1
|
Kaushik S, Rameshwari R, Chapadgaonkar SS. The in-silico study of the structural changes in the Arthrobacter globiformis choline oxidase induced by high temperature. J Genet Eng Biotechnol 2024; 22:100348. [PMID: 38494262 PMCID: PMC10980864 DOI: 10.1016/j.jgeb.2023.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Choline oxidase, a flavoprotein, is an enzyme that catalyzes the reaction which converts choline into glycine betaine. Choline oxidase started its journey way back in 1933. However, the impact of the high temperature on its structure has not been explored despite the long history and availability of its crystal structure. Both choline oxidase and its product, glycine betaine, have enormous applications spanning across multiple industries. Understanding how the 3D structure of the enzyme will change with the temperature change can open new ways to make it more stable and useful for industry. PROCESS This research paper presents the in-silico study and analysis of the structural changes of A. globiformis choline oxidase at temperatures from 25 °C to 60 °C. A step-wise process is depicted in Fig. 1. RESULTS Multiple sequence alignment (MSA) of 11 choline oxidase sequences from different bacteria vs Arthrobacter globiformis choline oxidase showed that active site residues are highly conserved. The available crystal structure of A. globiformis choline oxidase with cofactor Flavin Adenine Dinucleotide (FAD) in the dimeric state (PDB ID: 4MJW)1 was considered for molecular dynamics simulations. A simulated annealing option was used to gradually increase the temperature of the system from 25 °C to 60 °C. Analysis of the conserved residues, as well as residues involved in Flavin Adenine Dinucleotide (FAD) binding, substrate binding, substate gating, and dimer formationwas done. At high temperatures, the formation of the inter-chain salt bridge between Arg50 and Glu63 was a significant observation near the active site of choline oxidase. CONCLUSION Molecular dynamics studies suggest that an increase in temperature has a significant impact on the extended Flavin Adenine Dinucleotide (FAD) binding region. These changes interfere with the entry of substrate to the active site of the enzyme and make the enzyme inactive.
Collapse
Affiliation(s)
- Sonia Kaushik
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Rashmi Rameshwari
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India.
| | | |
Collapse
|
2
|
Kaushik S, Rameshwari R, Chapadgaonkar SS. Enzyme engineering of choline oxidase for improving stability. J Biomol Struct Dyn 2024:1-13. [PMID: 38319016 DOI: 10.1080/07391102.2024.2309650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Functioning as a flavoprotein, choline oxidase facilitates the transformation of choline into glycine betaine. Notably, choline oxidase and its resultant product, glycine betaine, find extensive applications across various industries and fields of study. However, its high sensitivity and tendency to lose functional activity at high temperatures reduces its industrial usage. MD simulation and mutation studies have revealed the role of certain residues responsible for the enzyme's thermal instability. This study focuses on inducing thermal stability to choline oxidase of A. globiformis through computational approaches at a maximum temperature of 60 °C. MD simulation analysis showed that Trp 331, Val 464 and Ser 101 contribute to structural instability, leading to the instability at 60 °C. Mutation of these residues with phenylalanine residues and simulation of the mutated enzyme at 60 °C exhibited thermostability and insignificant residual fluctuation. The re-docking and MM/GBSA analyses further validated the mutated enzyme's binding affinity and catalytic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonia Kaushik
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Rashmi Rameshwari
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | |
Collapse
|
3
|
Yildiz I. Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase. PLoS One 2023; 18:e0290901. [PMID: 37967056 PMCID: PMC10651016 DOI: 10.1371/journal.pone.0290901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 11/17/2023] Open
Abstract
L-Proline dehydrogenase (ProDH) is a flavin-dependent oxidoreductase, which catalyzes the oxidation of L-proline to (S)-1-pyrroline-5-carboxylate. Based on the experimental studies, a stepwise proton and hydride transfer mechanism is supported. According to this mechanism, the amino group of L-proline is deprotonated by a nearby Lys residue, which is followed by the hydride transfer process from C5 position of L-proline to N5 position of isoalloxazine ring of FAD. It was concluded that the hydride transfer step is rate limiting in the reductive half-reaction, however, in the overall reaction, the oxidation of FAD is the rate limiting step. In this study, we performed a computational mechanistic investigation based on ONIOM method to elucidate the mechanism of the reductive half-reaction corresponding to the oxidation of L-proline into iminoproline. Our calculations support the stepwise mechanism in which the deprotonation occurs initially as a fast step as result of a proton transfer from L-proline to the Lys residue. Subsequently, a hydride ion transfers from L-proline to FAD with a higher activation barrier. The enzyme-product complex showed a strong interaction between reduced FAD and iminoproline, which might help to explain why a step in the oxidative half-reaction is rate-limiting.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry Department and Applied Material Chemistry Center (AMCC), Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
4
|
Sobrado P, Neira JL. Paul F. Fitzpatrick: A life of editorial duties and elucidating the mechanism of enzyme action. Arch Biochem Biophys 2023; 742:109635. [PMID: 37209767 DOI: 10.1016/j.abb.2023.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - José Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
5
|
Zhang L, Toplak M, Saleem-Batcha R, Höing L, Jakob R, Jehmlich N, von Bergen M, Maier T, Teufel R. Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol. Chembiochem 2023; 24:e202200632. [PMID: 36353978 DOI: 10.1002/cbic.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Antimicrobial resistance represents a major threat to human health and knowledge of the underlying mechanisms is therefore vital. Here, we report the discovery and characterization of oxidoreductases that inactivate the broad-spectrum antibiotic chloramphenicol via dual oxidation of the C3-hydroxyl group. Accordingly, chloramphenicol oxidation either depends on standalone glucose-methanol-choline (GMC)-type flavoenzymes, or on additional aldehyde dehydrogenases that boost overall turnover. These enzymes also enable the inactivation of the chloramphenicol analogues thiamphenicol and azidamfenicol, but not of the C3-fluorinated florfenicol. Notably, distinct isofunctional enzymes can be found in Gram-positive (e. g., Streptomyces sp.) and Gram-negative (e. g., Sphingobium sp.) bacteria, which presumably evolved their selectivity for chloramphenicol independently based on phylogenetic analyses. Mechanistic and structural studies provide further insights into the catalytic mechanisms of these biotechnologically interesting enzymes, which, in sum, are both a curse and a blessing by contributing to the spread of antibiotic resistance as well as to the bioremediation of chloramphenicol.
Collapse
Affiliation(s)
- Lei Zhang
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lars Höing
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Yang Y, Luo X, Xie Y, Li X, Liu S, Liu N, Chen X. Regulation of different protonated states of two intimate histidine residues on the reductive half-reaction of glucose oxidase. Phys Chem Chem Phys 2022; 24:25788-25800. [PMID: 36263785 DOI: 10.1039/d2cp03502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose oxidase (GOx) can catalyze the oxidation of β-D-glucose under mild conditions to directly convert biological energy into electrical energy, which has great potential for applications in the fields of enzyme biofuel cells and glucose biosensors. In enzymatic biofuel cells, GOx is often used as an anodic catalyst to improve the performance. The important role of two intimate histidine residues, His505 and His548 (PDB code 4YNU), in the GOx active center has been highlighted in the catalytic oxidation of β-D-glucose, but there is still a lack of systematic examination on the influence of different protonated states of His505 and His548 on the catalytic oxidation of β-D-glucose in GOx. Therefore, in the present work, the GOx active center under the possible protonated states of His548 and His505 is systematically examined by using ONIOM calculations, as well as the influence of remote Arg210 is considered. The calculations reveal that the intimate His505 and His548 can modulate the interaction of the β-D-glucose substrate with isoalloxazine and then control the deprotonization of the hydroxyl group bound to the anomeric carbon of β-D-glucose like controllers. The remote Arg210 provides the driving force for the transfer of two electrons from β-D-glucose to isoalloxazine of FAD via the long-range electrostatic attraction like a horse. Specially, the protonated His505 can serve as a good helper of Arg210 to promote the occurring of the two-proton-coupled two-electron transfer from β-D-glucose to isoalloxazine and His548 in the active center of GOx. These findings provide much insight into the catalytic reactions of GOx in a low pH environment, which may be beneficial to expand the applications of GOx.
Collapse
Affiliation(s)
- Yuning Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Sijun Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
7
|
Huang H, Song D, Zhang W, Fang S, Zhou Q, Zhang H, Liang Z, Li Y. Choline Oxidase-Integrated Copper Metal-Organic Frameworks as Cascade Nanozymes for One-Step Colorimetric Choline Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5228-5236. [PMID: 35411770 DOI: 10.1021/acs.jafc.2c00746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Choline is an important factor for regulating human health and is widely present in various foods. In this work, a sensor strategy based on a choline oxidase-integrated copper(II) metal-organic framework with peroxidase-like activity is constructed for one-step cascade detection of choline. The one-step cascade strategy can avoid intermediate product transferring in general multi-step reactions, and the multi-enzyme activities can be well exerted under one condition, thus exhibiting excellent catalytic activity and enhanced stability. In the integrated system, choline is catalyzed by ChOx to produce betaine and H2O2, which eventually got converted to hydroxyl radicals by the peroxidase nanozyme, oxidized the chromogenic substrate ABTS, and produced an observable absorption peak at 420 nm. A new choline detection method was thus established and showed a satisfactory linear relationship at 6-300 μM, which has been used for the choline analysis in milk.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Wenjing Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Shuaizhen Fang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Qianxi Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Haoyu Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Zheng Liang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
9
|
He Y, Jin X, Guo S, Zhao H, Liu Y, Ju H. Conjugated Polymer-Ferrocence Nanoparticle as an NIR-II Light Powered Nanoamplifier to Enhance Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31452-31461. [PMID: 34197086 DOI: 10.1021/acsami.1c06613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) is a promising therapeutic modality with transition metal ions and endogenous H2O2 as reagents, but its efficiency is impaired by low endogenous H2O2 levels and nonregeneration of metal ions. Most intracellular H2O2 supplement strategies use oxidases and are intensively dependent on oxygen participation. The hypoxia microenvironments of solid tumors weaken their performance. Here, we develop a near-infrared II light powered nanoamplifier to improve the local oxygen level and to enhance CDT. The nanoamplifier CPNP-Fc/Pt consists of ferrocene (Fc)- and cisplatin prodrug (Pt(IV))-modified conjugated polymer nanoparticles (CPNPs). CPNP has a donor-acceptor structure and demonstrates a good photothermal effect under 1064 nm light irradiation, which accelerates blood flow and efficiently elevates the local oxygen content. In response to intracellular glutathione, Pt(II) is released from CPNP-Fc/Pt and triggers enzymatic cascade reactions with nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) and superoxide dismutase to convert oxygen into H2O2. The enhanced oxygen level results in efficient intracellular H2O2 supply. Fc is reacted with H2O2 and converted to Fc+ via the Fenton reaction, with the generation of hydroxyl radicals for CDT. Unlike free metal ions, the Fe(III) in Fc+ is reduced to Fe(II) by intracellular NAD(P)H, which achieves the regeneration of Fc. The sufficient intracellular H2O2 supply and efficient Fc regeneration effectively enhance the Fenton reaction and demonstrate good in vivo CDT results with tumor growth suppression. This design offers a promising strategy to enhance CDT efficiency in the hypoxia microenvironment of solid tumors.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medic, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
He Y, Guo S, Zhang Y, Liu Y, Ju H. NIR-II reinforced intracellular cyclic reaction to enhance chemodynamic therapy with abundant H 2O 2 supply. Biomaterials 2021; 275:120962. [PMID: 34153782 DOI: 10.1016/j.biomaterials.2021.120962] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Chemodynamic therapy (CDT) is an ideal therapeutic modality with endogenous H2O2 as stimulus. Most intracellular H2O2 supplement strategies for improving CDT efficiency are strongly rely on oxygen participation, and the hypoxia tumor microenvironment impairs their performance. Here we develop a self-assembled metal-organic coordinated nanoparticle Cu-OCNP/Lap with NIR-II reinforced intracellular cyclic reaction to enhance CDT efficiency. Cu-OCNP/Lap is synthesized using Cu2+ as nodes and 1,4,5,8-tetrahydroxyanthraquinone (THQ) and banoxantrone dihydrochloride (AQ4N) as ligands, with β-lapachone (β-Lap) loading to conduct intracellular cyclic reaction. Cu-OCNP/Lap has good photothermal effect at NIR-II window, and the corresponding local temperature increase speeds blood flow and supplies sufficient oxygen at tumor site to reinforce β-Lap cyclic reaction with abundant H2O2 generation. Cu+ is released from Cu-OCNP/Lap in response to glutathione (GSH) and triggers CDT. Sufficient intracellular H2O2 supply enhances CDT effect and demonstrates good suppressions for tumor growth. This design offers a promising strategy to enhance CDT efficiency.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medic, Institute of Chinese Medical Sciences, Macau University, Macao, 999078, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Santos RM, Sirota A. Phasic oxygen dynamics confounds fast choline-sensitive biosensor signals in the brain of behaving rodents. eLife 2021; 10:61940. [PMID: 33587035 PMCID: PMC7932690 DOI: 10.7554/elife.61940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.
Collapse
Affiliation(s)
- Ricardo M Santos
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Huang IW, Clay M, Cao Y, Nie J, Guo Y, Monbouquette HG. Electroenzymatic choline sensing at near the theoretical performance limit. Analyst 2021; 146:1040-1047. [PMID: 33325460 DOI: 10.1039/d0an01939a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high performance, electroenzymatic microsensor for choline based on choline oxidase (ChOx) immobilized on Pt coated with permselective polymer layers has been created that exhibits sensitivity approaching the theoretical performance limit. Sensor construction was guided by simulations performed with a detailed mathematical model. Implantable microsensors with an array of electroenzymatic sensing sites provide a means to record concentration changes of choline, an effective surrogate for acetylcholine due to its very rapid turnover in the brain, and other neurochemicals in vivo. However, electroenzymatic sensors generally have insufficient sensitivity and response time to monitor neurotransmitter signaling on the millisecond timescale with cellular-level spatial resolution. Model simulations suggested that choline sensor performance can be improved significantly by optimizing immobilized ChOx layer thickness and minimizing the thicknesses of permselective polymer coatings as well. Electroenzymatic choline sensors constructed with a ∼5 μm-thick crosslinked ChOx layer atop 200 nm-thick permselective films (poly(m-phenylenediamine) and Nafion) exhibited unprecedented sensitivity and response time of 660 ± 40 nA μM-1 cm-2 at 37 °C and 0.36 ± 0.05 s, respectively, while maintaining excellent selectivity. Such performance characteristics provide greater flexibility in the design of microelectrode array (MEA) probes with near cellular-scale sensing sites arranged in more dense arrays. Also, faster response times enable better resolution of transient acetylcholine signals and better correlation of these events with electrophysiological recordings so as to advance study of brain function.
Collapse
Affiliation(s)
- I-Wen Huang
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Blazek T, Gorski W. Oxidases, carbon nanotubes, and direct electron transfer: A cautionary tale. Biosens Bioelectron 2020; 163:112260. [PMID: 32568690 DOI: 10.1016/j.bios.2020.112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
The case study of four FAD-dependent oxidase enzymes is presented in the context of the often-claimed direct electron transfer (DET) to glucose oxidase at carbon nanotubes (CNT). The selected enzymes included d-amino acid (AAOx), alcohol (AOx), pyranose (PyOx), and choline oxidase (ChOx). Each enzyme (E) was mixed with chitosan and CNT (either multi- or single-walled) to form a CNT/E film on the surface of glassy carbon electrode. All eight CNT/E films displayed redox activity depicted by voltammetric current peaks near -0.4 V. However, no DET was observed for any of the films as indicated by the absence of expected substrate- and oxygen-induced asymmetry in the anodic-to-cathodic charge ratio. The peaks are suggested to be due to the redox of either a dissociated FAD cofactor, in the case of AAOx and AOx, or denatured enzyme in the case of PyOx and ChOx. The amperometric assays of the films revealed the lowering of enzymatic activity of all four oxidases by CNT. The results are consistent with the hypothesis of oxidase molecules displaying a spectrum of enzymatic activity in CNT/E films ranging from voltammetrically untraceable (for molecules adsorbed on CNT) to amperometrically measurable (for molecules remote from CNT). The kinetic studies showed that enzyme molecules with no net charge leached at the slowest rate from CNT/E films. This work adds to a growing number of reports challenging the fallacy of DET to FAD-dependent native oxidases.
Collapse
Affiliation(s)
- Teresa Blazek
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Waldemar Gorski
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
14
|
Viñambres M, Espada M, Martínez AT, Serrano A. Screening and Evaluation of New Hydroxymethylfurfural Oxidases for Furandicarboxylic Acid Production. Appl Environ Microbiol 2020; 86:e00842-20. [PMID: 32503910 PMCID: PMC7414962 DOI: 10.1128/aem.00842-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022] Open
Abstract
The enzymatic production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) has gained interest in recent years, as FDCA is a renewable precursor of poly(ethylene-2,5-furandicarboxylate) (PEF). 5-Hydroxymethylfurfural oxidases (HMFOs) form a flavoenzyme family with genes annotated in a dozen bacterial species but only one enzyme purified and characterized to date (after heterologous expression of a Methylovorus sp. HMFO gene). This oxidase acts on both furfuryl alcohols and aldehydes and, therefore, is able to catalyze the conversion of HMF into FDCA through 2,5-diformylfuran (DFF) and 2,5-formylfurancarboxylic acid (FFCA), with only the need of oxygen as a cosubstrate. To enlarge the repertoire of HMFO enzymes available, genetic databases were screened for putative HMFO genes, followed by heterologous expression in Escherichia coli After unsuccessful trials with other bacterial HMFO genes, HMFOs from two Pseudomonas species were produced as active soluble enzymes, purified, and characterized. The Methylovorus sp. enzyme was also produced and purified in parallel for comparison. Enzyme stability against temperature, pH, and hydrogen peroxide, three key aspects for application, were evaluated (together with optimal conditions for activity), revealing differences between the three HMFOs. Also, the kinetic parameters for HMF, DFF, and FFCA oxidation were determined, the new HMFOs having higher efficiencies for the oxidation of FFCA, which constitutes the bottleneck in the enzymatic route for FDCA production. These results were used to set up the best conditions for FDCA production by each enzyme, attaining a compromise between optimal activity and half-life under different conditions of operation.IMPORTANCE HMFO is the only enzyme described to date that can catalyze by itself the three consecutive oxidation steps to produce FDCA from HMF. Unfortunately, only one HMFO enzyme is currently available for biotechnological application. This availability is enlarged here by the identification, heterologous production, purification, and characterization of two new HMFOs, one from Pseudomonas nitroreducens and one from an unidentified Pseudomonas species. Compared to the previously known Methylovorus HMFO, the new enzyme from P. nitroreducens exhibits better performance for FDCA production in wider pH and temperature ranges, with higher tolerance for the hydrogen peroxide formed, longer half-life during oxidation, and higher yield and total turnover numbers in long-term conversions under optimized conditions. All these features are relevant properties for the industrial production of FDCA. In summary, gene screening and heterologous expression can facilitate the selection and improvement of HMFO enzymes as biocatalysts for the enzymatic synthesis of renewable building blocks in the production of bioplastics.
Collapse
Affiliation(s)
- Mario Viñambres
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Marta Espada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
15
|
Abstract
Choline oxidase catalyzes the four-electron, two-step, flavin-mediated oxidation of choline to glycine betaine. The enzyme is important both for medical and biotechnological reasons, because glycine betaine is one among a limited number of compatible solutes used by cells to counteract osmotic pressure. From a fundamental standpoint, choline oxidase has emerged as one of the paradigm enzymes for the oxidation of alcohols catalyzed by flavoproteins. Mechanistic, structural, and computational studies have elucidated the mechanism of action of the enzyme from Arthrobacter globiformis at the molecular level. Both choline and oxygen access to the active site cavity are gated and tightly controlled. Amino acid residues involved in substrate binding, and their contribution, have been identified. The mechanism of choline oxidation, with a hydride transfer reaction, an asynchronous transition state, the formation and stabilization of an alkoxide transient species, and a quantum mechanical mode of reaction, has been elucidated. The importance of nonpolar side chains for oxygen localization and of the positive charge harbored on the substrate for activation of oxygen for reaction with the reduced flavin have been recognized. Interesting phenomena, like the formation of a metastable photoinduced flavin-protein adduct, the reversible formation of a bicovalent flavoprotein, and the trapping of the enzyme in inactive conformations, have been described. This review summarizes the current status of our understanding on the structure-function-dynamics of choline oxidase.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States.
| |
Collapse
|
16
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
18
|
Su D, Smitherman C, Gadda G. A Metastable Photoinduced Protein–Flavin Adduct in Choline Oxidase, an Enzyme Not Involved in Light-Dependent Processes. J Phys Chem B 2020; 124:3936-3943. [DOI: 10.1021/acs.jpcb.0c02633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
20
|
Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:230. [PMID: 30899269 PMCID: PMC6416205 DOI: 10.3389/fpls.2019.00230] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Loredana Filomena Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Emilia Dell’Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
21
|
Wongnate T, Surawatanawong P, Chuaboon L, Lawan N, Chaiyen P. The Mechanism of Sugar C−H Bond Oxidation by a Flavoprotein Oxidase Occurs by a Hydride Transfer Before Proton Abstraction. Chemistry 2019; 25:4460-4471. [DOI: 10.1002/chem.201806078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thanyaporn Wongnate
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence, for Innovation in ChemistryMahidol University Bangkok 10400 Thailand
| | - Litavadee Chuaboon
- Department of Biochemistry and Center for Excellence, in Protein and Enzyme Technology, Faculty of ScienceMahidol University Bangkok 10400 Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
22
|
Yildiz I, Yildiz BS, Kirmizialtin S. Comparative Computational Approach To Study Enzyme Reactions Using QM and QM-MM Methods. ACS OMEGA 2018; 3:14689-14703. [PMID: 31458147 PMCID: PMC6643517 DOI: 10.1021/acsomega.8b02638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
Choline oxidase catalyzes oxidation of choline into glycine betaine through a two-step reaction pathway employing flavin as the cofactor. On the light of kinetic studies, it is proposed that a hydride ion is transferred from α-carbon of choline/hydrated-betaine aldehyde to the N5 position of flavin in the rate-determining step, which is preceded by deprotonation of hydroxyl group of choline/hydrated-betaine aldehyde to one of the possible basic side chains. Using the crystal structure of glycine betaine-choline oxidase complex, we formulated two computational systems to study the hydride-transfer mechanism including main active-site amino acid side chains, flavin cofactor, and choline as a model system. The first system used pure density functional theory calculations, whereas the second approach used a hybrid ONIOM approach consisting of density functional and molecular mechanics calculations. We were able to formulate in silico model active sites to study the hydride-transfer steps by utilizing noncovalent chemical interactions between choline/betaine aldehyde and active-site amino acid chains using an atomistic approach. We evaluated and compared the geometries and energetics of hydride-transfer process using two different systems. We highlighted chemical interactions and studied the effect of protonation state of an active-site histidine base on the energetics of transfer. Furthermore, we evaluated energetics of the second hydride-transfer process as well as hydration of betaine aldehyde.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry
Department and CIVE Department, Khalifa
University, P.O. Box 127788, Abu
Dhabi, UAE
| | - Banu Sizirici Yildiz
- Chemistry
Department and CIVE Department, Khalifa
University, P.O. Box 127788, Abu
Dhabi, UAE
| | - Serdal Kirmizialtin
- Chemistry
Program, New York University at Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| |
Collapse
|
23
|
Deng L, Hu C, Qin X, Li L, Zhang Y, Li P, Chen X. The remote arginine promoting the dehydrogenation of glucose in glucose oxidase via a proton-coupled double-electron transfer mechanism. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Toplak M, Wiedemann G, Ulićević J, Daniel B, Hoernstein SNW, Kothe J, Niederhauser J, Reski R, Winkler A, Macheroux P. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase. FEBS J 2018; 285:1923-1943. [PMID: 29633551 PMCID: PMC6001459 DOI: 10.1111/febs.14458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
The berberine bridge enzyme from the California poppy Eschscholzia californica (EcBBE) catalyzes the oxidative cyclization of (S)‐reticuline to (S)‐scoulerine, that is, the formation of the berberine bridge in the biosynthesis of benzylisoquinoline alkaloids. Interestingly, a large number of BBE‐like genes have been identified in plants that lack alkaloid biosynthesis. This finding raised the question of the primordial role of BBE in the plant kingdom, which prompted us to investigate the closest relative of EcBBE in Physcomitrella patens (PpBBE1), the most basal plant harboring a BBE‐like gene. Here, we report the biochemical, structural, and in vivo characterization of PpBBE1. Our studies revealed that PpBBE1 is structurally and biochemically very similar to EcBBE. In contrast to EcBBE, we found that PpBBE1 catalyzes the oxidation of the disaccharide cellobiose to the corresponding lactone, that is, PpBBE1 is a cellobiose oxidase. The enzymatic reaction mechanism was characterized by a structure‐guided mutagenesis approach that enabled us to assign a catalytic role to amino acid residues in the active site of PpBBE1. In vivo experiments revealed the highest level of PpBBE1 expression in chloronema, the earliest stage of the plant's life cycle, where carbon metabolism is strongly upregulated. It was also shown that the enzyme is secreted to the extracellular space, where it may be involved in later steps of cellulose degradation, thereby allowing the moss to make use of cellulose for energy production. Overall, our results suggest that the primordial role of BBE‐like enzymes in plants revolved around primary metabolic reactions in carbohydrate utilization. Database Structural data are available in the PDB under the accession numbers 6EO4 and 6EO5.
Collapse
Affiliation(s)
- Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | - Jelena Ulićević
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Bastian Daniel
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Jennifer Kothe
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
25
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
26
|
Su D, Yuan H, Gadda G. A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C. Biochemistry 2017; 56:6677-6690. [DOI: 10.1021/acs.biochem.7b00958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan Su
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hongling Yuan
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
27
|
Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids. Molecules 2017; 22:molecules22122205. [PMID: 29231859 PMCID: PMC6149797 DOI: 10.3390/molecules22122205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
The oxidation of alcohols to the corresponding carbonyl or carboxyl compounds represents a convenient strategy for the selective introduction of electrophilic carbon centres into carbohydrate-based starting materials. The O2-dependent oxidation of prim-alcohols by flavin-containing alcohol oxidases often yields mixtures of aldehyde and carboxylic acid, which is due to “over-oxidation” of the aldehyde hydrate intermediate. In order to directly convert alcohols into carboxylic acids, rational engineering of 5-(hydroxymethyl)furfural oxidase was performed. In an attempt to improve the binding of the aldehyde hydrate in the active site to boost aldehyde-oxidase activity, two active-site residues were exchanged for hydrogen-bond-donating and -accepting amino acids. Enhanced over-oxidation was demonstrated and Michaelis–Menten kinetics were performed to corroborate these findings.
Collapse
|
28
|
Gadda G, Yuan H. Substitutions of S101 decrease proton and hydride transfers in the oxidation of betaine aldehyde by choline oxidase. Arch Biochem Biophys 2017; 634:76-82. [PMID: 29029877 DOI: 10.1016/j.abb.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/25/2022]
Abstract
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States.
| | - Hongling Yuan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|
29
|
Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1470-1478. [PMID: 28843728 DOI: 10.1016/j.bbapap.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[2H4]-choline as a substrate. The limiting rate constants klim1 and klim2 at saturating substrate were well separated (klim1/klim2>9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that klim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that klim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the klim1 and klim2 values increased with increasing temperature, allowing for the analyses of H+ and H- transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the klim1 value (H2Oklim1/D2Oklim1) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the klim2 value gave lines with the slope(choline)>slope(D-choline), suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed.
Collapse
|
30
|
Chow C, Hegde S, Blanchard JS. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects. Biochemistry 2017; 56:4044-4052. [PMID: 28700220 DOI: 10.1021/acs.biochem.7b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-Aspartate oxidase, encoded by the nadB gene, is the first enzyme in the de novo synthesis of NAD+ in bacteria. This FAD-dependent enzyme catalyzes the oxidation of l-aspartate to generate iminoaspartate and reduced flavin. Distinct from most amino acid oxidases, it can use either molecular oxygen or fumarate to reoxidize the reduced enzyme. Sequence alignments and the three-dimensional crystal structure have revealed that the overall fold and catalytic residues of NadB closely resemble those of the succinate dehydrogenase/fumarate reductase family rather than those of the prototypical d-amino acid oxidases. This suggests that the enzyme can catalyze amino acid oxidation via typical amino acid oxidase chemistry, involving the removal of protons from the α-amino group and the transfer of the hydride from C2, or potentially deprotonation at C3 followed by transfer of the hydride from C2, similar to chemistry occurring during succinate oxidation. We have investigated this potential mechanistic ambiguity using a combination of primary, solvent, and multiple deuterium kinetic isotope effects in steady state experiments. Our results indicate that the chemistry is similar to that of typical amino acid oxidases in which the transfer of the hydride from C2 of l-aspartate to FAD is rate-limiting and occurs in a concerted manner with respect to deprotonation of the α-amine. Together with previous kinetic and structural data, we propose that NadB has structurally evolved from succinate dehydrogenase/fumarate reductase-type enzymes to gain the new functionality of oxidizing amino acids while retaining the ability to reduce fumarate.
Collapse
Affiliation(s)
- Carmen Chow
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
31
|
Rolph MS, Pitto-Barry A, O'Reilly RK. The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars. Polym Chem 2017. [DOI: 10.1039/c7py00219j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-definedN,N′-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been synthesizedviaan arm-first approach.
Collapse
|
32
|
Galbán J, Sanz-Vicente I, Navarro J, de Marcos S. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review. Methods Appl Fluoresc 2016; 4:042005. [DOI: 10.1088/2050-6120/4/4/042005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Vonck J, Parcej DN, Mills DJ. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS One 2016; 11:e0159476. [PMID: 27458710 PMCID: PMC4961394 DOI: 10.1371/journal.pone.0159476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- * E-mail:
| | - David N. Parcej
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Salvi F, Rodriguez I, Hamelberg D, Gadda G. Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase. Biochemistry 2016; 55:1473-84. [PMID: 26907558 DOI: 10.1021/acs.biochem.5b01356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Choline oxidase from Arthrobacter globiformis catalyzes the oxidation of choline to glycine betaine by using oxygen as an electron acceptor. A partially rate limiting isomerization of the reduced wild-type enzyme during the reaction with oxygen was previously detected using solvent viscosity effects. In this study, we hypothesized that the side chains of M62 and F357, located at the entrance to the active site of choline oxidase, may be related to the slow isomerization detected. We engineered a double-variant enzyme M62A/F357A. The kinetic characterization of the double-variant enzyme showed a lack of the isomerization detected in wild-type choline oxidase, and a lack of saturation with an oxygen concentration as high as 1 mM, while most other kinetic parameters were similar to those of wild-type choline oxidase. The kinetic characterization of the single-variant enzymes established that only the side chain of F357 plays a role in the isomerization of choline oxidase in the oxidative half-reaction. Molecular dynamics studies suggest that the slow isomerization related to F357 is possibly due to the participation of the phenyl ring in a newly proposed gating mechanism for a narrow tunnel, assumed to regulate the access of oxygen to the reduced cofactor.
Collapse
Affiliation(s)
- Francesca Salvi
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Isela Rodriguez
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
35
|
Koch C, Neumann P, Valerius O, Feussner I, Ficner R. Crystal Structure of Alcohol Oxidase from Pichia pastoris. PLoS One 2016; 11:e0149846. [PMID: 26905908 PMCID: PMC4764120 DOI: 10.1371/journal.pone.0149846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring.
Collapse
Affiliation(s)
- Christian Koch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology und Genetics, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- * E-mail:
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology und Genetics, Georg-August-University, Griesebachstr. 8, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology und Genetics, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
36
|
Graf MMH, Sucharitakul J, Bren U, Chu DB, Koellensperger G, Hann S, Furtmüller PG, Obinger C, Peterbauer CK, Oostenbrink C, Chaiyen P, Haltrich D. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates. FEBS J 2015; 282:4218-41. [PMID: 26284701 PMCID: PMC4950071 DOI: 10.1111/febs.13417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 01/25/2023]
Abstract
Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding.
Collapse
Affiliation(s)
- Michael M H Graf
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Urban Bren
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- Laboratory for Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Slovenia
| | - Dinh Binh Chu
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- School of Chemical Engineering, Department of Analytical Chemistry, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Clemens K Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| |
Collapse
|
37
|
Ortega E, de Marcos S, Sanz-Vicente I, Ubide C, Ostra M, Vidal M, Galbán J. Fluorescence of the Flavin group in choline oxidase. Insights and analytical applications for the determination of choline and betaine aldehyde. Talanta 2015; 147:253-60. [PMID: 26592604 DOI: 10.1016/j.talanta.2015.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022]
Abstract
Choline oxidase (ChOx) is a flavoenzyme catalysing the oxidation of choline (Ch) to betaine aldehyde (BA) and glycine betaine (GB). In this paper a fundamental study of the intrinsic fluorescence properties of ChOx due to Flavin Adenine Dinucleotide (FAD) is presented and some analytical applications are studied in detail. Firstly, an unusual alteration in the excitation spectra, in comparison with the absorption spectra, has been observed as a function of the pH. This is ascribed to a change of polarity in the excited state. Secondly, the evolution of the fluorescence spectra during the reaction seems to indicate that the reaction takes place in two consecutive, but partially overlapped, steps and each of them follows a different mechanism. Thirdly, the chemical system can be used to determine the Ch concentration in the range from 5×10(-6)M to 5×10(-5)M (univariate and multivariate calibration) in the presence of BA as interference, and the joint Ch+BA concentration in the range 5×10(-6)-5×10(-4)M (multivariate calibration) with mean errors under 10%; a semiquantitative determination of the BA concentration can be deduced by difference. Finally, Ch has been successfully determined in an infant milk sample.
Collapse
Affiliation(s)
- E Ortega
- Analytical Biosensors Groups, Analytical Chemistry Department, Faculty of Sciences, Aragon Institute of Nanoscience, University of Zaragoza, 50009 Zaragoza, Spain
| | - S de Marcos
- Analytical Biosensors Groups, Analytical Chemistry Department, Faculty of Sciences, Aragon Institute of Nanoscience, University of Zaragoza, 50009 Zaragoza, Spain
| | - I Sanz-Vicente
- Analytical Biosensors Groups, Analytical Chemistry Department, Faculty of Sciences, Aragon Institute of Nanoscience, University of Zaragoza, 50009 Zaragoza, Spain
| | - C Ubide
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco, Manuel de Lardizábal 3, 20018 San Sebastián, Spain
| | - M Ostra
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco, Manuel de Lardizábal 3, 20018 San Sebastián, Spain
| | - M Vidal
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco, Manuel de Lardizábal 3, 20018 San Sebastián, Spain
| | - J Galbán
- Analytical Biosensors Groups, Analytical Chemistry Department, Faculty of Sciences, Aragon Institute of Nanoscience, University of Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
38
|
Characterization of two-step deglycosylation via oxidation by glycoside oxidoreductase and defining their subfamily. Sci Rep 2015; 5:10877. [PMID: 26057169 PMCID: PMC4650693 DOI: 10.1038/srep10877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
Herein, we report a two-step deglycosylation mediated by the oxidation of glycoside which is different from traditional glycoside hydrolase (GH) mechanism. Previously, we reported a novel flavin adenine dinucleotide (FAD)-dependent glycoside oxidoreductase (FAD-GO) having deglycosylation activity. Various features of the reaction of FAD-GO such as including mechanism and catalytic residue and substrate specificity were studied. In addition, classification of novel FAD-GO subfamily was attempted. Deglycosylation of glycoside was performed spontaneously via oxidation of 3-OH of glycone moiety by FAD-GO mediated oxidation reaction. His493 residue was identified as a catalytic residue for the oxidation step. Interestingly, this enzyme has broad glycone and aglycon specificities. For the classification of FAD-GO enzyme subfamily, putative FAD-GOs were screened based on the FAD-GO from Rhizobium sp. GIN611 (gi 365822256) using BLAST search. The homologs of R. sp. GIN611 included the putative FAD-GOs from Stenotrophomonas strains, Sphingobacterium strains, Agrobacterium tumefaciens str. C58, and etc. All the cloned FAD-GOs from the three strains catalyzed the deglycosylation via enzymatic oxidation. Based on their substrate specificities, deglycosylation and oxidation activities to various ginsenosides, the FAD-GO subfamily members can be utilized as novel biocatalysts for the production of various aglycones.
Collapse
|
39
|
Ferreira P, Hernández-Ortega A, Lucas F, Carro J, Herguedas B, Borrelli KW, Guallar V, Martínez AT, Medina M. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J 2015; 282:3091-106. [PMID: 25639975 DOI: 10.1111/febs.13221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/10/2015] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Aryl-alcohol oxidase (AAO, EC 1.1.3.7) generates H2 O2 for lignin degradation at the expense of benzylic and other π system-containing primary alcohols, which are oxidized to the corresponding aldehydes. Ligand diffusion studies on Pleurotus eryngii AAO showed a T-shaped stacking interaction between the Tyr92 side chain and the alcohol substrate at the catalytically competent position for concerted hydride and proton transfers. Bi-substrate kinetics analysis revealed that reactions with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping-pong mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-dimethoxybenzyl alcohols) altered the mechanism and a ternary complex was formed. Electron-withdrawing substituents resulted in lower quantum mechanics stacking energies between aldehyde and the tyrosine side chain, contributing to product release, in agreement with the ping-pong mechanism observed in 3-chloro- and 3-fluorobenzyl alcohol kinetics analysis. In contrast, the higher stacking energies when electron donor substituents are present result in reaction of O2 with the flavin through a ternary complex, in agreement with the kinetics of methoxylated alcohols. The contribution of Tyr92 to the AAO reaction mechanism was investigated by calculation of stacking interaction energies and site-directed mutagenesis. Replacement of Tyr92 by phenylalanine does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably because the stacking interaction is still possible. However, introduction of a tryptophan residue at this position strongly reduced the affinity for the substrate (i.e. the pre-steady state Kd and steady-state Km increase by 150-fold and 75-fold, respectively), and therefore the steady-state catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The above results confirm the role of Tyr92 in substrate binding, thus governing the kinetic mechanism in AAO.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fátima Lucas
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Herguedas
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| | - Kenneth W Borrelli
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Victor Guallar
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| |
Collapse
|
40
|
Dijkman WP, Binda C, Fraaije MW, Mattevi A. Structure-Based Enzyme Tailoring of 5-Hydroxymethylfurfural Oxidase. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00031] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Willem P. Dijkman
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Claudia Binda
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
1, 27100 Pavia, Italy
| | - Marco W. Fraaije
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
1, 27100 Pavia, Italy
| |
Collapse
|
41
|
Smitherman C, Rungsrisuriyachai K, Germann MW, Gadda G. Identification of the Catalytic Base for Alcohol Activation in Choline Oxidase. Biochemistry 2014; 54:413-21. [DOI: 10.1021/bi500982y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Crystal Smitherman
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Kunchala Rungsrisuriyachai
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Markus W. Germann
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
42
|
Wang L, Zheng J, Li Y, Yang S, Liu C, Xiao Y, Li J, Cao Z, Yang R. AgNP-DNA@GQDs Hybrid: New Approach for Sensitive Detection of H2O2 and Glucose via Simultaneous AgNP Etching and DNA Cleavage. Anal Chem 2014; 86:12348-54. [DOI: 10.1021/ac503653c] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lili Wang
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yinhui Li
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Sheng Yang
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Changhui Liu
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yue Xiao
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Jishan Li
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Zhong Cao
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial
Key Laboratory of Materials Protection for Electric Power and Transportation,
School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, P. R. China
| | - Ronghua Yang
- State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, and Collaborative Innovation Center for Chemistry and
Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
43
|
Fitzpatrick PF. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1746-55. [PMID: 25448013 DOI: 10.1016/j.bbapap.2014.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78212, USA.
| |
Collapse
|
44
|
Schmitt A, Robert V, Dutasta JP, Martinez A. Synthesis of the First Water-Soluble Hemicryptophane Host: Selective Recognition of Choline in Aqueous Medium. Org Lett 2014; 16:2374-7. [DOI: 10.1021/ol500706z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aline Schmitt
- Laboratoire
de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46, Allée d’Italie, F-69364 Lyon, France
| | - Vincent Robert
- Laboratoire
de Chimie Quantique Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 4, rue Blaise Pascal, F-67070 Strasbourg, France
| | - Jean-Pierre Dutasta
- Laboratoire
de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46, Allée d’Italie, F-69364 Lyon, France
| | - Alexandre Martinez
- Laboratoire
de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46, Allée d’Italie, F-69364 Lyon, France
| |
Collapse
|
45
|
Salvi F, Wang YF, Weber IT, Gadda G. Structure of choline oxidase in complex with the reaction product glycine betaine. ACTA ACUST UNITED AC 2014; 70:405-13. [DOI: 10.1107/s1399004713029283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022]
Abstract
Choline oxidase fromArthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose–methanol–choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand–enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250–255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.
Collapse
|
46
|
Salvi F, Gadda G. Human choline dehydrogenase: medical promises and biochemical challenges. Arch Biochem Biophys 2013; 537:243-52. [PMID: 23906661 PMCID: PMC7094428 DOI: 10.1016/j.abb.2013.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
Abstract
Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.
Collapse
Affiliation(s)
- Francesca Salvi
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
- Department of Biology, Georgia State University, Atlanta, GA 30302-3965, United States
- The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|
47
|
Serrano H, Blanchard JS. Kinetic and isotopic characterization of L-proline dehydrogenase from Mycobacterium tuberculosis. Biochemistry 2013; 52:5009-15. [PMID: 23834473 DOI: 10.1021/bi400338f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The monofunctional proline dehydrogenase (ProDH) from Mycobacterium tuberculosis performs the flavin-dependent oxidation of l-proline to Δ(1)-pyrroline-5-carboxylate in the proline catabolic pathway. The ProDH gene, prub, was cloned into the pYUB1062 vector, and the C-terminal His-tagged 37 kDa protein was expressed and purified by nickel affinity chromatography. A steady-state kinetic analysis revealed a ping-pong mechanism with an overall kcat of 33 ± 2 s(-1) and Km values of 5.7 ± 0.8 mM and 3.4 ± 0.3 μM for l-proline and 2,6-dichlorophenolindophenol (DCPIP), respectively. The pH dependence of kcat revealed that one enzyme group exhibiting a pK value of 6.8 must be deprotonated for optimal catalytic activity. Site-directed mutagenesis suggests that this group is Lys110. The primary kinetic isotope effects on V/KPro and V of 5.5 and 1.1, respectively, suggest that the transfer of hydride from l-proline to FAD is rate-limiting for the reductive half-reaction, but that FAD reoxidation is the rate-limiting step in the overall reaction. Solvent and multiple kinetic isotope effects suggest that l-proline oxidation occurs in a stepwise rather than concerted mechanism. Pre-steady-state kinetics reveal an overall kred of 88.5 ± 0.7 s(-1), and this rate is subject to a primary kinetic isotope effect of 5.2. These data confirm that the overall reaction is limited by reduced flavin reoxidation in the second half-reaction.
Collapse
Affiliation(s)
- Hector Serrano
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | |
Collapse
|
48
|
Xia Y, Ye J, Tan K, Wang J, Yang G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal Chem 2013; 85:6241-7. [PMID: 23706061 DOI: 10.1021/ac303591n] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we design a homogeneous system consisting of Ag nanoprisms and glucose oxidase (GOx) for simple, sensitive, and low-cost colorimetric sensing of glucose in serum. The unmodified Ag nanoprisms and GOx are first mixed with each other. Glucose is then added in the homogeneous mixture. Finally, the nanoplates are etched from triangle to round by H2O2 produced by the enzymatic oxidation, which leads to a more than 120 nm blue shift of the surface plasmon resonance (SPR) absorption band of the Ag nanoplates. This large wavelength shift can be used not only for visual detection (from blue to mauve) of glucose by naked eyes but for reliable and convenient glucose quantification in the range from 2.0 × 10(-7) to 1.0 × 10(-4) M. The detection limit is as low as 2.0 × 10(-7) M, because the used Ag nanoprisms possess (1) highly reactive edges/tips and (2) strongly tip sharpness and aspect ratio dependent SPR absorption. Owing to ultrahigh sensitivity, only 10-20 μL of serum is enough for a one-time determination. The proposed glucose sensor has great potential in the applications of point-of-care diagnostics, especially for third-world countries where high-tech diagnostics aids are inaccessible to the bulk of the population.
Collapse
Affiliation(s)
- Yunsheng Xia
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | | | | | | | | |
Collapse
|
49
|
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 2013; 280:3009-27. [DOI: 10.1111/febs.12280] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| |
Collapse
|
50
|
Gannavaram S, Gadda G. Relative Timing of Hydrogen and Proton Transfers in the Reaction of Flavin Oxidation Catalyzed by Choline Oxidase. Biochemistry 2013; 52:1221-6. [DOI: 10.1021/bi3016235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Swathi Gannavaram
- Department of Chemistry, ‡Department of Biology, and §The Center for
Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, and §The Center for
Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|