-fold at pH 7.0 in the presence of anionic poly(acrylic acid) (PAAc) and for an anionic substrate increased 18-fold at pH 7.0 in the presence of cationic poly(allylamine) (PAA). Analysis of salt and pH effects, enzyme kinetics, dynamic light scattering (DLS), and circular dichroism (CD) indicated that the enzyme activation results from favorable electrostatic interactions between oppositely charged substrates and polyelectrolytes surrounding the enzymes. This hyperactivation system does not require laborious mutagenesis or chemical modification of enzymes and thus is relevant to a number of applications.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | |
Collapse
|
27
|
Tonga GY, Saha K, Rotello VM. 25th anniversary article: interfacing nanoparticles and biology: new strategies for biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:359-70. [PMID: 24105763 PMCID: PMC4067239 DOI: 10.1002/adma.201303001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Indexed: 05/09/2023]
Abstract
The exterior surface of nanoparticles (NPs) dictates the behavior of these systems with the outside world. Understanding the interactions of the NP surface functionality with biosystems enables the design and fabrication of effective platforms for therapeutics, diagnostics, and imaging agents. In this review, we highlight the role of chemistry in the engineering of nanomaterials, focusing on the fundamental role played by surface chemistry in controlling the interaction of NPs with proteins and cells.
Collapse
|
28
|
Yoshimatsu K, Yamazaki T, Hoshino Y, Rose PE, Epstein LF, Miranda LP, Tagari P, Beierle JM, Yonamine Y, Shea KJ. Epitope discovery for a synthetic polymer nanoparticle: a new strategy for developing a peptide tag. J Am Chem Soc 2014; 136:1194-7. [PMID: 24410250 PMCID: PMC3985795 DOI: 10.1021/ja410817p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
We describe a novel epitope discovery
strategy for creating an
affinity agent/peptide tag pair. A synthetic polymer nanoparticle
(NP) was used as the “bait” to catch an affinity peptide
tag. Biotinylated peptide tag candidates of varied sequence and length
were attached to an avidin platform and screened for affinity against
the polymer NP. NP affinity for the avidin/peptide tag complexes was
used to provide insight into factors that contribute NP/tag binding.
The identified epitope sequence with an optimized length (tMel-tag)
was fused to two recombinant proteins. The tagged proteins exhibited
higher NP affinity than proteins without tags. The results establish
that a fusion peptide tag consisting of optimized 15 amino acid residues
can provide strong affinity to an abiotic polymer NP. The affinity
and selectivity of NP/tMel-tag interactions were exploited for protein
purification in conjunction with immobilized metal ion/His6-tag interactions
to prepare highly purified recombinant proteins. This strategy makes
available inexpensive, abiotic synthetic polymers as affinity agents
for peptide tags and provides alternatives for important applications
where more costly affinity agents are used.
Collapse
Affiliation(s)
- Keiichi Yoshimatsu
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mignani S, El Kazzouli S, Bousmina MM, Majoral JP. Dendrimer Space Exploration: An Assessment of Dendrimers/Dendritic Scaffolding as Inhibitors of Protein–Protein Interactions, a Potential New Area of Pharmaceutical Development. Chem Rev 2013; 114:1327-42. [DOI: 10.1021/cr400362r] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de
Biochimie Pharmacologiques
et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Saïd El Kazzouli
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
| | - Mosto M. Bousmina
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
- Hassan II Academy of Science and Technology, Avenue Mohammed
VI, 10222 Rabat, Morocco
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination, Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
30
|
Mout R, Rotello VM. Bio and Nano Working Together: Engineering the Protein-Nanoparticle Interface. Isr J Chem 2013. [DOI: 10.1002/ijch.201300026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Kim ST, Saha K, Kim C, Rotello VM. The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 2013; 46:681-91. [PMID: 23294365 DOI: 10.1021/ar3000647] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Surface properties dictate the behavior of nanomaterials in vitro, in vivo, and in the environment. Such properties include surface charge and hydrophobicity. Also key are more complex supramolecular interactions such as aromatic stacking and hydrogen bonding, and even surface topology from the structural to the atomic level. Surface functionalization of nanoparticles (NPs) provides an effective way to control the interface between nanomaterials and the biological systems they are designed to interact with. In medicine, for instance, proper control of surface properties can maximize therapeutic or imaging efficacy while minimizing unfavorable side effects. Meanwhile, in environmental science, thoughtful choice of particle coating can minimize the impact of manufactured nanomaterials on the environment. A thorough knowledge of how NP surfaces with various properties affect biological systems is essential for creating NPs with such useful therapeutic and imaging properties as low toxicity, stability, biocompatibility, favorable distribution throughout cells or tissues, and favorable pharmacokinetic profiles--and for reducing the potential environmental impact of manufactured nanomaterials, which are becoming increasingly prominent in the marketplace. In this Account, we discuss our research and that of others into how NP surface properties control interactions with biomolecules and cells at many scales, including the role the particle surface plays in determining in vivo behavior of nanomaterials. These interactions can be benign, beneficial, or lead to dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Understanding these interactions and their consequences helps us to design minimally invasive imaging and delivery agents. We also highlight in this Account how we have fabricated nanoparticles to act as therapeutic agents via tailored interactions with biomacromolecules. These particles offer new therapeutic directions from traditional small molecule therapies, and with potentially greater versatility than is possible with proteins and nucleic acids.
Collapse
Affiliation(s)
- Sung Tae Kim
- Department of Chemistry, University of Massachusetts—Amherst, 710 North Pleasant St., Amherst, Massachusetts 01003, United States
| | - Krishnendu Saha
- Department of Chemistry, University of Massachusetts—Amherst, 710 North Pleasant St., Amherst, Massachusetts 01003, United States
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts—Amherst, 710 North Pleasant St., Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts—Amherst, 710 North Pleasant St., Amherst, Massachusetts 01003, United States
| |
Collapse
|
32
|
Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP. Chemically Exfoliated MoS2as Near-Infrared Photothermal Agents. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209229] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed Engl 2013; 52:4160-4. [PMID: 23471666 DOI: 10.1002/anie.201209229] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/14/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Stanley S Chou
- Department of Materials Science and Engineering, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hou J, Szaflarski DM, Simon JD. Quantifying the Association Constant and Stoichiometry of the Complexation between Colloidal Polyacrylate-Coated Gold Nanoparticles and Chymotrypsin. J Phys Chem B 2013; 117:4587-93. [DOI: 10.1021/jp3087489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Hou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
| | - Diane M. Szaflarski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904,
United States
| | - John D. Simon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United
States
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904,
United States
| |
Collapse
|
36
|
Jiang QQ, Bartsch L, Sicking W, Wich PR, Heider D, Hoffmann D, Schmuck C. A new approach to inhibit human β-tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Org Biomol Chem 2013; 11:1631-9. [DOI: 10.1039/c3ob27302d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Kurinomaru T, Tomita S, Kudo S, Ganguli S, Nagasaki Y, Shiraki K. Improved complementary polymer pair system: switching for enzyme activity by PEGylated polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4334-4338. [PMID: 22320263 DOI: 10.1021/la2043312] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of technology for on/off switching of enzyme activity is expected to expand the applications of enzyme in a wide range of research fields. We have previously developed a complementary polymer pair system (CPPS) that enables the activity of several enzymes to be controlled by a pair of oppositely charged polymers. However, it failed to control the activity of large and unstable α-amylase because the aggregation of the complex between anionic α-amylase and cationic poly(allylamine) (PAA) induced irreversible denaturation of the enzyme. To address this issue, we herein designed and synthesized a cationic copolymer with a poly(ethylene glycol) backbone, poly(N,N-diethylaminoethyl methacrylate)-block-poly(ethylene glycol) (PEAMA-b-PEG). In contrast to PAA, α-amylase and β-galactosidase were inactivated by PEAMA-b-PEG with the formation of soluble complexes. The enzyme/PEAMA-b-PEG complexes were then successfully recovered from the complex by the addition of anionic poly(acrylic acid) (PAAc). Thus, dispersion of the complex by PEG segment in PEAMA-b-PEG clearly plays a crucial role for regulating the activities of these enzymes, suggesting that PEGylated charged polymer is a new candidate for CPPS for large and unstable enzymes.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 2012; 41:2849-66. [DOI: 10.1039/c1cs15280g] [Citation(s) in RCA: 562] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Gal F, Perez H, Noel V, Carrot G. Water-soluble polymer-grafted platinum nanoparticles for the subsequent binding of enzymes. synthesis and SANS. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Moyano DF, Rotello VM. Nano meets biology: structure and function at the nanoparticle interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10376-85. [PMID: 21476507 PMCID: PMC3154611 DOI: 10.1021/la2004535] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the interactions of nanomaterials with biosystems is a critical goal in both biomedicine and environmental science. Engineered nanoparticles provide excellent tools for probing this interface. In this feature article, we will summarize one of the themes presented in our recent Langmuir lecture discussing the use of monolayer design to understand and control the interactions of nanoparticles with biomolecules and cells.
Collapse
Affiliation(s)
- Daniel F. Moyano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
41
|
Saha K, Bajaj A, Duncan B, Rotello VM. Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1903-18. [PMID: 21671432 PMCID: PMC3516997 DOI: 10.1002/smll.201100478] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 05/24/2023]
Abstract
Surface recognition of biosystems is a critical component in the development of novel biosensors and delivery vehicles, and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with bio-macromolecules and cells. Through the engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-bio-macromolecule/cellular interactions, emphasizing the effect of the surface monolayer structure on the interactions with proteins, DNA, and cell surfaces. The extension of these tailored interactions to hybrid nanomaterials, biosensing platforms, and delivery vehicles is also discussed.
Collapse
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst 710 North Pleasant Street, Amherst, MA 01003
| | - Avinash Bajaj
- Department of Chemistry, University of Massachusetts Amherst 710 North Pleasant Street, Amherst, MA 01003
- Regional Centre for Biotechnology, 180 Udyog Vihar Phase 1, Gurgaon-122016, Haryana, India
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst 710 North Pleasant Street, Amherst, MA 01003
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 North Pleasant Street, Amherst, MA 01003
| |
Collapse
|
42
|
Gagner JE, Lopez MD, Dordick JS, Siegel RW. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 2011; 32:7241-52. [PMID: 21705074 DOI: 10.1016/j.biomaterials.2011.05.091] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 12/01/2022]
Abstract
Many biomedical applications of gold nanoparticles (NPs) rely on proteins that are covalently attached or adsorbed on the NP surface. The biological functionality of the protein-NP conjugate depends on the protein's ability to interact with target molecules, which is affected by NP characteristics such as size, curvature, aspect ratio, morphology, crystal structure, and surface chemistry. In the present study, the effect of gold nanoparticle morphology on the structure and function of adsorbed enzymes, lysozyme (Lyz) and α-chymotrypsin (ChT), has been investigated. Gold nanospheres (AuNS) were synthesized with diameters 10.6 ± 1 nm, and gold nanorods (AuNR) were synthesized with dimensions of (10.3 ± 2) × (36.4 ± 9) nm. Under saturating conditions, proteins adsorb with a higher surface density on AuNR when compared to AuNS. In the case of Lyz, adsorption on AuNS and AuNR resulted in a 10% and 15% loss of secondary structure, respectively, leading to conjugate aggregation and greatly reduced enzymatic activity. ChT retained most of its secondary structure and activity on AuNS and AuNR at low surface coverages; however, as protein loading approached monolayer conditions on AuNR, a 40% loss in secondary structure and 86% loss of activity was observed. Subsequent adsorption of ChT in multilayers on the AuNR surface allowed the conjugates to recover activity and remain stable. It is clear that AuNP morphology does affect adsorbed protein structure; a better understanding of these differences will be essential to engineer fully functional nanobioconjugates.
Collapse
Affiliation(s)
- Jennifer E Gagner
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
43
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 991] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Prado-Gotor R, Grueso E. A kinetic study of the interaction of DNA with gold nanoparticles: mechanistic aspects of the interaction. Phys Chem Chem Phys 2010; 13:1479-89. [PMID: 21132199 DOI: 10.1039/c0cp00901f] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic study of the interaction of gold nanoparticles capped with N-(2-mercaptopropionyl)glycine with double stranded DNA was carried out in water and in salt (NaCl) solutions. The kinetic curves are biexponential and reveal the presence of three kinetic steps. The dependence of the reciprocal fast and slow relaxation time, on the DNA concentration, is a curve and tends to a plateau at high DNA concentrations. The simplest mechanism consistent with the kinetic results involves a simple three-step series mechanism reaction scheme. The first step corresponds to a very fast step that is related to a diffusion controlled formation of an external precursor complex (DNA, AuNPs); the second step involves the formation of a (DNA/AuNPs)(I) complex, as a result of the binding affinity between hydrophilic groups of the tiopronin and the DNA grooves. Finally, the third step has been interpreted as a consequence of a conformational change of the (DNA/AuNPs)(I) complex formed in the second step, to a more compacted form (DNA/AuNPs)(II). The values of the rate constants of each step decrease as NaCl concentration increases. The results have been discussed in terms of solvation of the species and changes in the viscosity of the solution.
Collapse
Affiliation(s)
- Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Sevilla, C/Profesor García González s/n, 41012 Sevilla, Spain
| | | |
Collapse
|
45
|
Abstract
A significant increase in biomedical applications of nanomaterials and their potential toxicity demands versatile analytical techniques to determine protein-nanoparticle (NP) interactions. These diverse analytical techniques are reviewed. Spectroscopic methods play a significant role in studying binding affinity, binding ratio, and binding mechanisms. To elucidate NP-proteome interactions, chromatography and electrophoresis techniques are applied to separate NP-bound proteins and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to identify these proteins. Since NP-protein binding is a dynamic event, surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) are methods of choice to study the kinetics of NP-protein binding.
Collapse
Affiliation(s)
| | | | | | - Bing Yan
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Gentilini C, Pasquato L. Morphology of mixed-monolayers protecting metal nanoparticles. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b912759c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci 2009; 10:4198-4209. [PMID: 20057940 PMCID: PMC2790103 DOI: 10.3390/ijms10104198] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 11/16/2022] Open
Abstract
The structure and function of an enzyme can be altered by nanoparticles (NPs). The interaction between enzyme and NPs is governed by the key properties of NPs, such as structure, size, surface chemistry, charge and surface shape. Recent representative studies on the NP-enzyme interactions and the regulation of enzyme activity by NPs with different size, composition and surface modification are reviewed.
Collapse
|
48
|
Jordan BJ, Hong R, Han G, Rana S, Rotello VM. Modulation of enzyme-substrate selectivity using tetraethylene glycol functionalized gold nanoparticles. NANOTECHNOLOGY 2009; 20:434004. [PMID: 19801753 DOI: 10.1088/0957-4484/20/43/434004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tetraethylene glycol (TEG) functionalized gold nanoparticles with 2 nm core diameters (AuTEG) enhance alpha-chymotrypsin (ChT) enzyme activity in a substrate-selective fashion. We explored the hydrolysis of four different substrates and observed a marked increase in activity with the most hydrophobic substrate N-succinyl-alanine-alanine-proline-phenylalanine- p-nitroanilide (TP), while the other substrates remain virtually unaffected by the AuTEG 'crowding effect' in solution. The enhancement in catalysis is indicated by an increase in K(cat)/K(m) as obtained from Lineweaver-Burk analysis and we hypothesize it to arise from a macromolecular crowding effect analogous to that observed with high molecular weight poly(ethylene glycol) (PEG) polymers.
Collapse
Affiliation(s)
- Brian J Jordan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
49
|
Kale TS, Klaikherd A, Popere B, Thayumanavan S. Supramolecular assemblies of amphiphilic homopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9660-9670. [PMID: 19453140 DOI: 10.1021/la900734d] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amphiphilic molecules self-assemble in solvents because of the differential solvation of the hydrophilic and lipophilic functionalities. Small-molecule surfactants have long been known to form micelles in water that can solubilize lipophilic guest molecules in their water-excluded interior. Polymeric surfactants based on block copolymers are also known to form several types of aggregates in water owing either to the mutual incompatibility of the blocks or better solvation of one of the blocks by the solvent. Incorporating amphiphilicity at smaller length scales in polymers would provide an avenue to capture the interesting properties of macromolecules and fine tune their supramolecular assemblies. To address this issue, we designed and synthesized amphiphilic homopolymers containing hydrophilic and lipophilic functionalities in the monomer. Such a polymer can be imagined to be a string of small-molecule surfactants tethered together such that the hydrophilic and lipophilic functionalities are located on opposite faces, rendering the assemblies facially amphiphilic. This feature article describes the self-assembly of our amphiphilic homopolymers in polar and apolar solvents. These homopolymers not only form micelles in water but also form inverse micelles in organic solvents. Subtle changes to the molecular structure have been demonstrated to yield vesicles in water and inverted micelles in organic solvents. The characterization of these assemblies and their applications in separations, catalysis, and sensing are described here.
Collapse
Affiliation(s)
- Tejaswini S Kale
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
50
|
Raghava S, Singh PK, Ranga Rao A, Dutta V, Gupta MN. Nanoparticles of unmodified titanium dioxide facilitate protein refolding. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b817306k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|