1
|
Neves YCD, Reis AJ, Rodrigues MA, Chimara E, da Silva Lourenço MC, Fountain J, Ramis IB, von Groll A, Gerasimova Y, Rohde KH, Almeida da Silva PE. Detection of Mtb and NTM: preclinical validation of a new asymmetric PCR-binary deoxyribozyme sensor assay. Microbiol Spectr 2024; 12:e0350623. [PMID: 38651877 PMCID: PMC11237447 DOI: 10.1128/spectrum.03506-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Tuberculosis (TB) and infectious diseases caused by non-tuberculous mycobacteria (NTM) are global concerns. The development of a rapid and accurate diagnostic method, capable of detecting and identifying different mycobacteria species, is crucial. We propose a molecular approach, the BiDz-TB/NTM, based on the use of binary deoxyribozyme (BiDz) sensors for the detection of Mycobacterium tuberculosis (Mtb) and NTM of clinical interest. A panel of DNA samples was used to evaluate Mtb-BiDz, Mycobacterium abscessus/Mycobacterium chelonae-BiDz, Mycobacterium avium-BiDz, Mycobacterium intracellulare/Mycobacterium chimaera-BiDz, and Mycobacterium kansasii-BiDz sensors in terms of specificity, sensitivity, accuracy, and limit of detection. The BiDz sensors were designed to hybridize specifically with the genetic signatures of the target species. To obtain the BiDz sensor targets, amplification of a fragment containing the hypervariable region 2 of the 16S rRNA was performed, under asymmetric PCR conditions using the reverse primer designed based on linear-after-the-exponential principles. The BiDz-TB/NTM was able to correctly identify 99.6% of the samples, with 100% sensitivity and 0.99 accuracy. The individual values of specificity, sensitivity, and accuracy, obtained for each BiDz sensor, satisfied the recommendations for new diagnostic methods, with sensitivity of 100%, specificity and accuracy ranging from 98% to 100% and from 0.98 to 1.0, respectively. The limit of detection of BiDz sensors ranged from 12 genome copies (Mtb-BiDz) to 2,110 genome copies (Mkan-BiDz). The BiDz-TB/NTM platform would be able to generate results rapidly, allowing the implementation of the appropriate therapeutic regimen and, consequently, the reduction of morbidity and mortality of patients.IMPORTANCEThis article describes the development and evaluation of a new molecular platform for accurate, sensitive, and specific detection and identification of Mycobacterium tuberculosis and other mycobacteria of clinical importance. Based on BiDz sensor technology, this assay prototype is amenable to implementation at the point of care. Our data demonstrate the feasibility of combining the species specificity of BiDz sensors with the sensitivity afforded by asymmetric PCR amplification of target sequences. Preclinical validation of this assay on a large panel of clinical samples supports the further development of this diagnostic tool for the molecular detection of pathogenic mycobacteria.
Collapse
Affiliation(s)
- Yasmin Castillos das Neves
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Ana Julia Reis
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Alaniz Rodrigues
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Erica Chimara
- Rede Brasileira de Pesquisa em Tuberculose (REDE-TB), Rio Grande, Rio Grande do Sul, Brazil
- Instituto Adolfo Lutz, São Paulo, Brazil
| | - Maria Cristina da Silva Lourenço
- Rede Brasileira de Pesquisa em Tuberculose (REDE-TB), Rio Grande, Rio Grande do Sul, Brazil
- Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Jacques Fountain
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, Orlando, USA
| | - Ivy Bastos Ramis
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
- Rede Brasileira de Pesquisa em Tuberculose (REDE-TB), Rio Grande, Rio Grande do Sul, Brazil
| | - Andrea von Groll
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
- Rede Brasileira de Pesquisa em Tuberculose (REDE-TB), Rio Grande, Rio Grande do Sul, Brazil
| | - Yulia Gerasimova
- Department of Chemistry, College of Sciences, University of Central Florida, Orlando, Florida, Orlando, USA
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, Orlando, USA
| | - Pedro Eduardo Almeida da Silva
- Laboratory of Mycobacteria, Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
- Rede Brasileira de Pesquisa em Tuberculose (REDE-TB), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Hussein Z, Nour MAY, Kozlova AV, Kolpashchikov DM, Komissarov AB, El-Deeb AA. DNAzyme Nanomachine with Fluorogenic Substrate Delivery Function: Advancing Sensitivity in Nucleic Acid Detection. Anal Chem 2023; 95:18667-18672. [PMID: 38079240 DOI: 10.1021/acs.analchem.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We have developed a hook-equipped DNA nanomachine (HDNM) for the rapid detection of specific nucleic acid sequences without a preamplification step. HDNM efficiently unwinds RNA structures and improves the detection sensitivity. Compared to the hookless system, HDNM offers an 80-fold and 13-fold enhancement in DNA and RNA detection, respectively, reducing incubation time from 3 to 1 h.
Collapse
Affiliation(s)
- Zain Hussein
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Anastasia V Kozlova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science, University of Central Florida, Orlando, Florida 32816, United States
| | - Andrey B Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russian Federation
| | - Ahmed A El-Deeb
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova 9, Saint Petersburg, 191002, Russian Federation
- Advanced Engineering School, 423450 Almetyevsk, Russian Federation
| |
Collapse
|
3
|
Mueller BL, Liberman MJ, Kolpashchikov DM. OWL2: a molecular beacon-based nanostructure for highly selective detection of single-nucleotide variations in folded nucleic acids. NANOSCALE 2023; 15:5735-5742. [PMID: 36880268 DOI: 10.1039/d2nr05590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybridization probes have been used in the detection of specific nucleic acids for the last 50 years. Despite the extensive efforts and the great significance, the challenges of the commonly used probes include (1) low selectivity in detecting single nucleotide variations (SNV) at low (e.g. room or 37 °C) temperatures; (2) low affinity in binding folded nucleic acids, and (3) the cost of fluorescent probes. Here we introduce a multicomponent hybridization probe, called OWL2 sensor, which addresses all three issues. The OWL2 sensor uses two analyte binding arms to tightly bind and unwind folded analytes, and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form fluorescent 'OWL' structure. The OWL2 sensor was able to differentiate single base mismatches in folded analytes in the temperature range of 5-38 °C. The design is cost-efficient since the same UMB probe can be used for detecting any analyte sequence.
Collapse
Affiliation(s)
- Brittany L Mueller
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | - Mark J Liberman
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Drozd VS, Eldeeb AA, Kolpashchikov DM, Nedorezova DD. Binary Antisense Oligonucleotide Agent for Cancer Marker-Dependent Degradation of Targeted RNA. Nucleic Acid Ther 2022; 32:412-420. [DOI: 10.1089/nat.2021.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valeriia S. Drozd
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, St. Petersburg, Russian Federation
| | - Ahmed A. Eldeeb
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, St. Petersburg, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, St. Petersburg, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, St. Petersburg, Russian Federation
| |
Collapse
|
5
|
Mirzayi S, Ravan H, Soltanian S. Borderline Boolean states improve the biosensing applications of DNA circuits. Int J Biol Macromol 2022; 207:1005-1010. [PMID: 35378164 DOI: 10.1016/j.ijbiomac.2022.03.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Molecular circuits have been used in a wide range of diagnosis applications, from the detection of chemical molecules in solution to the complex processing of cell surface receptors. One of the most important challenges of these systems is the lack of distinguishability between different circuit states when each circuit state represents a specific disease. In this work, we designed a molecular amplification circuit with borderline Boolean states that each state can be distinguished with different color intensity. For this purpose, two DNA complexes and four DNA hairpin structures were designed to detect miR-218 and miR-215 biomarkers. One of the designed DNA complexes has two G-quadruplex structures and the other has only one G-quadruplex structure. In the absence of the inputs, all three G-quadruplex structures are active and produce a high-intensity signal, while in the other three states, including the presence of miR-218, the presence of miR-215, and the presence of both inputs, respectively, one, two, and zero G-quadruplex structures are active. Therefore, the designed system can identify two different biomarkers simultaneously with different signal ratios, which can easily distinguish the different states of the circuit. This strategy is very promising to identify diseases in which any combination of biomarkers leads to a particular disease.
Collapse
Affiliation(s)
- Sedighe Mirzayi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Kashefi-Kheyrabadi L, Nguyen HV, Go A, Baek C, Jang N, Lee JM, Cho NH, Min J, Lee MH. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens Bioelectron 2022; 195:113649. [PMID: 34555637 PMCID: PMC8447555 DOI: 10.1016/j.bios.2021.113649] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Considering the worldwide health crisis associated with highly contagious severe respiratory disease of COVID-19 outbreak, the development of multiplexed, simple and rapid diagnostic platforms to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in high demand. Here, a nucleic acid amplification-free electrochemical biosensor based on four-way junction (4-WJ) hybridization is presented for the detection of SARS-CoV-2. To form a 4-WJ structure, a Universal DNA-Hairpin (UDH) probe is hybridized with two adaptor strands and a SARS-CoV-2 RNA target. One of the adaptor strands is functionalized with a redox mediator that can be detected using an electrochemical biosensor. The biosensor could simultaneously detect 5.0 and 6.8 ag/μL of S and Orf1ab genes, respectively, within 1 h. The biosensor was evaluated with 21 clinical samples (16 positive and 5 negative). The results revealed a satisfactory agreement with qRT-PCR. In conclusion, this biosensor has the potential to be used as an on-site, real-time diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Leila Kashefi-Kheyrabadi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nayoon Jang
- Department Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 02844, Republic of Korea
| | - Jiwon Michelle Lee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nam-Hyuk Cho
- Department Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 02844, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea,Corresponding author
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea,Corresponding author
| |
Collapse
|
7
|
Gerasimova YV, Nedorezova DD, Kolpashchikov DM. Split light up aptamers as a probing tool for nucleic acids. Methods 2021; 197:82-88. [PMID: 33992774 DOI: 10.1016/j.ymeth.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aptamers that bind non-fluorescent dyes and increase their fluorescence can be converted to fluorescent sensors. Here, we discuss and provide guidance for the design of split (binary) light up aptameric sensors (SLAS) for nucleic acid analysis. SLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. The two strands hybridize to the analyzed DNA or RNA sequence and form a dye-binding pocket, followed by dye binding, and increase in its fluorescence. SLAS can detect nucleic acids in a cost-efficient label-free format since it does not require conjugation of organic dyes with nucleic acids. SLAS design is preferable over monolith fluorescent sensors due to simpler assay optimization and improved selectivity. RNA-based SLAS can be expressed in cells and used for intracellular monitoring and imaging biological molecules.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States.
| | - Daria D Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States; Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
8
|
Podder A, Lee HJ, Kim BH. Fluorescent Nucleic Acid Systems for Biosensors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arup Podder
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
9
|
Feng Z, Zhang W, Li L, Tu B, Ye W, Tang X, Wang H, Xiao X, Wu T. A cost-effective detection of low-abundance mutation with DNA three-way junction structure and lambda exonuclease. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Fujimoto K, Watanabe N. Fluorescence In Situ Hybridization of 16S rRNA in
Escherichia coli
Using Multiple Photo‐Cross‐Linkable Probes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| | - Nanami Watanabe
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
11
|
Zhang K, Deng R, Gao H, Teng X, Li J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem Soc Rev 2020; 49:1932-1954. [PMID: 32108196 DOI: 10.1039/c9cs00438f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to 'see' genetic information directly in single cells can provide invaluable insights into complex biological systems. In this review, we discuss recent advances of in situ imaging technologies for visualizing the subtlest sequence alteration, single-nucleotide variation (SNV), at single-cell level. The mechanism of recently developed methods for SNV discrimination are summarized in detail. With recent developments, single-cell SNV imaging methods have opened a new door for studying the heterogenous and stochastic genetic information in individual cells. Furthermore, SNV imaging can be used on morphologically preserved tissue, which can provide information on histological context for gene expression profiling in basic research and genetic diagnosis. Moreover, the ability to visualize SNVs in situ can be further developed into in situ sequencing technology. We expect this review to inspire more research work into in situ SNV imaging technologies for investigating cellular phenotypes and gene regulation at single-nucleotide resolution, and developing new clinical and biomedical applications.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Hua Gao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and Department of Pathogeny Biology, Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Ida J, Kuzuya A, Choong YS, Lim TS. An intermolecular-split G-quadruplex DNAzyme sensor for dengue virus detection. RSC Adv 2020; 10:33040-33051. [PMID: 35515051 PMCID: PMC9056686 DOI: 10.1039/d0ra05439a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/23/2020] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids have special ability to organize themselves into various non-canonical structures, including a four-stranded DNA structure termed G-quadruplex (G4) that has been utilized for diagnostic and therapeutic applications. Herein, we report the ability of G4 to distinguish dengue virus (DENV) based on its serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) using a split G4-hemin DNAzyme configuration. In this system, two separate G-rich oligonucleotides are brought together upon target DNA strand hybridization to form a three-way junction architecture, allowing the formation of a G4 structure. The G4 formation in complexation with hemin can thus provide a signal readout by generating a DNAzyme that is able to catalyze H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This results in a change of color providing a sensing platform for the colorimetric detection of DENV. In our approach, betaine and dimethyl sulfoxide were utilized for better G4 generation by enhancing the target-probe hybridization. In addition to this serotype-specific assay, a multi-probe cocktail assay, which is an all-in-one assay was also examined for DENV detection. The system highlights the potential of split G-quadruplex configurations for the development of DNA-based detection and serotyping systems in the future.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate, Suita Osaka 564-8680 Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
13
|
Ang YS, Lai PS, Yung LYL. Design of Split Proximity Circuit as a Plug-and-Play Translator for Point Mutation Discrimination. Anal Chem 2020; 92:11164-11170. [PMID: 32605366 DOI: 10.1021/acs.analchem.0c01379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Point mutations are a common form of genetic variation and have been identified as important disease biomarkers. Conventional methods for analyzing point mutations, e.g., polymerase chain reaction (PCR), are based on differences in thermal stability of the DNA duplex, which require extensive optimization of the reaction condition and nontrivial design of sequence-selective primers. This motivated the design of molecular translators to convert molecular inputs into generic output sequences, which allows for the target recognition and signal generation regions to be designed independently. In this work, we propose a translator design based on the concept of split proximity circuit (SPC) to achieve both high sequence selectivity and assay robustness using a universal reaction condition, i.e., room temperature and constant ionic concentration. We discussed the design aspects of the SPC recognition regions and demonstrated its plug-and-play capability to discriminate different point mutations for both DNA (seven G6PD mutations) and RNA (let-7 microRNA family members) targets while retaining the same signal generation region. Despite its simple design and nonstringent assay condition requirements, the SPC retained good analytical performance to detect subnanomolar target concentration within a reasonable time of an hour.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
14
|
MVF Sensor Enables Analysis of Nucleic Acids with Stable Secondary Structures. ELECTROANAL 2020. [DOI: 10.1002/elan.201900690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Connelly RP, Verduzco C, Farnell S, Yishay T, Gerasimova YV. Toward a Rational Approach to Design Split G-Quadruplex Probes. ACS Chem Biol 2019; 14:2701-2712. [PMID: 31599573 DOI: 10.1021/acschembio.9b00634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hybridization probes have become an indispensable tool for nucleic acid analysis. Systematic efforts in probe optimization resulted in their improved binding affinity, turn-on ratios, and ability to discriminate single nucleotide substitutions (SNSs). The use of split (or multicomponent) probes is a promising strategy to improve probe selectivity and enable an analysis of folded analytes. Here, we developed criteria for the rational design of a split G-quadruplex (G4) peroxidase-like deoxyribozyme (sPDz) probe that provides a visual output signal. The sPDz probe consists of two DNA strands that hybridize to the abutting positions of a DNA/RNA target and form a G4 structure catalyzing, in the presence of a hemin cofactor, H2O2-mediated oxidation of organic compounds into their colored oxidation products. We have demonstrated that probe design becomes complicated in the case of target sequences containing clusters (two or more) of cytosine residues and developed strategies to overcome the challenges to achieving high signal-to-noise and excellent SNS discrimination. Specifically, to improve selectivity, a conformational constraint that stabilizes the probe's dissociated state is beneficial. If the signal intensity is compromised, introduction of flexible non-nucleotide linkers between the G4-forming and target-recognizing elements of the probe helps to decrease the steric hindrance for G4 PDz formation observed as a signal increase. Varying the modes of G4 core splitting is another instrument for the optimal sPDz design. The suggested algorithm was successfully utilized for the design of the sPDz probe interrogating a fragment of the Influenza A virus genome (subtype H1N1), which can be of practical use for flu diagnostics and surveillance.
Collapse
Affiliation(s)
- Ryan P. Connelly
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Charles Verduzco
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Serena Farnell
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Tamar Yishay
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
16
|
Lynch CA, Foguel MV, Reed AJ, Balcarcel AM, Calvo-Marzal P, Gerasimova YV, Chumbimuni-Torres KY. Selective Determination of Isothermally Amplified Zika Virus RNA Using a Universal DNA-Hairpin Probe in Less than 1 Hour. Anal Chem 2019; 91:13458-13464. [DOI: 10.1021/acs.analchem.9b02455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Charles A. Lynch
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Rose Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803, United States
| | - Marcos V. Foguel
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Adam J. Reed
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Angelica M. Balcarcel
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Percy Calvo-Marzal
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| | - Karin Y. Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
| |
Collapse
|
17
|
Abstract
Hybridization probes are RNA or DNA oligonucleotides or their analogs that bind to specific nucleotide sequences in targeted nucleic acids (analytes) via Watson-Crick base pairs to form probe-analyte hybrids. Formation of a stable hybrid would indicate the presence of a DNA or RNA fragment complementary to the known probe sequence. Some of the well-known technologies that rely on nucleic acid hybridization are TaqMan and molecular beacon (MB) probes, fluorescent in situ hybridization (FISH), polymerase chain reaction (PCR), antisense, siRNA, and CRISPR/cas9, among others. Although invaluable tools for DNA and RNA recognition, hybridization probes suffer from several common disadvantages including low selectivity under physiological conditions, low affinity to folded single-stranded RNA and double-stranded DNA, and high cost of dye-labeled and chemically modified probes. Hybridization probes are evolving into multifunctional molecular devices (dubbed here "multicomponent probes", "DNA machines", and "DNA robots") to satisfy complex and often contradictory requirements of modern biomedical applications. In the definition used here, "multicomponent probes" are DNA probes that use more than one oligonucleotide complementary to an analyzed sequence. A "DNA machine" is an association of a discrete number of DNA strands that undergoes structural rearrangements in response to the presence of a specific analyte. Unlike multicomponent probes, DNA machines unify several functional components in a single association even in the absence of a target. DNA robots are DNA machines equipped with computational (analytic) capabilities. This Account is devoted to an overview of the ongoing evolution of hybridization probes to DNA machines and robots. The Account starts with a brief excursion to historically significant and currently used instantaneous probes. The majority of the text is devoted to the design of (i) multicomponent probes and (ii) DNA machines for nucleic acid recognition and analysis. The fundamental advantage of both designs is their ability to simultaneously address multiple problems of RNA/DNA analysis. This is achieved by modular design, in which several specialized functional components are used simultaneously for recognition of RNA or DNA analytes. The Account is concluded with the analysis of perspectives for further evolution of DNA machines into DNA robots.
Collapse
Affiliation(s)
- Dmitry M. Kolpashchikov
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences
255, Orlando, Florida 32816-2366, United States
| |
Collapse
|
18
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
19
|
Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS. G-Quadruplexes as An Alternative Recognition Element in Disease-Related Target Sensing. Molecules 2019; 24:E1079. [PMID: 30893817 PMCID: PMC6471233 DOI: 10.3390/molecules24061079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Jörn Glökler
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
20
|
Wood HN, Sidders AE, Brumsey LE, Morozkin ES, Gerasimova YV, Rohde KH. Species Typing of Nontuberculous Mycobacteria by Use of Deoxyribozyme Sensors. Clin Chem 2018; 65:333-341. [PMID: 30523201 DOI: 10.1373/clinchem.2018.295212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) species are a rising threat, especially to patients living with pulmonary comorbidities. Current point-of-care diagnostics fail to adequately identify and differentiate NTM species from Mycobacterium tuberculosis (Mtb). Definitive culture- and molecular-based testing can take weeks to months and requires sending samples out to specialized diagnostic laboratories. METHODS In this proof-of-concept study, we developed an assay based on PCR amplification of 16S ribosomal RNA (rRNA) rrs genes by using universal mycobacterial primers and interrogation of the amplified fragments with a panel of binary deoxyribozyme (BiDz) sensors to enable species-level identification of NTM (BiDz-NTMST). Each BiDz sensor consists of 2 subunits of an RNA-cleaving deoxyribozyme, which form an active deoxyribozyme catalytic core only in the presence of the complimentary target sequence. The target-activated BiDz catalyzes cleavage of a reporter substrate, thus triggering either fluorescent or colorimetric (visually observed) signal depending on the substrate used. The panel included BiDz sensors for differentiation of 6 clinically relevant NTM species (Mycobacterium abscessus, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium kansasii, and Mycobacterium gordonae) and Mtb. RESULTS Using the fluorescent BiDz-NTMST assay, we successfully identified the species of 38 clinical isolates. In addition, a subset of strains was tested with visual BiDz sensors, providing proof-of-concept for species typing of NTM by the naked eye. CONCLUSIONS The BiDz-NTMST assay is a novel platform for rapid identification of NTM species. This method is highly specific and significantly faster than current tools and is easily adaptable for onsite diagnostic laboratories in hospitals or clinical laboratories.
Collapse
Affiliation(s)
- Hillary N Wood
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Ashelyn E Sidders
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Lauren E Brumsey
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Evgeny S Morozkin
- Department of Chemistry, College of Sciences, University of Central Florida, Orlando, FL
| | - Yulia V Gerasimova
- Department of Chemistry, College of Sciences, University of Central Florida, Orlando, FL.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL;
| |
Collapse
|
21
|
Zhang X, Yang L, Wang F, Liu Z, Liu R, Ying Q, Fan C, Wu X. Development of a Simple and Cost-Effective Method Based on T7 Endonuclease Cleavage for Detection of Single Nucleotide Polymorphisms. Genet Test Mol Biomarkers 2018; 22:719-723. [PMID: 30484704 DOI: 10.1089/gtmb.2018.0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Single nucleotide polymorphisms (SNP) can be used as genetic markers and for risk assessment of allele-linked diseases, which can provide information for clinical diagnosis. Large-scale microarray and next-generation sequencing methods have made genome-wide SNP genotyping possible. However, in addition to their high cost, these techniques are dependent on having specialized equipment. Thus, there is a need for a simple genotyping method that can be implemented in a resource-limited environment. METHODS We developed a strategy for SNP genotyping based on T7 Endonuclease I cleavage and an enzyme-linked microparticle immune assay. Using this method, we genotyped two common SNP sites (rs11526468 and rs12979860). The quality of the genotyping process was validated. RESULTS Although a 70% false-negative rate was observed, no false-positive reactions were found. Therefore, multiple parallel repeat reactions can offset the possibility of mutation detection failure. DISCUSSION This method employs a duplicate reagent-dependent procedure, and therefore has the potential for integration into a portable kit for field utilization.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Lina Yang
- 2 Institute for Hygiene of Ordernance Industry, Xi'an, China
| | - Fang Wang
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- 3 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Kamoto S, Hyuga M, Kato T. Fluorescence detection of single-nucleotide differences using aptamer-forming binary DNA probes. Analyst 2018; 141:6087-6092. [PMID: 27540601 DOI: 10.1039/c6an00912c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple method for fluorescence detection of single-nucleotide alterations in a long target DNA, which is based on the formation of a three-way-junction-structured cholic-acid-binding DNA aptamer by the hybridization of the target with binary DNA probes. The new method was successfully exploited for SNP genotyping of human CYP2C19 gene.
Collapse
Affiliation(s)
- Saori Kamoto
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Masumi Hyuga
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Teru Kato
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
23
|
AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosens Bioelectron 2018; 111:124-130. [DOI: 10.1016/j.bios.2018.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
|
24
|
Karadeema RJ, Stancescu M, Steidl TP, Bertot SC, Kolpashchikov DM. The owl sensor: a 'fragile' DNA nanostructure for the analysis of single nucleotide variations. NANOSCALE 2018; 10:10116-10122. [PMID: 29781024 DOI: 10.1039/c8nr01107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of single nucleotide variations (SNVs) in DNA and RNA sequences is instrumental in healthcare for the detection of genetic and infectious diseases and drug-resistant pathogens. Here we took advantage of the developments in DNA nanotechnology to design a hybridization sensor, named the 'owl sensor', which produces a fluorescence signal only when it complexes with fully complementary DNA or RNA analytes. The novelty of the owl sensor operation is that the selectivity of analyte recognition is, at least in part, determined by the structural rigidity and stability of the entire DNA nanostructure rather than exclusively by the stability of the analyte-probe duplex, as is the case for conventional hybridization probes. Using two DNA and two RNA analytes we demonstrated that owl sensors differentiate SNVs in a wide temperature range of 5 °C-32 °C, a performance unachievable by conventional hybridization probes including the molecular beacon probe. The owl sensor reliably detects cognate analytes even in the presence of 100 times excess of single base mismatched sequences. The approach, therefore, promises to add to the toolbox for the diagnosis of SNVs at ambient temperatures.
Collapse
Affiliation(s)
- Rebekah J Karadeema
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
26
|
Abstract
Nanomedicine is a discipline that applies nanoscience and nanotechnology principles to the prevention, diagnosis, and treatment of human diseases. Self-assembly of molecular components is becoming a common strategy in the design and syntheses of nanomaterials for biomedical applications. In both natural and synthetic self-assembled nanostructures, molecular cooperativity is emerging as an important hallmark. In many cases, interplay of many types of noncovalent interactions leads to dynamic nanosystems with emergent properties where the whole is bigger than the sum of the parts. In this review, we provide a comprehensive analysis of the cooperativity principles in multiple self-assembled nanostructures. We discuss the molecular origin and quantitative modeling of cooperative behaviors. In selected systems, we describe the examples on how to leverage molecular cooperativity to design nanomedicine with improved diagnostic precision and therapeutic efficacy in medicine.
Collapse
Affiliation(s)
- Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States.,Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing , 100191 , China
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center , UT Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390 , United States
| |
Collapse
|
27
|
Kikuchi N, Kolpashchikov DM. A universal split spinach aptamer (USSA) for nucleic acid analysis and DNA computation. Chem Commun (Camb) 2018; 53:4977-4980. [PMID: 28425510 DOI: 10.1039/c7cc01540b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate how a single universal spinach aptamer (USSA) probe can be used to detect multiple (potentially any) nucleic acid sequences. USSA can be used for cost-efficient and highly selective analysis of even folded DNA and RNA analytes, as well as for the readout of outputs of DNA logic circuits.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA
| | | |
Collapse
|
28
|
A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands. Biosens Bioelectron 2018. [PMID: 29524915 DOI: 10.1016/j.bios.2018.02.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K3[Fe(CN)6]/K4[Fe(CN)6] redox couple in solution. An increase in charge transfer resistance (RCT) was observed upon 4J structure formation, the value of which depends on the analyte length. Cyclic voltammetry (CV) was used to further characterize the sensor and monitor the electrochemical reaction in conjunction with thickness measurements of the mixed DNA monolayer obtained using spectroscopic ellipsometry. In addition, the electron transfer was calculated at the electrode/electrolyte interface using a rotating disk electrode. Limits of detection in the femtomolar range were achieved for nucleic acid targets of different lengths (22 nt, 60 nt, 200 nt). The sensor produced only a background signal in the presence of single base mismatched analytes, even in hundred times excess in concentration. This label-free and highly selective biosensing platform is versatile and can be used for universal detection of nucleic acids of varied lengths which could revolutionize point of care diagnostics for applications such as bacterial or cancer screening.
Collapse
|
29
|
Kamar O, Sun SC, Lin CH, Chung WY, Lee MS, Liao YC, Kolpashchikov DM, Chuang MC. A mutation-resistant deoxyribozyme OR gate for highly selective detection of viral nucleic acids. Chem Commun (Camb) 2017; 53:10592-10595. [PMID: 28900642 PMCID: PMC5645154 DOI: 10.1039/c7cc05576e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Highly selective probes hybridize only to fully complementary DNA or RNA sequences and, therefore, often fail to recognize mutated viral genomes. Here we designed a probe that possesses two seemingly incompatible properties: it tolerates some point mutations in genome, while it remains selective towards others. An OR deoxyribozyme logic gate was designed to fluorescently report the sequences of enterovirus 71 (EV71) covering ∼90% of all known EV71 strains. Importantly, sequences of closely related coxsackieviruses that differed by single nucleotides were reliably differentiated in 7 out of 8 cases.
Collapse
Affiliation(s)
- Ola Kamar
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xiao X, Wu T, Xu L, Chen W, Zhao M. A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations. Nucleic Acids Res 2017; 45:e90. [PMID: 28201758 PMCID: PMC5449635 DOI: 10.1093/nar/gkx117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89-311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment.
Collapse
Affiliation(s)
- Xianjin Xiao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Xu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Smith AL, Kolpashchikov DM. Divide and Control: Comparison of Split and Switch Hybridization Sensors. ChemistrySelect 2017; 2:5427-5431. [PMID: 29372178 PMCID: PMC5777618 DOI: 10.1002/slct.201701179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hybridization probes have been intensively used for nucleic acid analysis in medicine, forensics and fundamental research. Instantaneous hybridization probes (IHPs) enable signalling immediately after binding to a targeted DNA or RNA sequences without the need to isolate the probe-target complex (e. g. by gel electrophoresis). The two most common strategies for IHP design are conformational switches and split approach. A conformational switch changes its conformation and produces signal upon hybridization to a target. Split approach uses two (or more) strands that independently or semi independently bind the target and produce an output signal only if all components associate. Here, we compared the performance of split vs switch designs for deoxyribozyme (Dz) hybridization probes under optimal conditions for each of them. The split design was represented by binary Dz (BiDz) probes; while catalytic molecular beacon (CMB) probes represented the switch design. It was found that BiDz were significantly more selective than CMBs in recognition of single base substitution. CMBs produced high background signal when operated at 55°C. An important advantage of BiDz over CMB is more straightforward design and simplicity of assay optimization.
Collapse
Affiliation(s)
- Alexandra L Smith
- Chemistry Department, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| | - Dmitry M Kolpashchikov
- Chemistry Department, Burnett School of Biomedical Sciences, National Center for Forensic Science, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| |
Collapse
|
32
|
Giamblanco N, Petralia S, Conoci S, Messineo C, Marletta G. Ionic strength-controlled hybridization and stability of hybrids of KRAS DNA single-nucleotides: A surface plasmon resonance study. Colloids Surf B Biointerfaces 2017; 158:41-46. [PMID: 28662393 DOI: 10.1016/j.colsurfb.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022]
Abstract
The discrimination of a fully matched, unlabeled KRAS wild-type (WT) (C-G) target sample with respect to three of the most frequent KRAS codon mutations (G12 S (C-A), G12 R (C-C), G12C (C-T)) was investigated using an optimized detection strategy involving surface plasmon resonance (SPR), based on optimized probe-surface density and ionic strength control. The changes observed in the SPR signal were always larger for WT compared with the single-mismatch target DNA oligonucleotides, and were aligned with the theoretical energy differences between the base pair C-G, C-T, C-A, C-C. Hybridization rates of ∼106M-1s-1 were detected without the introduction of high temperature and labels, usually needed in conventional hybridization methods. One hundred percent mutation discrimination of the matched KRAS wild-type (C-G) sequence with respect to three mismatched G12C (C-T), G12 S (C-A), G12 R (C-C) target sequences was achieved.
Collapse
Affiliation(s)
- N Giamblanco
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy.
| | - S Petralia
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - S Conoci
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy.
| | - C Messineo
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy
| | - G Marletta
- Dept. of Chemical Sciences, University of Catania, Viale A. Doria 6 - 95129 Catania, Italy
| |
Collapse
|
33
|
Zhu H, Zhang M, Zou L, Li R, Ling L. Sequence specific recognition of HIV-1 dsDNA in the large amount of normal dsDNA based upon nicking enzyme signal amplification and triplex DNA. Talanta 2017; 173:9-13. [PMID: 28602196 DOI: 10.1016/j.talanta.2017.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 11/16/2022]
Abstract
A sensitive fluorescent strategy for sequence specific recognition of HIV dsDNA was established based upon Nicking Enzyme Signal Amplification (NESA) and triplex formation. dsDNA sequence from the site 7960 to site 7991 of the HIV1 dsDNA gene was designed as target dsDNA, which was composed of two complementary strands Oligonucleotide 1 with the sequence of 3'-CTT CCT TAT CTT CTT CTT CCA CCT CTC TCT CT-5' (Oligo-1) and Oligonucleotide 2 with the sequence of 5'-GAA GGA ATA GAA GAA GAA GGT GGA GAG AGA GA-3' (Oligo-2). As a proof of concept, Oligonucleotide 5'-6-FAM-GAG GTG GAG CTG CGC GAC TCC TCC TCT CTC TCT CTC CAC CTC-BHQ-1-3'(Oligo-4) acted as molecular beacon(MB) probe, Oligonucleotide 5'-CTT CCT TAT CTT CTT CTT CCA AAA GGA GTC GCG-3' (Oligo-7) acted as assistant probe. In the presence of target dsDNA, Oligo-4 and Oligo-7 hybridized with target dsDNA through triplex formation and formed Y-shaped structure, NESA occurred with further addition of Nt.BbvCI, accompanied with the release of fluorescent DNA fragment circularly, resulted in the increase of fluorescence intensity. Under the optimum conditions, the fluorescence intensity was linear with the concentration of target dsDNA over the range from 100pM to 200nM, the linear regression equation was I = 1.266 C + 84.3 (C: nmol/L, R2 = 0.991), with a detection limit of 65pM. Moreover, the effect of coexisted other dsDNA was investigated as well, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Houya Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manjun Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ruimin Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
34
|
Mills DM, Calvo-Marzal P, Pinzon JM, Armas S, Kolpashchikov DM, Chumbimuni-Torres KY. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences. ELECTROANAL 2017; 29:873-879. [PMID: 29371782 PMCID: PMC5777621 DOI: 10.1002/elan.201600548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 01/28/2023]
Abstract
Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode's surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode's surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets.
Collapse
Affiliation(s)
- Dawn M. Mills
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Percy Calvo-Marzal
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Jeffer M. Pinzon
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Stephanie Armas
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| | - Dmitry M. Kolpashchikov
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32816, United States
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, United States
| | - Karin Y. Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, United States
| |
Collapse
|
35
|
Bengtson HN, Homolka S, Niemann S, Reis AJ, da Silva PE, Gerasimova YV, Kolpashchikov DM, Rohde KH. Multiplex detection of extensively drug resistant tuberculosis using binary deoxyribozyme sensors. Biosens Bioelectron 2017; 94:176-183. [PMID: 28284077 DOI: 10.1016/j.bios.2017.02.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Current diagnostic tools for Mycobacterium tuberculosis (Mtb) have many disadvantages including low sensitivity, slow turnaround times, or high cost. Accurate, easy to use, and inexpensive point of care molecular diagnostic tests are urgently needed for the analysis of multidrug resistant (MDR) and extensively drug resistant (XDR) Mtb strains that emerge globally as a public health threat. In this study, we established proof-of-concept for a novel diagnostic platform (TB-DzT) for Mtb detection and the identification of drug resistant mutants using binary deoxyribozyme sensors (BiDz). TB-DzT combines a multiplex PCR with single nucleotide polymorphism (SNP) detection using highly selective BiDz sensors targeting loci associated with species typing and resistance to rifampin, isoniazid and fluoroquinolone antibiotics. Using the TB-DzT assay, we demonstrated accurate detection of Mtb and 5 mutations associated with resistance to three anti-TB drugs in clinical isolates. The assay also enables detection of a minority population of drug resistant Mtb, a clinically relevant scenario referred to as heteroresistance. Additionally, we show that TB-DzT can detect the presence of unknown mutations at target loci using combinatorial BiDz sensors. This diagnostic platform provides the foundation for the development of cost-effective, accurate and sensitive alternatives for molecular diagnostics of MDR- and XDR-TB.
Collapse
Affiliation(s)
- Hillary N Bengtson
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Borstel, Germany
| | - Ana Júlia Reis
- Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | - Yulia V Gerasimova
- Department of Chemistry, College of Sciences, University of Central Florida, Orlando, FL, USA
| | - Dmitry M Kolpashchikov
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Chemistry, College of Sciences, University of Central Florida, Orlando, FL, USA
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
36
|
Bartold K, Pietrzyk-Le A, Huynh TP, Iskierko Z, Sosnowska M, Noworyta K, Lisowski W, Sannicolò F, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Programmed Transfer of Sequence Information into a Molecularly Imprinted Polymer for Hexakis(2,2'-bithien-5-yl) DNA Analogue Formation toward Single-Nucleotide-Polymorphism Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3948-3958. [PMID: 28071057 DOI: 10.1021/acsami.6b14340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new strategy of simple, inexpensive, rapid, and label-free single-nucleotide-polymorphism (SNP) detection using robust chemosensors with piezomicrogravimetric, surface plasmon resonance, or capacitive impedimetry (CI) signal transduction is reported. Using these chemosensors, selective detection of a genetically relevant oligonucleotide under FIA conditions within 2 min is accomplished. An invulnerable-to-nonspecific interaction molecularly imprinted polymer (MIP) with electrochemically synthesized probes of hexameric 2,2'-bithien-5-yl DNA analogues discriminating single purine-nucleobase mismatch at room temperature was used. With density functional theory modeling, the synthetic procedures developed, and isothermal titration calorimetry quantification, adenine (A)- or thymine (T)-substituted 2,2'-bithien-5-yl functional monomers capable of Watson-Crick nucleobase pairing with the TATAAA oligodeoxyribonucleotide template or its peptide nucleic acid (PNA) analogue were designed. Characterized by spectroscopic techniques, molecular cavities exposed the ordered nucleobases on the 2,2'-bithien-5-yl polymeric backbone of the TTTATA hexamer probe designed to hybridize the complementary TATAAA template. In that way, an artificial TATAAA-promoter sequence was formed in the MIP. The purine nucleobases of this sequence are known to be recognized by RNA polymerase to initiate the transcription in eukaryotes. The hexamer strongly hybridized TATAAA with the complex stability constant KsTTTATA-TATAAA = ka/kd ≈ 106 M-1, as high as that characteristic for longer-chain DNA-PNA hybrids. The CI chemosensor revealed a 5 nM limit of detection, quite appreciable as for the hexadeoxyribonucleotide. Molecular imprinting increased the chemosensor sensitivity to the TATAAA analyte by over 4 times compared to that of the nonimprinted polymer. The herein-devised detection platform enabled the generation of a library of hexamer probes for typing the majority of SNP probes as well as studying a molecular mechanism of the complex transcription machinery, physics of single polymer molecules, and stable genetic nanomaterials.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tan-Phat Huynh
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesco Sannicolò
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Silvia Cauteruccio
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Emanuela Licandro
- Department of Chemistry, University of Milan , Via Golgi 19, I-20133 Milan, Italy
| | - Francis D'Souza
- Department of Chemistry, University of North Texas , 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University , Woycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
37
|
Stancescu M, Fedotova TA, Hooyberghs J, Balaeff A, Kolpashchikov DM. Nonequilibrium Hybridization Enables Discrimination of a Point Mutation within 5-40 °C. J Am Chem Soc 2016; 138:13465-13468. [PMID: 27681667 PMCID: PMC5645261 DOI: 10.1021/jacs.6b05628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Detection of point mutations and single nucleotide polymorphisms in DNA and RNA has a growing importance in biology, biotechnology, and medicine. For the application at hand, hybridization assays are often used. Traditionally, they differentiate point mutations only at elevated temperatures (>40 °C) and in narrow intervals (ΔT = 1-10 °C). The current study demonstrates that a specially designed multistranded DNA probe can differentiate point mutations in the range of 5-40 °C. This unprecedentedly broad ambient-temperature range is enabled by a controlled combination of (i) nonequilibrium hybridization conditions and (ii) a mismatch-induced increase of equilibration time in respect to that of a fully matched complex, which we dub "kinetic inversion".
Collapse
Affiliation(s)
- Maria Stancescu
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Tatiana A. Fedotova
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Jef Hooyberghs
- Flemish Institute for Technological Research, VITO, Boeretang 200, Mol B-2400, Belgium
- Theoretical Physics, Hasselt University, Campus Diepenbeek, Agoralaan - Building D, Diepenbeek B-3590, Belgium
| | - Alexander Balaeff
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
38
|
Accurate and visual discrimination of single-base mismatch by utilization of binary DNA probes in gold nanoparticles-based biosensing strategy. Talanta 2016; 161:528-534. [PMID: 27769442 DOI: 10.1016/j.talanta.2016.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/20/2016] [Accepted: 09/03/2016] [Indexed: 11/20/2022]
Abstract
Herein we report a colorimetric biosensing strategy to discriminate single-nucleotide mutation in DNA with high selectivity using unmodified gold nanoparticles (AuNPs) as indicators. In the AuNPs-based colorimetric strategy, binary DNA probes were produced by splitting a long DNA probe in the middle for sensitive differentiation of single-base mismatch. The detection limit of this method toward target DNA was 5nM. The developed system has superior advantages of utilization of inexpensive materials, simplicity and visualization. Moreover, binary DNA probes not only can distinguish single-base mutation in the target DNA very well, as compared to long DNA probe, but also can construct "AND" logic gate using two distinct target DNAs as inputs, which holds great potential for increasing the accuracy of disease diagnosis in clinical applications.
Collapse
|
39
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Gerasimova YV, Kolpashchikov DM. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits. Angew Chem Int Ed Engl 2016; 55:10244-7. [DOI: 10.1002/anie.201603265] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/05/2016] [Indexed: 11/06/2022]
|
41
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
42
|
Huang J, Wu J, Li Z. Molecular beacon-based enzyme-free strategy for amplified DNA detection. Biosens Bioelectron 2016; 79:758-62. [DOI: 10.1016/j.bios.2016.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
|
43
|
Abstract
Advances and applications of synthetic genetic polymers (xeno-nucleic acids) are reviewed in this article. The types of synthetic genetic polymers are summarized. The basic properties of them are elaborated and their technical applications are presented. Challenges and prospects of synthetic genetic polymers are discussed.
Collapse
Affiliation(s)
- Qian Ma
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Danence Lee
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Yong Quan Tan
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Garrett Wong
- Department of Biochemistry
- National University of Singapore
- Singapore 117597
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
44
|
Lee CC, Liao YC, Lai YH, Lee CCD, Chuang MC. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus. Anal Chem 2015; 87:5410-6. [PMID: 25879394 DOI: 10.1021/acs.analchem.5b00810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.
Collapse
Affiliation(s)
- Chun-Ching Lee
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Yu-Chieh Liao
- ‡Institute of Population Health Science, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Hsuan Lai
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Min-Chieh Chuang
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
45
|
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. Isothermal amplified detection of DNA and RNA. MOLECULAR BIOSYSTEMS 2014; 10:970-1003. [PMID: 24643211 DOI: 10.1039/c3mb70304e] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights various methods that can be used for a sensitive detection of nucleic acids without using thermal cycling procedures, as is done in PCR or LCR. Topics included are nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), loop-mediated amplification (LAMP), Invader assay, rolling circle amplification (RCA), signal mediated amplification of RNA technology (SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA), nicking endonuclease signal amplification (NESA) and nicking endonuclease assisted nanoparticle activation (NENNA), exonuclease-aided target recycling, Junction or Y-probes, split DNAZyme and deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection via the self-assembly of DNA probes to give supramolecular structures. The majority of these isothermal amplification methods can detect DNA or RNA in complex biological matrices and have great potential for use at point-of-care.
Collapse
Affiliation(s)
- Lei Yan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Freage L, Wang F, Orbach R, Willner I. Multiplexed Analysis of Genes and of Metal Ions Using Enzyme/DNAzyme Amplification Machineries. Anal Chem 2014; 86:11326-33. [DOI: 10.1021/ac5030667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lina Freage
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Orbach
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and
Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Knez K, Spasic D, Janssen KPF, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst 2014; 139:353-70. [PMID: 24298558 DOI: 10.1039/c3an01436c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is a crucial challenge in the development of a novel generation of diagnostic tools. Accurate detection of SNPs can prove elusive, as the impact of a single variable nucleotide on the properties of a target sequence is limited, even if this sequence consists of only a few nucleotides. New, accurate and facile strategies for the detection of point mutations are therefore absolutely necessary for the increased adoption of point-of-care molecular diagnostics. Currently, PCR and sequencing are mostly applied for diagnosing SNPs. However these methods have serious drawbacks as routine diagnostic tools because of their labour intensity and cost. Several new, more suitable methods can be applied to enable sensitive detection of mutations based on specially designed hybridization probes, mutation recognizing enzymes and thermal denaturation. Here, an overview is presented of the most recent advances in the field of fast and sensitive SNP detection assays with strong potential for integration in point-of-care tests.
Collapse
Affiliation(s)
- Karel Knez
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium.
| | | | | | | |
Collapse
|
48
|
Wu S, Liang P, Yu H, Xu X, Liu Y, Lou X, Xiao Y. Amplified single base-pair mismatch detection via aggregation of exonuclease-sheared gold nanoparticles. Anal Chem 2014; 86:3461-7. [PMID: 24611947 PMCID: PMC3982981 DOI: 10.1021/ac4040373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Single
nucleotide polymorphism (SNP) detection is important for
early diagnosis, clinical prognostics, and disease prevention, and
a rapid and sensitive low-cost SNP detection assay would be valuable
for resource-limited clinical settings. We present a simple platform
that enables sensitive, naked-eye detection of SNPs with minimal reagent
and equipment requirements at room temperature within 15 min. SNP
detection is performed in a single tube with one set of DNA probe-modified
gold nanoparticles (AuNPs), a single exonuclease (Exo III), and the
target in question. Exo III’s apurinic endonucleolytic activity
differentially processes hybrid duplexes between the AuNP-bound probe
and DNA targets that are perfectly matched or contain a single-base
mismatch. For perfectly matched targets, Exo III’s exonuclease
activity facilitates a process of target recycling that rapidly shears
DNA probes from the particles, generating an AuNP aggregation-induced
color change, whereas no such change occurs for mismatched targets.
This color change is easily observed with as little as 2 nM of target,
100-fold lower than the target concentration required for reliable
naked eye observation with unmodified AuNPs in well-optimized reaction
conditions. We further demonstrate that this system can effectively
discriminate a range of different mismatches.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Chemistry and Biochemistry, Florida International University , 11200 SW eighth Street, Miami, FL, 33199
| | | | | | | | | | | | | |
Collapse
|
49
|
Zou Z, Qing Z, He X, Wang K, He D, Shi H, Yang X, Qing T, Yang X. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Talanta 2014; 125:306-12. [PMID: 24840448 DOI: 10.1016/j.talanta.2014.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.
Collapse
Affiliation(s)
- Zhen Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Zhihe Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| |
Collapse
|
50
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|