1
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Qiu R, Sasselli IR, Álvarez Z, Sai H, Ji W, Palmer LC, Stupp SI. Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential. J Am Chem Soc 2022; 144:5562-5574. [PMID: 35296133 DOI: 10.1021/jacs.2c00433] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular peptide chemistry offers a versatile strategy to create chemical systems useful as new biomaterials with potential to deliver nearly 1000 known candidate peptide therapeutics or integrate other types of bioactivity. We report here on the co-assembly of lipidated β-sheet-forming peptides with soluble short peptides, yielding supramolecular copolymers with various degrees of internal order. At low peptide concentrations, the co-monomer is protected by lodging within internal aqueous compartments and stabilizing internal β-sheets formed by the lipidated peptides. At higher concentrations, the peptide copolymerizes with the lipidated peptide and disrupts the β-sheet secondary structure. The thermodynamic metastability of the co-assembly in turn leads to the spontaneous release of peptide monomers and thus serves as a potential mechanism for drug delivery. We demonstrated the function of these supramolecular systems using a drug candidate for Alzheimer's disease and found that the copolymers enhance neuronal cell viability when the soluble peptide is released from the assemblies.
Collapse
Affiliation(s)
- Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Wei Ji
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Medicine, Northwestern University, 676 N. St. Clair Street, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Jacoby G, Segal Asher M, Ehm T, Abutbul Ionita I, Shinar H, Azoulay-Ginsburg S, Zemach I, Koren G, Danino D, Kozlov MM, Amir RJ, Beck R. Order from Disorder with Intrinsically Disordered Peptide Amphiphiles. J Am Chem Soc 2021; 143:11879-11888. [PMID: 34310121 PMCID: PMC8397319 DOI: 10.1021/jacs.1c06133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/02/2023]
Abstract
Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block copolymers. Herein, we present new peptide amphiphiles composed of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules, termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.
Collapse
Affiliation(s)
- Guy Jacoby
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
| | - Merav Segal Asher
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
- Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamara Ehm
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
- Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München D-80539, Germany
| | - Inbal Abutbul Ionita
- CryoEM
Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hila Shinar
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
| | - Salome Azoulay-Ginsburg
- Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Zemach
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
| | - Gil Koren
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
| | - Dganit Danino
- CryoEM
Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong-Technion
Israel Institute of Technology, Shantou, Guangdong Province 515063, China
| | - Michael M. Kozlov
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Sackler School
of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roey J. Amir
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
- Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roy Beck
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for NanoTechnology & NanoScience, Tel Aviv Univeristy, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Yang Y, Chen CY, Liu DP, Raj A, Hamaguchi HO, Qiu HB, Lin YJ, Wang CL, Wang XS. Vesicular Membrane with Structured Interstitial Water. J Phys Chem B 2020; 124:9239-9245. [DOI: 10.1021/acs.jpcb.0c06678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chin Yi Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Da Peng Liu
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ankit Raj
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hiro-o. Hamaguchi
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hui Bin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Jun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chien Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Xiao Song Wang
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Al-Halifa S, Zottig X, Babych M, Côté-Cyr M, Bourgault S, Archambault D. Harnessing the Activation of Toll-Like Receptor 2/6 by Self-Assembled Cross-β Fibrils to Design Adjuvanted Nanovaccines. NANOMATERIALS 2020; 10:nano10101981. [PMID: 33036404 PMCID: PMC7600500 DOI: 10.3390/nano10101981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
Protein fibrils characterized with a cross-β-sheet quaternary structure have gained interest as nanomaterials in biomedicine, including in the design of subunit vaccines. Recent studies have shown that by conjugating an antigenic determinant to a self-assembling β-peptide, the resulting supramolecular assemblies act as an antigen delivery system that potentiates the epitope-specific immune response. In this study, we used a ten-mer self-assembling sequence (I10) derived from an amyloidogenic peptide to biophysically and immunologically characterize a nanofibril-based vaccine against the influenza virus. The highly conserved epitope from the ectodomain of the matrix protein 2 (M2e) was elongated at the N-terminus of I10 by solid phase peptide synthesis. The chimeric M2e-I10 peptide readily self-assembled into unbranched, long, and twisted fibrils with a diameter between five and eight nm. These cross-β nanoassemblies were cytocompatible and activated the heterodimeric Toll-like receptor (TLR) 2/6. Upon mice subcutaneous immunization, M2e-fibrils triggered a robust anti-M2e specific immune response, which was dependent on self-assembly and did not require the use of an adjuvant. Overall, this study describes the efficacy of cross-β fibrils to activate the TLR 2/6 and to stimulate the epitope-specific immune response, supporting usage of these proteinaceous assemblies as a self-adjuvanted delivery system for antigens.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (S.B.); (D.A.)
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
- Correspondence: (S.B.); (D.A.)
| |
Collapse
|
6
|
Wang Y, An Y, Shmidov Y, Bitton R, Deshmukh SA, Matson JB. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3022-3031. [PMID: 33163198 PMCID: PMC7643854 DOI: 10.1039/d0qm00369g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure K S XEK S , where KS= S-aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable KS units in the APAs indicated that the KS units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 102 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 102 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
7
|
Construction of a Novel Photoresponsive Supramolecular Fluorescent Hydrogel through Host‐Guest Interaction between β‐Cyclodextrin and Azobenzene. ChemistrySelect 2020. [DOI: 10.1002/slct.201904361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Liu X, Chen T, Yu F, Shang Y, Meng X, Chen ZR. AIE-Active Random Conjugated Copolymers Synthesized by ADMET Polymerization as a Fluorescent Probe Specific for Palladium Detection. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoqing Liu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518005, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Taixin Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Feng Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuxuan Shang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Xue Meng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhong-Ren Chen
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518005, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| |
Collapse
|
9
|
Kim H, Kim I, Hwang JH, Park J, Ahn H, Han EH, Lee E. Glutathione-adaptive peptide amphiphile vesicles rationally designed using positionable disulfide-bridges for effective drug transport. Polym Chem 2020. [DOI: 10.1039/d0py00504e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The drug loading/releasing capability of GSH-responsive nanovesicles self-assembled from peptide amphiphiles was controlled by varying the location and number of disulfide-linkages in the peptide for the selective drug-release into tumor cells.
Collapse
Affiliation(s)
- Hayeon Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inhye Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jaehyun Park
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory
- Pohang University of Science and Technology
- Pohang 37673
- Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis
- Korea Basic Science Institute (KBSI)
- Cheongju 28119
- Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
10
|
Sun B, Tao K, Jia Y, Yan X, Zou Q, Gazit E, Li J. Photoactive properties of supramolecular assembled short peptides. Chem Soc Rev 2019; 48:4387-4400. [PMID: 31237282 PMCID: PMC6711403 DOI: 10.1039/c9cs00085b] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioinspired nanostructures can be the ideal functional smart materials to bridge the fundamental biology, biomedicine and nanobiotechnology fields. Among them, short peptides are among the most preferred building blocks as they can self-assemble to form versatile supramolecular architectures displaying unique physical and chemical properties, including intriguing optical features. Herein, we discuss the progress made over the past few decades in the design and characterization of optical short peptide nanomaterials, focusing on their intrinsic photoluminescent and waveguiding performances, along with the diverse modulation strategies. We review the complicated optical properties and the advanced applications of photoactive short peptide self-assemblies, including photocatalysis, as well as photothermal and photodynamic therapy. The diverse advantages of photoactive short peptide self-assemblies, such as eco-friendliness, morphological and functional flexibility, and ease of preparation and modification, endow them with the capability to potentially serve as next-generation, bio-organic optical materials, allowing the bridging of the optics world and the nanobiotechnology field.
Collapse
Affiliation(s)
- Bingbing Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Department of Biomolecular, Assembly and Biomaterials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel. and Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang D, Hou X, Zhang X, Zhao Y, Ma B, Sun Y, Wang J. Light- and pH-Controlled Hierarchical Coassembly of Peptide Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9841-9847. [PMID: 31268331 DOI: 10.1021/acs.langmuir.9b01459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coassembly behavior of peptide amphiphiles (PAs) C4-Bhc-EE-NH2 and C14-FKK-NH2 has been investigated by transmission electron microscopy, atomic force microscopy, fluorescence microscopy, circular dichroism, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance. These two PAs coassembled into nanofibers by electrostatic and π-π stacking interactions at a low concentration and further aggregated into nanofiber bundles via charge complementation on the surface of nanofibers. As the charge number varied with pH, the bundles could be disassembled/assembled with pH regulation. More interestingly, as C4-Bhc-EE-NH2 was a photodegradable molecule, the bundles could also be responsive to both ultraviolet (UV) and near-infrared (NIR) light. In contrast to the reversible pH-dependent response, the light responses were irreversible as C4-Bhc-EE-NH2 broke under UV or NIR radiation. The highlight of this article is that structural changes were realized for control at the aggregate level, not only at the molecular level. With this inspiration, we hope that we can support the novel biomaterial construction and exploitation of new functions of biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xiaojun Hou
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xuecheng Zhang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
12
|
He PP, Li XD, Wang L, Wang H. Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects. Acc Chem Res 2019; 52:367-378. [PMID: 30653298 DOI: 10.1021/acs.accounts.8b00398] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembled nanomaterials show potential high efficiency as theranostic agents for high-performance imaging and therapy. However, superstructures and properties of preassembled nanomaterials are somewhat compromised under complicated physiological conditions. Given the advantages of the dynamic nature and adaptive behavior of self-assembly systems, we propose an "in vivo self-assembly" strategy for in situ construction of nanomaterials in living objects. For the proof-of-concept study of in vivo self-assembly, we developed a bispyrene (BP) molecule as a multifunctional building block. BP molecules show nonfluorescence in the monomeric state. Quantum-chemical calculations indicate that BP forms twisted intramolecular charge transfer states, which are separated into two orthogonal units, preventing the fluorescence emission. Interestingly, the typical excimeric emission of BP is observed with the formation of J-type aggregates, as confirmed by single-crystal X-ray diffraction. Packing of the BP molecules generates parallel pyrene units that interact with adjacent ones in a slipped face-to-face fashion through intermolecular π-π interactions. BP and/or its amphiphilic derivatives are capable of self-aggregating into nanoparticles (NPs) in aqueous solution because of the hydrophobic and π-π interactions of BP. Upon specific biological stimuli, BP NPs can be transformed into variable self-assembled superstructures. Importantly, the self-assembled BP NPs exhibit turn-on fluorescence signals that can be used to monitor the self-assembly/disassembly process in vitro and in vivo. On the basis of the photophysical properties of BP and its aggregates, we synthesized a series of designed BP derivatives as building blocks for in situ construction of functional nanomaterials for bioimaging and/or therapeutics. We observed several new biomedical effects, e.g., (i) the assembly/aggregation-induced retention (AIR) effect, which shows improved accumulation and retention of bioactive nanomaterials in the regions of interests; (ii) the transformation-induced surface adhesion (TISA) effect, which means the BP NPs transform into nanofibers (NFs) on cell surfaces upon binding with specific receptors, which leads to less uptake of BP NPs by cells via traditional endocytosis pathway; and (iii) transformation of the BP NPs into NFs in the tumor microenvironment, showing high accumulation and long-term retention, revealing the transformation-enhanced accumulation and retention (TEAR) effect. In this Account, we summarize the fluorescence property and emission mechanism of BP building blocks upon aggregation in the biological environment. Moreover, BP-derived compounds used for in vivo self-assembly and transformation are introduced involving modulation strategies. Subsequently, unexpected biomedical effects and applications for theranostics of BP based nanomaterials are discussed. We finally conclude with an outlook toward future developments of BP-based self-assembled nanomaterials.
Collapse
Affiliation(s)
- Ping-Ping He
- Key Laboratory of Chemistry and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, 182 Minzu Road, Hongshan District, Wuhan, Hubei 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
| | - Xiang-Dan Li
- Key Laboratory of Chemistry and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, 182 Minzu Road, Hongshan District, Wuhan, Hubei 430074, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Kapf A, Albrecht M. Discrimination of proteins through interaction with pyrene-labelled polymer aggregates. J Mater Chem B 2018; 6:6599-6606. [PMID: 32254868 DOI: 10.1039/c8tb02130a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyrene-labelled PDMAEMA (2-(dimethylamino)ethyl methacrylate) polymer was synthesized through a controlled radical RAFT polymerisation approach. An average pyrene content of 3.65% was determined by UV/Vis and 1H NMR measurements. DLS measurements reveal the formation of polymer aggregates with an average size of 172 nm in aqueous phosphate buffer indicating the presence of hydrophobic interactions between pyrene and/or DMAEMA moieties of adjacent polymer chains. Furthermore, this aggregation results in the appearance of two characteristic emission bands at 394 and 488 nm analyzed by fluorescence measurements. Based on spectral changes of the so-called monomer and excimer emission intensity, the specific discrimination of various non-metallo- and metallo proteins was realized using an optical fingerprint approach. DLS and fluorescence measurements show a significant dependence of the structural characteristics of the analytes on the presence of different binding modes between the hydrophilic DMAEMA side groups of the polymer and the proteins, resulting in a molecular disassembly of the aggregates and/or fluorescence quenching. Furthermore, pH, temperature and ionic strength dependence of the sensor polymer with BSA was investigated to optimise the external parameters. Based on these results, the most specific discrimination of the analyzed proteins was obtained using a sodium chloride concentration of 50 mM and a pH of 7.0. This study gives fundamental insights into the sensing performance of a novel one-component pyrene-based polymer system and its application as a protein sensor.
Collapse
Affiliation(s)
- Andreas Kapf
- Institute of Organic and Macromolecular Chemistry, Saarland University, Campus 4.2, 66123 Saarbrücken, Germany.
| | | |
Collapse
|
14
|
Figueira TN, Mendonça DA, Gaspar D, Melo MN, Moscona A, Porotto M, Castanho MARB, Veiga AS. Structure-Stability-Function Mechanistic Links in the Anti-Measles Virus Action of Tocopherol-Derivatized Peptide Nanoparticles. ACS NANO 2018; 12:9855-9865. [PMID: 30230818 PMCID: PMC6399014 DOI: 10.1021/acsnano.8b01422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measles remains one of the leading causes of child mortality worldwide and is re-emerging in some countries due to poor vaccine coverage, concomitant with importation of measles virus (MV) from endemic areas. The lack of specific chemotherapy contributes to negative outcomes, especially in infants or immunodeficient individuals. Fusion inhibitor peptides derived from the MV Fusion protein C-terminal Heptad Repeat (HRC) targeting MV envelope fusion glycoproteins block infection at the stage of entry into host cells, thus preventing viral multiplication. To improve efficacy of such entry inhibitors, we have modified a HRC peptide inhibitor by introducing properties of self-assembly into nanoparticles (NP) and higher affinity for both viral and cell membranes. Modification of the peptide consisted of covalent grafting with tocopherol to increase amphipathicity and lipophilicity (HRC5). One additional peptide inhibitor consisting of a peptide dimer grafted to tocopherol was also used (HRC6). Spectroscopic, imaging, and simulation techniques were used to characterize the NP and explore the molecular basis for their antiviral efficacy. HRC5 forms micellar stable NP while HRC6 aggregates into amorphous, loose, unstable NP. Interpeptide cluster bridging governs NP assembly into dynamic metastable states. The results are consistent with the conclusion that the improved efficacy of HRC6 relative to HRC5 can be attributed to NP instability, which leads to more extensive partition to target membranes and binding to viral target proteins.
Collapse
Affiliation(s)
- Tiago N. Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, United States
- Center for Host−Pathogen Interaction, Columbia University Medical Center, New York, New York 10032, United States
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, United States
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, United States
- Center for Host−Pathogen Interaction, Columbia University Medical Center, New York, New York 10032, United States
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
15
|
Kim I, Bang WY, Kim S, Jin SM, Hyun JY, Han EH, Lee E. Peroxisome-targeted Supramolecular Nanoprobes Assembled with Pyrene-labelled Peptide Amphiphiles. Chem Asian J 2018; 13:3485-3490. [PMID: 29956888 DOI: 10.1002/asia.201800863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/09/2022]
Abstract
Despite the versatile metabolic functions of peroxisomes such as lipid synthesis and fatty acid oxidation and their relevance to genetically inherited diseases, namely, peroxisome biogenesis disorders and peroxisomal enzyme deficiency, there is not much research on peroxisome-targeting therapeutics. Herein we present supramolecular nanostructured probes based on the self-assembly of peptide amphiphiles (PAs) having peroxisome-targeting ability in mammalian cells. The PA was designed to include the peroxisome-targeting tripeptide (SKL) and a fluorescent dye (pyrene). It was revealed that the presence of the SKL-appended carboxyl terminal group of PA, the extent of α-helical nature of the peptide block, and the fibrillar morphology of nano-assemblies affected the targeting efficiency of PA supramolecular nanoprobe. The simple modification of PAs by the peroxisome-targeting strength prediction showed an enhanced peroxisome specificity, as expected. This work provides important insights into designing subcellular organelle-targeting nanoparticles for next-generation nanomedicines.
Collapse
Affiliation(s)
- Inhye Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sooyong Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seon-Mi Jin
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ju-Yong Hyun
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.,Department of Bio-Microsystem Technology, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
16
|
Lee SS, Fyrner T, Chen F, Álvarez Z, Sleep E, Chun DS, Weiner JA, Cook RW, Freshman RD, Schallmo MS, Katchko KM, Schneider AD, Smith JT, Yun C, Singh G, Hashmi SZ, McClendon MT, Yu Z, Stock SR, Hsu WK, Hsu EL, Stupp SI. Sulfated glycopeptide nanostructures for multipotent protein activation. NATURE NANOTECHNOLOGY 2017; 12. [PMID: 28650443 PMCID: PMC5553550 DOI: 10.1038/nnano.2017.109] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.
Collapse
Affiliation(s)
- Sungsoo S. Lee
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Timmy Fyrner
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Feng Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Eduard Sleep
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Danielle S. Chun
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Joseph A. Weiner
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Ralph W. Cook
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Ryan D. Freshman
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Michael S. Schallmo
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Karina M. Katchko
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Andrew D. Schneider
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Justin T. Smith
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Chawon Yun
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Gurmit Singh
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Sohaib Z. Hashmi
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Mark T. McClendon
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Zhilin Yu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
| | - Stuart R. Stock
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, USA
| | - Wellington K. Hsu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Erin L. Hsu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Orthopaedic Surgery, Northwestern University, Chicago, Illinois 60208, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Corresponding author:
| |
Collapse
|
17
|
Ardoña HAM, Kale TS, Ertel A, Tovar JD. Nonresonant and Local Field Effects in Peptidic Nanostructures Bearing Oligo(p-phenylenevinylene) Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7435-7445. [PMID: 28683194 DOI: 10.1021/acs.langmuir.7b01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanostructures with built-in electronic functions offer a new platform for biomaterial science. In this report, we interrogate the influences of the immediate peptide environment around oligo(p-phenylenevinylene) (OPV3) electronic units embedded within one-dimensional peptide nanostructures on the resulting photophysics as assessed by UV-vis, photoluminescence (PL), and circular dichroism spectroscopies. To do so, we studied peptide-core-peptide molecules where the core was either OPV3 or an aliphatic n-decyl chain. Coassemblies of these molecules wherein the π-core was diluted as a minority component within a majority aliphatic matrix allowed for the variation of interchromophore exciton coupling commonly found in homoassemblies of peptide-OPV3-peptide monomers. Upon coassembly of the peptides, a hydrophilic tripeptide sequence (Asp-Asp-Asp-, DDD-) promoted the dilution/isolation of the peptide-π-peptide molecules in the majority peptide-decyl-peptide matrix whereas a hydrophobic tripeptide sequence (Asp-Val-Val-, DVV-) promoted the formation of self-associated stacks within the nanostructures. We also performed temperature variation studies to induce the reorganization of π-electron units in the spatially constrained n-decyl environment. This study elucidates the nonresonant (e.g., conformational) and local peptide field effects enforced within the internal environment of peptide nanomaterials and how they lead to varied photophysical properties of the embedded π-electron cores. It offers new insights on tuning the optoelectronic properties of these types of materials on the basis of the local electronic and steric environment available within the nanostructures.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Tejaswini S Kale
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Alyssa Ertel
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John D Tovar
- Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and §Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
19
|
Sanders A, Kale TS, Katz HE, Tovar JD. Solid-Phase Synthesis of Self-Assembling Multivalent π-Conjugated Peptides. ACS OMEGA 2017; 2:409-419. [PMID: 31457447 PMCID: PMC6640940 DOI: 10.1021/acsomega.6b00414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/24/2017] [Indexed: 05/24/2023]
Abstract
We present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, as revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.
Collapse
Affiliation(s)
- Allix
M. Sanders
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Tejaswini S. Kale
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Howard E. Katz
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John D. Tovar
- Department
of Chemistry, Krieger School of Arts and Sciences, Department of Materials
Science and Engineering, Whiting School of Engineering, Institute of NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Deshmukh SA, Solomon LA, Kamath G, Fry HC, Sankaranarayanan SKRS. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles. Nat Commun 2016; 7:12367. [PMID: 27554944 PMCID: PMC4999504 DOI: 10.1038/ncomms12367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/27/2016] [Indexed: 01/29/2023] Open
Abstract
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O–H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process. The role of water in the kinetics of the self-assembly process of amphiphilic peptides still remains unknown. Sankaranarayanan et al. have shown through computational study that water has a dual nature when dictating the mechanism and dynamics of self-assembly of peptide amphiphiles.
Collapse
Affiliation(s)
- Sanket A Deshmukh
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lee A Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ganesh Kamath
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | |
Collapse
|
21
|
|
22
|
Majumder J, Dastidar P. An Easy Access to Organic Salt-Based Stimuli-Responsive and Multifunctional Supramolecular Hydrogels. Chemistry 2016; 22:9267-76. [DOI: 10.1002/chem.201601136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Joydeb Majumder
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; 2A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; 2A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
23
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1342] [Impact Index Per Article: 134.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
24
|
Huang Z, Che S. Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides. CHEM REC 2015; 15:665-74. [DOI: 10.1002/tcr.201402096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Zhehao Huang
- School of Chemistry and Chemical Technology, State Key Laboratory of Composite Materials; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Technology, State Key Laboratory of Composite Materials; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
25
|
Dehsorkhi A, Gouveia RM, Smith AM, Hamley IW, Castelletto V, Connon CJ, Reza M, Ruokolainen J. Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. SOFT MATTER 2015; 11:3115-3124. [PMID: 25779650 DOI: 10.1039/c5sm00459d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5-150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jeong WJ, Lim YB. Macrocyclic Peptides Self-Assemble into Robust Vesicles with Molecular Recognition Capabilities. Bioconjug Chem 2014; 25:1996-2003. [DOI: 10.1021/bc500367z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Woo-jin Jeong
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
27
|
Abstract
The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance to proteins. Inspired by the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular structures, fibers, vesicles, and spherical and rod-coil structures. While different peptide nanostructures have been discovered, potential applications are explored in drug delivery, tissue engineering, wound healing, and surfactants.
Collapse
Affiliation(s)
- Dindyal Mandal
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | - Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
- School of Pharmacy, Chapman University, Orange, California 92866, United States
| |
Collapse
|
28
|
Korevaar PA, Newcomb CJ, Meijer EW, Stupp SI. Pathway Selection in Peptide Amphiphile Assembly. J Am Chem Soc 2014; 136:8540-3. [DOI: 10.1021/ja503882s] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Korevaar
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | | | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|
29
|
Wang N, Zhang X, Zheng W, Ouyang D, Yang R. Fabrication and morphology control of the electrostatic self-assembled system containing porphyrin electrolytes and sulfonated fullerene derivatives. Supramol Chem 2014. [DOI: 10.1080/10610278.2014.909043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Xiaona Zhang
- College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Wei Zheng
- College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, P.R. China
| | - Dan Ouyang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| |
Collapse
|
30
|
Khan S, Sur S, Dankers PYW, da Silva RMP, Boekhoven J, Poor TA, Stupp SI. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation. Bioconjug Chem 2014; 25:707-17. [PMID: 24670265 PMCID: PMC3993887 DOI: 10.1021/bc400507v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Post-assembly
functionalization of supramolecular nanostructures
has the potential to expand the range of their applications. We report
here the use of the chemoselective native chemical ligation (NCL)
reaction to functionalize self-assembled peptide amphiphile (PA) nanofibers.
This strategy can be used to incorporate specific bioactivity on the
nanofibers, and as a model, we demonstrate functionalization with
the RGDS peptide following self-assembly. Incorporation of bioactivity
is verified by the observation of characteristic changes in fibroblast
morphology following NCL-mediated attachment of the signal to PA nanofibers.
The NCL reaction does not alter the PA nanofiber morphology, and biotinylated
RGDS peptide was found to be accessible on the nanofiber surface after
ligation for binding with streptavidin-conjugated gold nanoparticles.
In order to show that this strategy is not limited to short peptides,
we utilized NCL to conjugate yellow fluorescent protein and/or cyan
fluorescent protein to self-assembled PA nanofibers. Förster
resonance energy transfer and fluorescence anisotropy measurements
are consistent with the immobilization of the protein on the PA nanofibers.
The change in electrophoretic mobility of the protein upon conjugation
with PA molecules confirmed the formation of a covalent linkage. NCL-mediated
attachment of bioactive peptides and proteins to self-assembled PA
nanofibers allows the independent control of self-assembly and bioactivity
while retaining the biodegradable peptide structure of the PA molecule
and thus can be useful in tailoring design of biomaterials.
Collapse
Affiliation(s)
- Saahir Khan
- Institute for BioNanotechnology in Medicine, Northwestern University 303 East Superior Avenue, Rm. 11-123, Chicago, Illinois 60611, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim I, Jeong HH, Kim YJ, Lee NE, Huh KM, Lee CS, Kim GH, Lee E. A “Light-up” 1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. J Mater Chem B 2014; 2:6478-6486. [DOI: 10.1039/c4tb00892h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The histidine-coated fibrils response to Ag+ with fluorescence enhancement was developed through a rational design based on the aqueous self-assembly of peptides for potential use as cell-imaging and antimicrobial agents.
Collapse
Affiliation(s)
- Inhye Kim
- Graduate School of Analytical Science and Technology
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Heon-Ho Jeong
- Department of Chemical Engineering
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Yong-Jae Kim
- Graduate School of Analytical Science and Technology
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Na-Eun Lee
- Graduate School of Analytical Science and Technology
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Kang-moo Huh
- Department of Polymer Engineering
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering
- Chungnam National University
- Daejeon 305-764, Republic of Korea
| | - Geon Hee Kim
- Graduate School of Analytical Science and Technology
- Chungnam National University
- Daejeon 305-764, Republic of Korea
- Center for Analytical Instrumentation Development
- Korea Basic Science Institute
| | - Eunji Lee
- Graduate School of Analytical Science and Technology
- Chungnam National University
- Daejeon 305-764, Republic of Korea
- Center for Analytical Instrumentation Development
- Korea Basic Science Institute
| |
Collapse
|
32
|
Fu IW, Markegard CB, Chu BK, Nguyen HD. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Adv Healthc Mater 2013; 2:1388-400. [PMID: 23554376 DOI: 10.1002/adhm.201200400] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/30/2013] [Indexed: 02/02/2023]
Abstract
Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli.
Collapse
Affiliation(s)
- Iris W Fu
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697-2575, United States
| | | | | | | |
Collapse
|
33
|
Chen RY, Wu LY, Liao JM, Chen CL. Dissipative Particle Dynamics Simulations to Investigate Aggregation of Peptide Amphiphile Nanofibers. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200700125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Webber MJ, Berns EJ, Stupp SI. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine. Isr J Chem 2013; 53:530-554. [PMID: 24532851 PMCID: PMC3922220 DOI: 10.1002/ijch.201300046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems.
Collapse
Affiliation(s)
- Matthew J. Webber
- Northwestern University Department of Biomedical Engineering, Evanston, Illinois, 60208 USA
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
| | - Eric J. Berns
- Northwestern University Department of Biomedical Engineering, Evanston, Illinois, 60208 USA
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
| | - Samuel I. Stupp
- Institute for Bionanotechnology in Medicine, Northwestern University Chicago, Illinois, 60611 USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208 USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 USA
- Department of Medicine, Northwestern University, Chicago, Illinois, 60611 USA
| |
Collapse
|
35
|
Hydrophobic Aib/Ala peptides solubilize in water through formation of supramolecular assemblies. Polym J 2013. [DOI: 10.1038/pj.2013.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Haldar S, Maji SK. Role of non-covalent interactions in the molecular organization of N-n-hexadecanoyl amino acid amphiphiles with hydrophobic Cα-side chains in Tris buffer (pH 9.3). Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Abstract
Self-assembly programmed by molecular structure and guided dynamically by energy dissipation is a ubiquitous phenomenon in biological systems that build functional structures from the nanoscale to macroscopic dimensions. This paper describes examples of one-dimensional self-assembly of peptide amphiphiles and the consequent biological functions that emerge in these systems. We also discuss here hierarchical self-assembly of supramolecular peptide nanostructures and polysaccharides, and some new results are reported on supramolecular crystals formed by highly charged peptide amphiphiles. Reflecting on presentations at this Faraday Discussion, the paper ends with a discussion of some of the future opportunities and challenges of the field.
Collapse
|
38
|
Kim SH, Parquette JR. A model for the controlled assembly of semiconductor peptides. NANOSCALE 2012; 4:6940-6947. [PMID: 23034819 DOI: 10.1039/c2nr32140h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The self-assembly of small molecules provides a potentially powerful method to create functional nanomaterials for many applications ranging from optoelectronics to oncology. However, the design of well-defined nanostructures via molecular assembly is a highly empirical process, which severely hampers efforts to create functional nanostructures using this method. In this review, we describe a simple strategy to control the assembly of functionalized peptides by balancing attractive hydrophobic effects that drive assembly with opposing electrostatic repulsions. Extended π-π contacts are created in the nanostructures when assembly is driven by π-stacking interactions among chromophores that are appended to the peptide. The formation of insoluble β-sheet aggregates are mitigated by incorporating charged side-chains capable of attenuating the assembly process. Although the application of this approach to the assembly of organic semiconductors is described, we expect this strategy to be effective for many other functional organic materials.
Collapse
Affiliation(s)
- Se Hye Kim
- Department of Chemistry, The Ohio State University, 100 W. 18th Ave, Columbus, Ohio 43210, USA
| | | |
Collapse
|
39
|
Lee OS, Cho V, Schatz GC. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. NANO LETTERS 2012; 12:4907-4913. [PMID: 22924639 DOI: 10.1021/nl302487m] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have studied the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber starting from a homogeneous mixture of PAs in water using coarse-grained molecular dynamics simulations. Nine independent 16 μs runs all show spontaneous fiber formation in which the PA molecules first form spherical micelles, and then micelles form a three-dimensional network via van der Waals interactions. As the hydrophobic core belonging to the different micelles merge, the three-dimensional network disappears and a fiber having a diameter of ∼80 Å appears. In agreement with atomistic simulation results, water molecules are excluded from the hydrophobic core and penetrate to ∼15 Å away from the axis of fiber. About 66% of the surface of fiber is covered with the IKVAV epitope, and ∼92% of the epitope is exposed to water molecules.
Collapse
Affiliation(s)
- One-Sun Lee
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | |
Collapse
|
40
|
Fry HC, Garcia JM, Medina MJ, Ricoy UM, Gosztola DJ, Nikiforov MP, Palmer LC, Stupp SI. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays. J Am Chem Soc 2012; 134:14646-9. [PMID: 22916716 DOI: 10.1021/ja304674d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Long fibers assembled from peptide amphiphiles capable of binding the metalloporphyrin zinc protoporphyrin IX ((PPIX)Zn) have been synthesized. Rational peptide design was employed to generate a peptide, c16-AHL(3)K(3)-CO(2)H, capable of forming a β-sheet structure that propagates into larger fibrous structures. A porphyrin-binding site, a single histidine, was engineered into the peptide sequence in order to bind (PPIX)Zn to provide photophysical functionality. The resulting system indicates control from the molecular level to the macromolecular level with a high order of porphyrin organization. UV/visible and circular dichroism spectroscopies were employed to detail molecular organization, whereas electron microscopy and atomic force microscopy aided in macromolecular characterization. Preliminary picosecond transient absorption data are also reported. Reduced hemin, (PPIX)Fe(II), was also employed to highlight the material's versatility and tunability.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Newcomb CJ, Bitton R, Velichko YS, Snead ML, Stupp SI. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2195-202, 2194. [PMID: 22570174 PMCID: PMC3400347 DOI: 10.1002/smll.201102150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/13/2011] [Indexed: 05/20/2023]
Abstract
Understanding and mimicking the hierarchical structure of mineralized tissue is a challenge in the field of biomineralization and is important for the development of scaffolds to guide bone regeneration. Bone is a remarkable tissue with an organic matrix comprised of aligned collagen bundles embedded with nanometer-sized inorganic hydroxyapatite (HAP) crystals that exhibit orientation on the macroscale. Hybrid organic-inorganic structures mimic the composition of mineralized tissue for functional bone scaffolds, but the relationship between morphology of the organic matrix and orientation of mineral is poorly understood. Herein the mineralization of supramolecular peptide amphiphile templates, that are designed to vary in nanoscale morphology by altering the amino acid sequence, is reported. It is found that 1D cylindrical nanostructures direct the growth of oriented HAP crystals, while flatter nanostructures fail to guide the orientation found in biological systems. The geometric constraints associated with the morphology of the nanostructures may effectively control HAP nucleation and growth. Additionally, the mineralization of macroscopically aligned bundles of the nanoscale assemblies to create hierarchically ordered scaffolds is explored. Again, it is found that only aligned gel templates of cylindrical nanostructures lead to hierarchical control over hydroxyapatite orientation across multiple length scales as found in bone.
Collapse
Affiliation(s)
- Christina J. Newcomb
- Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA
| | - Ronit Bitton
- The Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, USA
| | - Yuri S. Velichko
- Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA
| | - Malcolm L. Snead
- The Center for Craniofacial Molecular Biology, CSA 142, Health Sciences Campus, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Samuel I. Stupp
- Department of Materials Science and Engineering Northwestern University, Evanston, IL, USA
- The Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Choi SJ, Jeong WJ, Kang SK, Lee M, Kim E, Ryu DY, Lim YB. Differential Self-Assembly Behaviors of Cyclic and Linear Peptides. Biomacromolecules 2012; 13:1991-5. [DOI: 10.1021/bm3005947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sung-ju Choi
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering and§Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Woo-jin Jeong
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering and§Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Seong-Kyun Kang
- Center for Bio-Responsive Assembly
and Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Myongsoo Lee
- Center for Bio-Responsive Assembly
and Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | | | | - Yong-beom Lim
- Translational Research Center for Protein Function Control and Department of Materials Science & Engineering and§Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
43
|
Khan S, Sur S, Newcomb CJ, Appelt EA, Stupp SI. Self-assembling glucagon-like peptide 1-mimetic peptide amphiphiles for enhanced activity and proliferation of insulin-secreting cells. Acta Biomater 2012; 8:1685-92. [PMID: 22342354 DOI: 10.1016/j.actbio.2012.01.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 02/07/2023]
Abstract
Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and three-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function.
Collapse
|
44
|
Matson JB, Newcomb CJ, Bitton R, Stupp SI. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. SOFT MATTER 2012; 8:3586-3595. [PMID: 23130084 PMCID: PMC3487392 DOI: 10.1039/c2sm07420f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
High aspect ratio peptide nanofibers have potential as biodegradable vehicles for drug delivery. We report here the synthesis of four self-assembling peptide amphiphiles (PAs) containing a lysine ε-amine-derivatized hydrazide that was systematically placed at different positions along the backbone of the peptide sequence C(16)V(2)A(2)E(2) (where C(16) = palmitic acid). Hydrazones were formed from each hydrazide by condensation with the solvatochromic dye 6-propionyl-2-dimethylaminonaphthalene (Prodan), which is typically used to probe cell membranes. All four compounds were found to self-assemble into nanofibers, and Prodan release was measured from filamentous gels prepared by screening PA charges with divalent cations. Near zero-order release kinetics were observed for all nanofibers, but release half-lives differed depending on the position of the fluorophore in the PA sequence. Dye release kinetics were rationalized through the use of cryogenic transmission electron microscopy, small-angle X-ray scattering, fluorescence spectroscopy, fluorescence anisotropy, circular dichroism, and partition coefficient calculations. Relative release rates were found to correlate directly with fluorophore mobility, which varied inversely with packing density, degree of order in the hydrophobic PA core, and the β-sheet character of the peptide.
Collapse
Affiliation(s)
- John B. Matson
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. Fax: (+312) 503-2482; Tel: (+312) 503-6713
| | - Christina J. Newcomb
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ronit Bitton
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. Fax: (+312) 503-2482; Tel: (+312) 503-6713
| | - Samuel I. Stupp
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL, 60611, USA. Fax: (+312) 503-2482; Tel: (+312) 503-6713
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
45
|
Shimada T, Tamura Y, Tirrell M, Kuroda K. A Novel Preparative Method of Silica Nanotubes by Utilizing Self-assembly and Disassembly of Peptide Amphiphiles. CHEM LETT 2012. [DOI: 10.1246/cl.2012.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoko Shimada
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
- Asahi Kasei Co
| | - Yasuhiro Tamura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | | | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University
| |
Collapse
|
46
|
Sur S, Pashuck ET, Guler MO, Ito M, Stupp SI, Launey T. A hybrid nanofiber matrix to control the survival and maturation of brain neurons. Biomaterials 2012; 33:545-55. [PMID: 22018390 PMCID: PMC3210375 DOI: 10.1016/j.biomaterials.2011.09.093] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/29/2011] [Indexed: 12/27/2022]
Abstract
Scaffold design plays a crucial role in developing graft-based regenerative strategies, especially when intended to be used in a highly ordered nerve tissue. Here we describe a hybrid matrix approach, which combines the structural properties of collagen (type I) with the epitope-presenting ability of peptide amphiphile (PA) nanofibers. Self-assembly of PA and collagen molecules results in a nanofibrous scaffold with homogeneous fiber diameter of 20-30 nm, where the number of laminin epitopes IKVAV and YIGSR can be varied by changing the PA concentrations over a broad range of 0.125-2 mg/ml. Granule cells (GC) and Purkinje cells (PC), two major neuronal subtypes of cerebellar cortex, demonstrate distinct response to this change of epitope concentration. On IKVAV hybrid constructs, GC density increases three-fold compared with the control collagen substrate at a PA concentration of ≥0.25 mg/ml, while PC density reaches a maximum (five-fold vs. control) at 0.25 mg/ml of PA and rapidly decreases at higher PA concentrations. In addition, adjustment of the epitope number allowed us to achieve fine control over PC dendrite and axon growth. Due to the ability to modulate neuron survival and maturation by easy manipulation of epitope density, our design offers a versatile test bed to study the extracellular matrix (ECM) contribution in neuron development and the design of optimal neuronal scaffold biomaterials.
Collapse
Affiliation(s)
- Shantanu Sur
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
- Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois 60611, USA
- School of Medical Science and Technology, IIT Kharagpur, 721302, India
| | - Eugene T. Pashuck
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA
| | - Mustafa O. Guler
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Turkey
| | - Masao Ito
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
| | - Samuel I. Stupp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA
- Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois 60611, USA
| | - Thomas Launey
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
- Launey Research Unit for Molecular Neurocybernetics, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
| |
Collapse
|
47
|
Park J, Kim J, Seo M, Lee J, Kim SY. Dual-mode fluorescence switching induced by self-assembly of well-defined poly(arylene ether sulfone)s containing pyrene and amide moieties. Chem Commun (Camb) 2012; 48:10556-8. [DOI: 10.1039/c2cc35804b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Anderson JM, Patterson JL, Vines JB, Javed A, Gilbert SR, Jun HW. Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS NANO 2011; 5:9463-79. [PMID: 22077993 PMCID: PMC3691849 DOI: 10.1021/nn203247m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Formation of the native bone extracellular matrix (ECM) provides an attractive template for bone tissue engineering. The structural support and biological complexity of bone ECM are provided within a composite microenvironment that consists of an organic fibrous network reinforced by inorganic hydroxyapatite (HA) nanoparticles. Recreating this biphasic assembly, a bone ECM analogous scaffold comprising self-assembling peptide amphiphile (PA) nanofibers and interspersed HA nanoparticles was investigated. PAs were endowed with biomolecular ligand signaling using a synthetically inscribed peptide sequence (i.e., RGDS) and integrated with HA nanoparticles to form a biphasic nanomatrix hydrogel. It was hypothesized the biphasic hydrogel would induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) and improve bone healing as mediated by RGDS ligand signaling within PA nanofibers and embedded HA mineralization source. Viscoelastic stability of the biphasic PA hydrogels was evaluated with different weight concentrations of HA for improved gelation. After demonstrating initial viability, long-term cellularity and osteoinduction of encapsulated hMSCs in different PA hydrogels were studied in vitro. Temporal progression of osteogenic maturation was assessed by gene expression of key markers. A preliminary animal study demonstrated bone healing capacity of the biphasic PA nanomatrix under physiological conditions using a critical size femoral defect rat model. The combination of RGDS ligand signaling and HA nanoparticles within the biphasic PA nanomatrix hydrogel demonstrated the most effective osteoinduction and comparative bone healing response. Therefore, the biphasic PA nanomatrix establishes a well-organized scaffold with increased similarity to natural bone ECM with the prospect for improved bone tissue regeneration.
Collapse
Affiliation(s)
- Joel M. Anderson
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| | - Jessica L. Patterson
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| | - Jeremy B. Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| | - Amjad Javed
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| | - Shawn R. Gilbert
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-2182, United States
| |
Collapse
|
49
|
CHEN RUOYU, WU LINGYING, LIAO JUNMIN, CHEN CHENGLUNG. COMPUTER SIMULATIONS TO INVESTIGATE STABILITY AND STRUCTURAL PROPERTIES OF PEPTIDE AMPHIPHILE NANOFIBERS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s021963360700326x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular mechanics (MM) method followed by molecular dynamics (MD) simulation was carried out to investigate the stability of an aggregate formed by self-assembling of peptide amphiphile (PA) molecules. The MM + MD simulation confirms that the cylindrical shaped aggregate is very stable. The analysis showed that the remarkable stability of the aggregate was partly due to various intermolecular hydrogen-bond interactions between polar groups of PA molecules. The hydrophobic alkyl tails of PA molecules are packed loosely inside the interior of the aggregates. The packing of alkyl tails contribute further stability of the PA aggregate. Our simulations reproduce qualitatively experimental observations and support the fact that PA molecules are self-assembled within closed intermolecular distance to favor the forming of disulfide bonds.
Collapse
Affiliation(s)
- RUO-YU CHEN
- Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213016, P R China
| | - LING-YING WU
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - JUN-MIN LIAO
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | - CHENG-LUNG CHEN
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
50
|
Webber MJ, Newcomb CJ, Bitton R, Stupp SI. Switching of Self-Assembly in a Peptide Nanostructure with a Specific Enzyme. SOFT MATTER 2011; 7:9665-9672. [PMID: 22408645 PMCID: PMC3293180 DOI: 10.1039/c1sm05610g] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peptide self-assembly has been shown to be a useful tool for the preparation of bioactive nanostructures, and recent work has demonstrated their potential as therapies for regenerative medicine. In principle, one route to make these nanostructures more biomimetic would be to incorporate in their molecular design the capacity for biological sensing. We report here on the use of a reversible enzymatic trigger to control the assembly and disassembly of peptide amphiphile (PA) nanostructures. The PA used in these studies contained a consensus substrate sequence specific to protein kinase A (PKA), a biological enzyme important for intracellular signaling that has also been shown to be an extracellular cancer biomarker. Upon treatment with PKA, this PA molecule becomes phosphorylated causing the high aspect-ratio filamentous PA nanostructures to disassemble. Treatment with an enzyme to cleave the phosphate group results in reformation of the filamentous nanostructures. We also show that disassembly in the presence of PKA allows the enzyme-triggered release of an encapsulated cancer drug. In addition, these drug-loaded nanostructures were found to induce preferential cytotoxicity in a cancer cell line that is known to secrete high levels of PKA. This ability to control nanostructure through an enzymatic switch could allow for the preparation of highly sophisticated and biomimetic materials that incorporate a biological sensing capability to enable therapeutic specificity.
Collapse
Affiliation(s)
- Matthew J. Webber
- Northwestern University Department of Biomedical Engineering, Evanston, IL, 60208 USA
| | - Christina J. Newcomb
- Northwestern University Department of Materials Science and Engineering, Evanston, IL 60208 USA
| | - Ronit Bitton
- Institute for Bionanotechnology in Medicine, Chicago, IL 60611 USA
| | - Samuel I. Stupp
- Northwestern University Department of Materials Science and Engineering, Evanston, IL 60208 USA
- Institute for Bionanotechnology in Medicine, Chicago, IL 60611 USA
- Northwestern University Department of Chemistry, Evanston, IL 60208 USA
| |
Collapse
|