1
|
Sun B, Jiang H. Synthesis and bio-activities of bifunctional tetrahydrosalen Cu (II) chelators with potential efficacy in Alzheimer's disease therapy. J Inorg Biochem 2024; 259:112636. [PMID: 38943843 DOI: 10.1016/j.jinorgbio.2024.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
The dyshomeostasis of metal ions in the brain leads to the accumulation of excess metals in extracellular and inter-neuronal locations and the Amyloid β peptide (Aβ) binds these transition metals, which ultimately cause the Aβ aggregation and severe oxidative stress in the brain. The aggregation of Aβ and oxidative stress are important factors to trigger Alzheimer's disease (AD). Metal chelation therapy is a promising approach to removing metals from Aβ-M species and relieve the oxidative stress. Therefore, 4 tetrahydrosalens containing benzothiazole moiety were designed and synthesized. Their biological activities for Alzheimer's disease therapy in vitro were determined by Turbidity assay, BCA protein assay, MTT assay and fluorescent probe of DCFH-DA. The results were comparing with that of non-specific chelator (cliquinol, CQ) and non-benzothiazole functionalized tetrahydrosalens, the results demonstrated that benzothiazole functionalized chelators had more efficient bio-activities in preventing Cu2+-induced Aβ aggregation, attenuating cytotoxicity mediated by Aβ-Cu2+ species and decrease the level of reactive oxygen species (ROS) in Cu2+-Aβ treated PC12 cells than that of cliquinol and non-benzothiazole functionalized analogues.
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, Chongqing 400067, PR China; College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China.
| | - Heyan Jiang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| |
Collapse
|
2
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
3
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
4
|
Kwan K, Castro-Sandoval O, Ma B, Martelino D, Saffari A, Liu XL, Orvain C, Mellitzer G, Gaiddon C, Storr T. Altering relative metal-binding affinities in multifunctional Metallochaperones for mutant p53 reactivation. J Inorg Biochem 2024; 251:112433. [PMID: 38043136 DOI: 10.1016/j.jinorgbio.2023.112433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
The p53 protein plays a major role in cancer prevention, and over 50% of cancer diagnoses can be attributed to p53 malfunction. p53 incorporates a structural Zn site that is required for proper protein folding and function, and in many cases point mutations can result in loss of the Zn2+ ion, destabilization of the tertiary structure, and eventual amyloid aggregation. Herein, we report a series of compounds designed to act as small molecule stabilizers of mutant p53, and feature Zn-binding fragments to chaperone Zn2+ to the metal depleted site and restore wild-type (WT) function. Many Zn metallochaperones (ZMCs) have been shown to generate intracellular reactive oxygen species (ROS), likely by chelating redox-active metals such as Fe2+/3+ and Cu+/2+ and undergoing associated Fenton chemistry. High levels of ROS can result in off-target effects and general toxicity, and thus, careful tuning of ligand Zn2+ affinity, in comparison to the affinity for other endogenous metals, is important for selective mutant p53 targeting. In this work we show that by using carboxylate donors in place of pyridine we can change the relative Zn2+/Cu2+ binding ability in a series of ligands, and we investigate the impact of donor group changes on metallochaperone activity and overall cytotoxicity in two mutant p53 cancer cell lines (NUGC3 and SKGT2).
Collapse
Affiliation(s)
- Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Omar Castro-Sandoval
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Benjamin Ma
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ashkan Saffari
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xi Lan Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Christophe Orvain
- Inserm UMR_S 1113, Université de Strasbourg, Molecular Mechanisms of Stress Response and Pathologies, Strasbourg, France
| | - Georg Mellitzer
- Inserm UMR_S 1113, Université de Strasbourg, Molecular Mechanisms of Stress Response and Pathologies, Strasbourg, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, Université de Strasbourg, Molecular Mechanisms of Stress Response and Pathologies, Strasbourg, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
5
|
Kostakis GE. Chemical Chartographisis: a contemporary perspective in molecular design and synthesis. Dalton Trans 2023. [PMID: 38009065 DOI: 10.1039/d3dt02459h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The use of flexible molecular systems in solution, without strictly controlling their behaviour, has frequently been productive. Their potential could increase by a more holistic view of the reaction(s) process(es) in which they are involved. In this perspective, we introduce a broader approach - "Chemical Chartographisis" - and discuss three projects in detail to illustrate its potential. The topics involve bimetallic 3d/4f species and coordination compounds built from benzotriazole-based and (a)symmetric salan ligands and focus on catalytic and, in less detail, biological-related examples.
Collapse
Affiliation(s)
- George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
6
|
Yu Z, Moshood Y, Wozniak MK, Patel S, Terpstra K, Llano DA, Dobrucki LW, Mirica LM. Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer's Disease. Chemistry 2023; 29:e202302408. [PMID: 37616059 PMCID: PMC10840928 DOI: 10.1002/chem.202302408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, a novel zwitterionic excited-state intramolecular proton transfer system is reported, enabled by addition of 1,4,7-triazacyclononane (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold. The solvent-dependent steady-state photophysical studies, pKa measurements, and computational analysis strongly support that the ESIPT process is more efficient with two TACN groups attached to the DCM scaffold and not affected by polar protic solvents. Impressively, compound DCM-OH-2-DT exhibits a near-infrared (NIR) emission at 740 nm along with an uncommonly large Stokes shift. Moreover, DCM-OH-2-DT shows high affinity towards soluble amyloid β (Aβ) oligomers in vitro and in 5xFAD mouse brain sections, and we have successfully applied DCM-OH-2-DT for the in vivo imaging of Aβ aggregates and demonstrated its potential use as an early diagnostic agent for AD. Overall, this study can provide a general molecular design strategy for developing new zwitterionic ESIPT compounds with NIR emission in vivo imaging applications.
Collapse
Affiliation(s)
- Zhengxin Yu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yusuff Moshood
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marcin K. Wozniak
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Shrey Patel
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Karna Terpstra
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Daniel A. Llano
- Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana IL 61801, United States
| | - Liviu M. Mirica
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, The Neuroscience Program, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
7
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Wegermann CA, Pirota V, Monzani E, Casella L, Costa LAS, Novato WTG, Machini MT, da Costa Ferreira AM. Interaction studies of oxindole-derivatives with β-amyloid peptides inhibiting its aggregation induced by metal ions. J Inorg Biochem 2023; 245:112227. [PMID: 37156056 DOI: 10.1016/j.jinorgbio.2023.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Some hydrazones and Schiff bases derived from isatin, an endogenous oxindole formed in the metabolism of tryptophan, were obtained to investigate their effects on in vitro aggregation of β-amyloid peptides (Aβ), macromolecules implicated in Alzheimer's disease. Some hydrazone ligands, prepared by condensation reactions of isatin with hydrazine derivatives, showed a large affinity binding to the synthetic peptides Aβ, particularly to Aβ1-16. Measurements by NMR spectroscopy indicated that those interactions occur mainly at the metal binding site of the peptide, involving His6, His13, and His14 residues, and that hydrazone E-diastereoisomer interacts preferentially with the amyloid peptides. Experimental results were consistent with simulations using a docking approach, where it is demonstrated that the amino acid residues Glu3, His6, His13, and His14 are those that mostly interact with the ligands. Further, these oxindole-derived ligands can efficiently chelate copper(II) and zinc(II) ions, forming moderate stable [ML] 1:1 species. The corresponding formation constants were determined by UV/Vis spectroscopy, by titrations of the ligands with increasing amounts of metal salts, and the obtained log K values were in the range 2.74 to 5.11. Both properties, good affinity for amyloid peptides, and reasonably good capacity of chelating biometal ions, like copper and zinc, can explain the efficient inhibition of Aβ fragments aggregation, as shown by experiments carried out with the oxindole derivatives in the presence of metal ions.
Collapse
Affiliation(s)
- Camila Anchau Wegermann
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Valentina Pirota
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Enrico Monzani
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luigi Casella
- Dipartimento di Chimica, Università degli Studi di Pavia, Pavia, Italy.
| | - Luiz Antônio Sodré Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, MG, Brazil.
| | - Willian Tássio Gomes Novato
- NQTCM, Núcleo de Química Teórica e Computacional de Macaé, Instituto Multidisciplinar de Química, CM UFRJ Macaé, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | - M Teresa Machini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Miller JJ, Kwan K, Blanchet A, Orvain C, Mellitzer G, Smith J, Lento C, Nouchikian L, Omoregbee-Leichnitz S, Sabatou M, Wilson D, Gaiddon C, Storr T. Multifunctional metallochaperone modifications for targeting subsite cavities in mutant p53-Y220C. J Inorg Biochem 2023; 242:112164. [PMID: 36871418 DOI: 10.1016/j.jinorgbio.2023.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
The p53 protein, known as the 'guardian of the genome', plays an important role in cancer prevention. Unfortunately, p53 mutations result in compromised activity with over 50% of cancers resulting from point mutations to p53. There is considerable interest in mutant p53 reactivation, with the development of small-molecule reactivators showing promise. We have focused our efforts on the common p53 mutation Y220C, which causes protein unfolding, aggregation, and can result in the loss of a structural Zn from the DNA-binding domain. In addition, the Y220C mutant creates a surface pocket that can be stabilized using small molecules. We previously reported the bifunctional ligand L5 as a Zn metallochaperone and reactivator of the p53-Y220C mutant. Herein we report two new ligands L5-P and L5-O that are designed to act as Zn metallochaperones and non-covalent binders in the Y220C mutant pocket. For L5-P the distance between the Zn-binding di-(2-picolyl)amine function and the pocket-binding diiodophenol was extended in comparison to L5, while for L5-O we extended the pocket-binding moiety via attachment of an alkyne function. While both new ligands displayed similar Zn-binding affinity to L5, neither acted as efficient Zn-metallochaperones. However, the new ligands exhibited significant cytotoxicity in the NCI-60 cell line screen as well as in the NUGC3 Y220C mutant cell line. We identified that the primary mode of cytotoxicity is likely reactive oxygen species (ROS) generation for L5-P and L5-O, in comparison to mutant p53 reactivation for L5, demonstrating that subtle changes to the ligand scaffold can change the toxicity pathway.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Anaïs Blanchet
- Laboratory Streinth, Université de Strasbourg; Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Christophe Orvain
- Laboratory Streinth, Université de Strasbourg; Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Georg Mellitzer
- Laboratory Streinth, Université de Strasbourg; Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France
| | - Jason Smith
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Cristina Lento
- York University, Chemistry Department, 6 Thompson Road, Toronto, Ontario, M3J 1L3, Canada
| | - Lucienne Nouchikian
- York University, Chemistry Department, 6 Thompson Road, Toronto, Ontario, M3J 1L3, Canada
| | | | - Marie Sabatou
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Derek Wilson
- York University, Chemistry Department, 6 Thompson Road, Toronto, Ontario, M3J 1L3, Canada
| | - Christian Gaiddon
- Laboratory Streinth, Université de Strasbourg; Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada.
| |
Collapse
|
10
|
Panebianco R, Viale M, Loiacono F, Lanza V, Milardi D, Vecchio G. Terpyridine Glycoconjugates and Their Metal Complexes: Antiproliferative Activity and Proteasome Inhibition. ChemMedChem 2023; 18:e202200701. [PMID: 36773283 DOI: 10.1002/cmdc.202200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Metal terpyridine complexes have gained substantial interest in many application fields, such as catalysis and supramolecular chemistry. In recent years, the biological activity of terpyridine and its metal complexes has aroused considerable regard. On this basis, we synthesised new terpyridine derivatives of trehalose and glucose to improve the water solubility of terpyridine ligands and target them in cancer cells through glucose transporters. Glucose derivative and its copper(II) and iron(II) complexes showed antiproliferative activity. Interestingly, trehalose residue reduced the cytotoxicity of terpyridine. Moreover, we tested the ability of parent terpyridine ligands and their copper complexes to inhibit proteasome activity as an antineoplastic mechanism.
Collapse
Affiliation(s)
- Roberta Panebianco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
11
|
Chaudhari V, Bagwe-Parab S, Buttar HS, Gupta S, Vora A, Kaur G. Challenges and Opportunities of Metal Chelation Therapy in Trace Metals Overload-Induced Alzheimer's Disease. Neurotox Res 2023; 41:270-287. [PMID: 36705861 DOI: 10.1007/s12640-023-00634-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023]
Abstract
Essential trace metals like zinc (Zn), iron (Fe), and copper (Cu) play an important physiological role in the metabolomics and healthy functioning of body organs, including the brain. However, abnormal accumulation of trace metals in the brain and dyshomeostasis in the different regions of the brain have emerged as contributing factors in neuronal degeneration, Aβ aggregation, and Tau formation. The link between these essential trace metal ions and the risk of AD has been widely studied, although the conclusions have been ambiguous. Despite the absence of evidence for any clinical benefit, therapeutic chelation is still hypothesized to be a therapeutic option for AD. Furthermore, the parameters like bioavailability, ability to cross the BBB, and chelation specificity must be taken into consideration while selecting a suitable chelation therapy. The data in this review summarizes that the primary intervention in AD is brain metal homeostasis along with brain metal scavenging. This review evaluates the impact of different trace metals (Cu, Zn, Fe) on normal brain functioning and their association with neurodegeneration in AD. Also, it investigates the therapeutic potential of metal chelators in the management of AD. An extensive literature search was carried out on the "Web of Science, PubMed, Science Direct, and Google Scholar" to investigate the effect of trace elements in neurological impairment and the role of metal chelators in AD. In addition, the current review highlights the advantages and limitations of chelation therapies and the difficulties involved in developing selective metal chelation therapy in AD patients.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Ottawa, Ottawa, Canada
| | - Shubhangi Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
12
|
Krasnovskaya O, Kononova A, Erofeev A, Gorelkin P, Majouga A, Beloglazkina E. Aβ-Targeting Bifunctional Chelators (BFCs) for Potential Therapeutic and PET Imaging Applications. Int J Mol Sci 2022; 24:ijms24010236. [PMID: 36613679 PMCID: PMC9820683 DOI: 10.3390/ijms24010236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, more than 55 million people live with dementia worldwide, and there are nearly 10 million new cases every year. Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in personality changes, cognitive impairment, memory loss, and physical disability. Diagnosis of AD is often missed or delayed in clinical practice due to the fact that cognitive deterioration occurs already in the later stages of the disease. Thus, methods to improve early detection would provide opportunities for early treatment of disease. All FDA-approved PET imaging agents for Aβ plaques use short-lived radioisotopes such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min), which limit their widespread use. Thus, a novel metal-based imaging agent for visualization of Aβ plaques is of interest, due to the simplicity of its synthesis and the longer lifetimes of its constituent isotopes. We have previously summarized a metal-containing drug for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. In this review, we have summarized a recent advance in design of Aβ-targeting bifunctional chelators for potential therapeutic and PET imaging applications, reported after our previous review.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
- Correspondence:
| | - Aina Kononova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
13
|
Rana M, Cho HJ, Arya H, Bhatt TK, Bhar K, Bhatt S, Mirica LM, Sharma AK. Azo-Stilbene and Pyridine-Amine Hybrid Multifunctional Molecules to Target Metal-Mediated Neurotoxicity and Amyloid-β Aggregation in Alzheimer's Disease. Inorg Chem 2022; 61:10294-10309. [PMID: 35768324 DOI: 10.1021/acs.inorgchem.2c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with progressive neuronal cell death, and they are commonly correlated with aberrant protein misfolding and aggregation of Aβ peptides. Transition metal ions (Cu, Fe, and Zn) have been shown to promote aggregation and oxidative stress through formation of Aβ-metal complexes. In this context, integrating molecular scaffolds rationally is used here to generate multifunctional molecules as modulators for metal-induced abnormalities. This work encompasses two azo-stilbene (AS)-derived compounds (AS-HL1 and AS-HL2), the rationale behind the design, their synthesis, characterization, and metal chelation ability [Cu(II) and Zn(II)]. The molecular frameworks of the designed compounds consist of stilbene as an Aβ-interacting moiety, whereas N,N,O and N,N,N,O donor atoms are linked to generate the metal chelation moiety. Furthermore, we went on exploring their multifunctionality with respect to (w.r.t.) (i) their metal chelating capacities and (ii) their utility to modulate the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) scavenge free radicals, and (iv) inhibit the activity of acetylcholinesterase and (v) cytotoxicity. Moreover, the compounds were able to sequester Cu2+ from the Aβ-Cu complex as studied by the UV-visible spectroscopic assay. Molecular docking studies were also performed with Aβ and acetylcholinesterase enzyme. Overall, the studies presented here qualify these molecules as promising candidates for further investigation in the quest for finding a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Kishalay Bhar
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Surabhi Bhatt
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anuj Kumar Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
14
|
Wang Y, Huynh TT, Bandara N, Cho HJ, Rogers BE, Mirica LM. 2-(4-Hydroxyphenyl)benzothiazole dicarboxylate ester TACN chelators for 64Cu PET imaging in Alzheimer's disease. Dalton Trans 2022; 51:1216-1224. [PMID: 34951428 PMCID: PMC8969080 DOI: 10.1039/d1dt02767k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we report a new series of bifunctional chelators (BFCs) with high affinity for amyloid β aggregates, strong binding affinity towards Cu(II), and favorable lipophilicity for potential blood-brain barrier (BBB) penetration. The alkyl carboxylate ester pendant arms show high binding affinity towards Cu(II). The BFCs form stable 64Cu-radiolabeled complexes and exhibit favorable partition coefficient (log D) values of 0.75-0.95. Among the five compounds tested, 64Cu-YW-1 and 64Cu-YW-13 complexes exhibit significant staining of amyloid plaques in ex vivo autoradiography studies.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Truc T. Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States, Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States,Corresponding Author:
| |
Collapse
|
15
|
Devonport J, Bodnár N, McGown A, Bukar Maina M, Serpell LC, Kállay C, Spencer J, Kostakis GE. Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorg Chem 2021; 60:15310-15320. [PMID: 34609139 DOI: 10.1021/acs.inorgchem.1c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of a tunable Cu(II) chelating scaffold, 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran (HL). This tetradentate ligand is predicated to have suitable permeation, has an extremely high affinity for Cu compared to clioquinol (pCu7.4 = 10.65 vs 5.91), and exhibits excellent selectivity for Cu(II) over Zn(II) in aqueous media. Solid and solution studies corroborate the formation of a stable [Cu(II)L]+ monocationic species at physiological pH values (7.4). Its action as an antioxidant was tested in ascorbate, tau, and human prion protein assays, which reveal that Salpyran prevents the formation of reactive oxygen species from the binary Cu(II)/H2O2 system, demonstrating its potential use as a therapeutic small molecule metal chelator.
Collapse
Affiliation(s)
- Jack Devonport
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Andrew McGown
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Mahmoud Bukar Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.,College of Medical Sciences, Yobe State University, KM 7, Sir Kashim Ibrahim Way, PMB 1144 Damaturu, Yobe State, Nigeria
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
16
|
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Direct Delivery of ANA-TA9, a Peptide Capable of Aβ Hydrolysis, to the Brain by Intranasal Administration. Pharmaceutics 2021; 13:1673. [PMID: 34683967 PMCID: PMC8538057 DOI: 10.3390/pharmaceutics13101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
We have recently reported Catalytides (Catalytic peptides) JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMI), which are the first Catalytides found to cleave Aβ42. Although the Catalytides must be delivered to the brain parenchyma to treat Alzheimer's disease, the blood-brain barrier (BBB) limits their entry into the brain from the systemic circulation. To avoid the BBB, the direct route from the nasal cavity to the brain was used in this study. The animal studies using rats and mice clarified that the plasma clearance of ANA-TA9 was more rapid than in vitro degradation in the plasma, whole blood, and the cerebrospinal fluid (CSF). The brain concentrations of ANA-TA9 were higher after nasal administration than those after intraperitoneal administration, despite a much lower plasma concentration after nasal administration, suggesting the direct delivery of ANA-TA9 to the brain from the nasal cavity. Similar findings were observed for its transport to CSF after nasal and intravenous administration. The concentration of ANA-TA9 in the olfactory bulb reached the peak at 5 min, whereas those in the frontal and occipital brains was 30 min, suggesting the sequential backward translocation of ANA-TA9 in the brain. In conclusion, ANA-TA9 was efficiently delivered to the brain by nasal application, as compared to other routes.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan;
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| |
Collapse
|
17
|
A systematic review of carbohydrate-based bioactive molecules for Alzheimer's disease. Future Med Chem 2021; 13:1695-1711. [PMID: 34472382 DOI: 10.4155/fmc-2021-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The abundance, low cost, high density of functional groups and ease of purification of carbohydrates are among the most important features that make them a prime candidate for designing therapeutics. Several carbohydrate-based molecules, of both natural and synthetic origin, are known for their wide range of therapeutic activities. The incorporation of a carbohydrate moiety not only retains the pharmacological characteristics of a molecule but also improves its activity. Several sugar conjugates have been designed and reported to inhibit acetylcholinesterase, β-amyloid and tau aggregation. This systematic review provides a brief overview of carbohydrate-based bioactive molecules having anti-Alzheimer's activity along with improved therapeutic potential. Most importantly, several reported carbohydrate-based molecules for Alzheimer's disease act on β-amyloid aggregation, tau protein, cholinesterase and oxidative stress, with enhanced pharmacokinetic and mechanistic properties. The prospect of designing carbohydrate-based molecules for Alzheimer's disease will definitely provide potential opportunities to discover novel carbohydrate-based drugs.
Collapse
|
18
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Wang Y, Huynh TT, Cho HJ, Wang YC, Rogers BE, Mirica LM. Amyloid β-Binding Bifunctional Chelators with Favorable Lipophilicity for 64Cu Positron Emission Tomography Imaging in Alzheimer's Disease. Inorg Chem 2021; 60:12610-12620. [PMID: 34351146 DOI: 10.1021/acs.inorgchem.1c02079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a new series of bifunctional chelators (BFCs) with a high affinity for amyloid aggregates, a strong binding affinity toward Cu(II), and favorable lipophilicity for potential blood-brain barrier penetration. The alkyl carboxylate ester pendant arms offer up to 3 orders of magnitude higher binding affinity toward Cu(II) and enable the BFCs to form stable 64Cu-radiolabeled complexes. Among the five compounds tested, the 64Cu-YW-7 and 64Cu-YW-10 complexes exhibit strong and specific staining of amyloid plaques in ex vivo autoradiography studies. Importantly, these BFCs have promising partition coefficient (log Doct) values of 0.91-1.26 and show some brain uptake in biodistribution studies using CD-1 mice. Overall, these BFCs could serve as lead compounds for the development of positron emission tomography imaging agents for AD diagnosis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Truc T Huynh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States.,Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yung-Ching Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
20
|
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Tanaka A, Matsuda A, Saito M, Akizawa T. Amyloid beta cleavage by ANA-TA9, a synthetic peptide from the ANA/BTG3 Box A region. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12146. [PMID: 33816760 PMCID: PMC8012241 DOI: 10.1002/trc2.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We recently discovered a short synthetic peptide derived from the ANA/BTG3 protein Box A region called ANA-TA9 (SKGQAYRMI), which possesses catalytic activity. Herein we demonstrated the proteolytic activity of ANA-TA9 against amyloid beta 42 (Aβ42). METHODS The proteolytic activity of ANA-TA9 against both the authentic soluble form Aβ42 (a-Aβ42) and the solid insoluble form Aβ42 (s-Aβ42) was analyzed by high-performance liquid chromatography and mass spectrometry. Plasma clearance, brain uptake, and cell viability were examined. RESULTS ANA-TA9 cleaved not only a-Aβ42 but also s-Aβ42. Proteolytic activity was partially inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, a serine protease inhibitor. Plasma clearance was very rapid, and the brain concentration indicated efficient brain delivery of ANA-TA9 via nasal application. Cell viability analysis indicated that ANA-TA9 did not display toxicity. DISCUSSION ANA-TA9 is an attractive potential candidate for the development of novel peptide drugs in Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Rina Nakamura
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical ScienceFaculty of Pharmaceutical SciencesSetsunan UniversityHirakataOsakaJapan
| | - Toshiyasu Sakane
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akiko Tanaka
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akira Matsuda
- Laboratory of Medicinal and Biochemical AnalysisFaculty of Pharmaceutical SciencesHiroshima International UniversityKureHiroshimaJapan
| | - Motoaki Saito
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Toshifumi Akizawa
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| |
Collapse
|
21
|
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the prevalence of this currently untreatable disease is expected to rise in step with increased global life expectancy. AD is a multifaceted disorder commonly characterized by extracellular amyloid–beta (Aβ) aggregates, oxidative stress, metal ion dysregulation, and intracellular neurofibrillary tangles. This review will focus on medicinal inorganic chemistry strategies to target AD, with a focus on the Aβ peptide and its relation to metal ion dysregulation and oxidative stress. Multifunctional compounds designed to target multiple disease processes have emerged as promising therapeutic options, and recent reports detailing multifunctional metal-binding compounds, as well as discrete metal complexes, will be discussed.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Yi Y, Lin Y, Han J, Lee HJ, Park N, Nam G, Park YS, Lee YH, Lim MH. Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chem Sci 2020; 12:2456-2466. [PMID: 34164011 PMCID: PMC8179336 DOI: 10.1039/d0sc04366d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pathophysiological shifts in the cerebral levels of sphingolipids in Alzheimer's disease (AD) patients suggest a link between sphingolipid metabolism and the disease pathology. Sphingosine (SP), a structural backbone of sphingolipids, is an amphiphilic molecule that is able to undergo aggregation into micelles and micellar aggregates. Considering its structural properties and cellular localization, we hypothesized that SP potentially interacts with amyloid-β (Aβ) and metal ions that are found as pathological components in AD-affected brains, with manifesting its reactivity towards metal-free Aβ and metal-bound Aβ (metal–Aβ). Herein, we report, for the first time, that SP is capable of interacting with both Aβ and metal ions and consequently affects the aggregation of metal-free Aβ and metal–Aβ. Moreover, incubation of SP with Aβ in the absence and presence of metal ions results in the aggravation of toxicity induced by metal-free Aβ and metal–Aβ in living cells. As the simplest acyl derivatives of SP, N-acetylsphingosine and 3-O-acetylsphingosine also influence metal-free Aβ and metal–Aβ aggregation to different degrees, compared to SP. Such slight structural modifications of SP neutralize its ability to exacerbate the cytotoxicity triggered by metal-free Aβ and metal–Aβ. Notably, the reactivity of SP and the acetylsphingosines towards metal-free Aβ and metal–Aβ is determined to be dependent on their formation of micelles and micellar aggregates. Our overall studies demonstrate that SP and its derivatives could directly interact with pathological factors in AD and modify their pathogenic properties at concentrations below and above critical aggregation concentrations. The reactivity of sphingosine and acetylsphingosines towards both metal-free and metal-treated amyloid-β is demonstrated showing a correlation of their micellization properties.![]()
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University Gongju 32588 Republic of Korea
| | - Nahye Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea .,Research Headquarters, Korea Brain Research Institute (KBRI) Daegu 41068 Republic of Korea.,Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
23
|
Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
25
|
Sun L, Sharma AK, Han BH, Mirica LM. Amentoflavone: A Bifunctional Metal Chelator that Controls the Formation of Neurotoxic Soluble Aβ 42 Oligomers. ACS Chem Neurosci 2020; 11:2741-2752. [PMID: 32786307 DOI: 10.1021/acschemneuro.0c00376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet the cause and progression of this disorder are not completely understood. While the main hallmark of AD is the deposition of amyloid plaques consisting of the β-amyloid (Aβ) peptide, transition metal ions are also known to play a significant role in disease pathology by expediting the formation of neurotoxic soluble β-amyloid (Aβ) oligomers, reactive oxygen species (ROS), and oxidative stress. Thus, bifunctional metal chelators that can control these deleterious properties are highly desirable. Herein, we show that amentoflavone (AMF), a natural biflavonoid compound, exhibits good metal-chelating properties, especially for chelating Cu2+ with very high affinity (pCu7.4 = 10.44). In addition, AMF binds to Aβ fibrils with a high affinity (Ki = 287 ± 20 nM), as revealed by a competition thioflavin T (ThT) assay, and specifically labels the amyloid plaques ex vivo in the brain sections of transgenic AD mice, as confirmed via immunostaining with an Aβ antibody. The effect of AMF on Aβ42 aggregation and disaggregation of Aβ42 fibrils was also investigated and revealed that AMF can control the formation of neurotoxic soluble Aβ42 oligomers, both in the absence and presence of metal ions, as confirmed via cell toxicity studies. Furthermore, an ascorbate consumption assay shows that AMF exhibits potent antioxidant properties and can chelate Cu2+ and significantly diminish the Cu2+-ascorbate redox cycling and reactive oxygen species (ROS) formation. Overall, these studies strongly suggest that AMF acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity and can also bind Cu2+ and mediate its deleterious redox properties. Thus AMF has the potential to be a lead compound for further therapeutic agent development for AD.
Collapse
Affiliation(s)
- Liang Sun
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Anuj K. Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindari, Distt. Ajmer-305801, Rajasthan, India
| | - Byung-Hee Han
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville, Missouri 63501, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
26
|
Johnston HM, Pota K, Barnett MM, Kinsinger O, Braden P, Schwartz TM, Hoffer E, Sadagopan N, Nguyen N, Yu Y, Gonzalez P, Tircsó G, Wu H, Akkaraju G, Chumley MJ, Green KN. Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorg Chem 2019; 58:16771-16784. [PMID: 31774280 PMCID: PMC7323501 DOI: 10.1021/acs.inorgchem.9b02932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's and other neurodegenerative diseases are chronic conditions affecting millions of individuals worldwide. Oxidative stress is a consistent component described in the development of many neurodegenerative diseases. Therefore, innovative strategies to develop drug candidates that overcome oxidative stress in the brain are needed. To target these challenges, a new, water-soluble 12-membered tetraaza macrocyclic pyridinophane L4 was designed and produced using a building-block approach. Potentiometric data show that the neutral species of L4 provides interesting zwitterionic behavior at physiological pH, akin to amino acids, and a nearly ideal isoelectric point of 7.3. The copper(II) complex of L4 was evaluated by X-ray diffraction and cyclic voltammetry to show the potential modes of antioxidant activity derived, which was also demonstrated by 2,2-diphenyl-1-picrylhydrazyl and coumarin carboxylic acid antioxidant assays. L4 was shown to have dramatically enhanced antioxidant activity and increased biological compatibility compared to parent molecules reported previously. L4 attenuated hydrogen peroxide (H2O2)-induced cell viability loss more efficiently than precursor molecules in the mouse hippocampal HT-22 cell model. L4 also showed potent (fM) level protection against H2O2 cell death in a BV2 microglial cell culture. Western blot studies indicated that L4 enhanced the cellular antioxidant defense capacity via Nrf2 signaling activation as well. Moreover, a low-cost analysis and high metabolic stability in phase I and II models were observed. These encouraging results show how the rational design of lead compounds is a suitable strategy for the development of treatments for neurodegenerative diseases where oxidative stress plays a substantial role.
Collapse
Affiliation(s)
- Hannah M. Johnston
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Madalyn M. Barnett
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Olivia Kinsinger
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Paige Braden
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Emily Hoffer
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nishanth Sadagopan
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Yu Yu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Paulina Gonzalez
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen H-4010, Hungary
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
- North Texas Eye Research Institute, University of North Texas (UNT) Health Science Center, Fort Worth, Texas 76107, United States
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Michael J. Chumley
- Department of Biology, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University (TCU), 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
27
|
Gomes LMF, Bataglioli JC, Jussila AJ, Smith JR, Walsby CJ, Storr T. Modification of Aβ Peptide Aggregation via Covalent Binding of a Series of Ru(III) Complexes. Front Chem 2019; 7:838. [PMID: 31921764 PMCID: PMC6915085 DOI: 10.3389/fchem.2019.00838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to loss of cognition, and eventually death. The disease is characterized by the formation of extracellular aggregates of the amyloid-beta (Aβ) peptide and neurofibrillary tangles of tau protein inside cells, and oxidative stress. In this study, we investigate a series of Ru(III) complexes (Ru-N) derived from NAMI-A in which the imidazole ligand has been substituted for pyridine derivatives, as potential therapeutics for AD. The ability of the Ru-N series to bind to Aβ was evaluated by NMR and ESI-MS, and their influence on the Aβ peptide aggregation process was investigated via electrophoresis gel/western blot, TEM, turbidity, and Bradford assays. The complexes were shown to bind covalently to the Aβ peptide, likely via a His residue. Upon binding, the complexes promote the formation of soluble high molecular weight aggregates, in comparison to peptide precipitation for peptide alone. In addition, TEM analysis supports both amorphous and fibrillar aggregate morphology for Ru-N treatments, while only large amorphous aggregates are observed for peptide alone. Overall, our results show that the Ru-N complexes modulate Aβ peptide aggregation, however, the change in the size of the pyridine ligand does not substantially alter the Aβ aggregation process.
Collapse
Affiliation(s)
- Luiza M F Gomes
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Allison J Jussila
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Zhang Q, Zhang F, Ni Y, Kokot S. Effects of aluminum on amyloid-beta aggregation in the context of Alzheimer’s disease. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Saito M, Akizawa T. Catalytides derived from the Box A region in the ANA/BTG3 protein cleave amyloid-β fragment peptide. Heliyon 2019; 5:e02454. [PMID: 31687556 PMCID: PMC6819762 DOI: 10.1016/j.heliyon.2019.e02454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 01/25/2023] Open
Abstract
We have recently reported about shorter proteolytic peptides termed Catalytide as general name. JAL-TA9 (YKGSGFRMI), a fragment peptide derived from Box A region of Tob1 protein, is the first Catalytide and cleaves Aβ42 and its fragment peptides. Herein, we demonstrate the enzymatic properties of ANA-TA9 corresponding region to JAL-TA9 in ANA/BTG3 protein. ANA-TA9 showed the auto-proteolytic activity and cleaved 3 kinds of synthetic fragment peptides derived from Aβ42, especially on the central region of Aβ42 with a serine protease like activity. Interestingly, 2 kinds of components, ANA-SA5 (SKGQA) and ANA-YA4 (YRMI), also showed similar proteolytic activity. These results indicate that ANA-TA9 is composed of two different Catalytides.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Rina Nakamura
- O-Force Co., Ltd, 3454 Irino Kuroshio-cho, Hata-gun, Kochi 789-1931, Japan
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| | - Motomi Konishi
- Laboratory of Clinical Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Toshiyasu Sakane
- Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Motoaki Saito
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| | - Toshifumi Akizawa
- O-Force Co., Ltd, 3454 Irino Kuroshio-cho, Hata-gun, Kochi 789-1931, Japan
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| |
Collapse
|
30
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
31
|
Studying the reactivity of “old” Cu(II) complexes for “novel” anticancer purposes. J Inorg Biochem 2019; 195:51-60. [DOI: 10.1016/j.jinorgbio.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
|
32
|
Rana M, Sharma AK. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019; 11:64-84. [DOI: 10.1039/c8mt00203g] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coordination chemistry of transition metal ions (Fe, Cu, Zn) with the amyloid-β (Aβ) peptides has attracted a lot of attention in recent years due to its repercussions in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| | - Anuj Kumar Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| |
Collapse
|
33
|
Rakshit A, Khatua K, Shanbhag V, Comba P, Datta A. Cu 2+ selective chelators relieve copper-induced oxidative stress in vivo. Chem Sci 2018; 9:7916-7930. [PMID: 30450181 PMCID: PMC6202919 DOI: 10.1039/c8sc04041a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Copper ions are essential for biological function yet are severely detrimental when present in excess. At the molecular level, copper ions catalyze the production of hydroxyl radicals that can irreversibly alter essential bio-molecules. Hence, selective copper chelators that can remove excess copper ions and alleviate oxidative stress will help assuage copper-overload diseases. However, most currently available chelators are non-specific leading to multiple undesirable side-effects. The challenge is to build chelators that can bind to copper ions with high affinity but leave the levels of essential metal ions unaltered. Here we report the design and development of redox-state selective Cu ion chelators that have 108 times higher conditional stability constants toward Cu2+ compared to both Cu+ and other biologically relevant metal ions. This unique selectivity allows the specific removal of Cu2+ ions that would be available only under pathophysiological metal overload and oxidative stress conditions and provides access to effective removal of the aberrant redox-cycling Cu ion pool without affecting the essential non-redox cycling Cu+ labile pool. We have shown that the chelators provide distinct protection against copper-induced oxidative stress in vitro and in live cells via selective Cu2+ ion chelation. Notably, the chelators afford significant reduction in Cu-induced oxidative damage in Atp7a-/- Menkes disease model cells that have endogenously high levels of Cu ions. Finally, in vivo testing of our chelators in a live zebrafish larval model demonstrate their protective properties against copper-induced oxidative stress.
Collapse
Affiliation(s)
- Ananya Rakshit
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Kaustav Khatua
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| | - Vinit Shanbhag
- Department of Biochemistry , Christopher S. Bond Life Science Center , University of Missouri , Columbia , USA
| | - Peter Comba
- Universität Heidelberg , Anorganisch-Chemisches Institut , Interdisciplinary Center for Scientific Computing , INF 270 , D-69120 Heidelberg , Germany
| | - Ankona Datta
- Department of Chemical Sciences , Tata Institute of Fundamental Research , 1 Homi Bhabha Road, Colaba , Mumbai-400005 , India .
| |
Collapse
|
34
|
Nuñez MT, Chana-Cuevas P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040109. [PMID: 30347635 PMCID: PMC6316457 DOI: 10.3390/ph11040109] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Iron chelation has been introduced as a new therapeutic concept for the treatment of neurodegenerative diseases with features of iron overload. At difference with iron chelators used in systemic diseases, effective chelators for the treatment of neurodegenerative diseases must cross the blood–brain barrier. Given the promissory but still inconclusive results obtained in clinical trials of iron chelation therapy, it is reasonable to postulate that new compounds with properties that extend beyond chelation should significantly improve these results. Desirable properties of a new generation of chelators include mitochondrial destination, the center of iron-reactive oxygen species interaction, and the ability to quench free radicals produced by the Fenton reaction. In addition, these chelators should have moderate iron binding affinity, sufficient to chelate excessive increments of the labile iron pool, estimated in the micromolar range, but not high enough to disrupt physiological iron homeostasis. Moreover, candidate chelators should have selectivity for the targeted neuronal type, to lessen unwanted secondary effects during long-term treatment. Here, on the basis of a number of clinical trials, we discuss critically the current situation of iron chelation therapy for the treatment of neurodegenerative diseases with an iron accumulation component. The list includes Parkinson’s disease, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, Huntington disease and Alzheimer’s disease. We also review the upsurge of new multifunctional iron chelators that in the future may replace the conventional types as therapeutic agents for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco T Nuñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile.
| | - Pedro Chana-Cuevas
- Center for the Treatment of Movement Disorders, Universidad de Santiago de Chile, Belisario Prat 1597, Santiago 83800000, Chile.
| |
Collapse
|
35
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Pettenuzzo A, Montagner D, McArdle P, Ronconi L. An innovative and efficient route to the synthesis of metal-based glycoconjugates: proof-of-concept and potential applications. Dalton Trans 2018; 47:10721-10736. [PMID: 29942974 DOI: 10.1039/c8dt01583j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With a view to developing more efficient strategies to the functionalization of metallodrugs with carbohydrates, we here report on an innovative and efficient synthetic route to generate gold(iii) glycoconjugates in high yields and purity. The method is based on the initial synthesis of the zinc(ii)-dithiocarbamato intermediate [ZnII(SSC-Inp-GlcN)2] (Inp = isonipecotic moiety; GlcN = amino-glucose) followed by the transfer of the glucoseisonipecoticdithiocarbamato ligand to the gold(iii) center via transmetallation reaction between the zinc(ii) intermediate and K[AuIIIBr4] in 1 : 2 stoichiometric ratio, yielding the corresponding glucose-functionalized gold(iii)-dithiocarbamato derivative [AuIIIBr2(SSC-Inp-GlcN)]. No protection/deprotection of the amino-glucose scaffold and no chromatographic purification were needed. The synthetic protocol was optimized for glucose precursors bearing the amino function at either the C2 or the C6 position, and works in the case of both α and β anomers. The application of the synthetic strategy was also successfully extended to other metal ions of biomedical interest, such as gold(i) and platinum(ii), to obtain [AuI(SSC-Inp-GlcN)(PPh3)] and [PtII(SSC-Inp-GlcN)2], respectively. All compounds were fully characterized by elemental analysis, mid- and far-IR, mono- and multidimensional NMR spectroscopy, and, where possible, X-ray crystallography. Results and potential applications are here discussed.
Collapse
Affiliation(s)
- Andrea Pettenuzzo
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co., Galway, Ireland.
| | - Diego Montagner
- Maynooth University, Department of Chemistry, Maynooth, Co. Kildare, Ireland
| | - Patrick McArdle
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co., Galway, Ireland.
| | - Luca Ronconi
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co., Galway, Ireland.
| |
Collapse
|
37
|
Rana M, Cho HJ, Roy TK, Mirica LM, Sharma AK. Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation. Inorganica Chim Acta 2018; 471:419-429. [PMID: 30344337 PMCID: PMC6191838 DOI: 10.1016/j.ica.2017.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical tools are needed to discover new effective drugs for tackling multifaceted complex neurodegenerative diseases like Alzheimer's disease (AD). Multifunctional nature of two compounds, 5-((4-nitro-phenyl)diazenyl)quinolin-8-ol (HL1) and 4-((4-nitrophenyl)diazenyl)benzene-1,3-diol (HL2) is reported w.r.t. their ability to bind Cu2+ ions and amyloid aggregates related to AD. HL1 and HL2 have half congo-red type azo-stilbene structural framework incorporated with metal chelating groups, designed to chelate metal ions from metal-amyloid species. Metal binding studies of HL1 and HL2 are established by the methods of Job's Plot, UV-vis spectra with metal ions and stability constant determination. In addition, their metal complexes are isolated, purity checked by elemental analysis, spectroscopically characterized and their structural analyses were obtained from DFT based calculations including binding energy determination. Chicken egg white Lysozyme (CEWL) was used as a model peptide for fibrillation studies. HL1 is found as an excellent colorimetric sensor for amyloid fibrils. Inhibitory effect of HL1 and HL2 and their isolated metal complexes L1-Cu and L2-Cu on CEWL fibrillation was studied using ThT and ANS fluorescence assay along with TEM imaging. In addition, the cell toxicity studies on these compounds suggest that although azo dyes may be non-toxic but having a nitro-substitution lead to significant cell toxicity. Overall, these results suggest that this new class of multifunctional small molecules can interact with amyloids as well as metal ions and could be potential anti-aggregation metal chelating agents.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, NH-8,
Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Hong-Jun Cho
- Department of Chemistry, Washington University, One Brookings Drive,
St. Louis, MO 63130-4899, United States
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of
Jammu, Jammu 180011, India
| | - Liviu M. Mirica
- Department of Chemistry, Washington University, One Brookings Drive,
St. Louis, MO 63130-4899, United States
| | - Anuj K. Sharma
- Department of Chemistry, Central University of Rajasthan, NH-8,
Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
38
|
Zhang C, Gomes LM, Zhang T, Storr T. A small bifunctional chelator that modulates Aβ42 aggregation. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multifunctional compounds that can modulate amyloid-β (Aβ) aggregation and interact with metal ions hold considerable promise as therapeutic agents for Alzheimer’s disease (AD). Using the copper-catalyzed azide-alkyne cycloaddition reaction, a novel bifunctional chelator 2-(1-(4-(dimethylamino)benzyl)-1H-1,2,3-triazol-4-yl)phenol (L1) was synthesized. L1 contains a bidentate metal-binding unit and a pendant dimethylamino moiety. The product was characterized by 1H NMR, 13C NMR, and MS. The metal-binding properties of L1 were probed by UV–vis spectroscopy to determine Cu:L stoichiometry. L1 was determined to limit Aβ aggregation at 48 h via a ThT assay. In addition, L1 complies with Lipinski’s rules and calculated logBB values for potential drug likeness and BBB permeability. These results suggest that L1 is a suitable candidate for further study as a multifunctional compound to treat AD.
Collapse
Affiliation(s)
- Chaofeng Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Luiza M.F. Gomes
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Tonglu Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
39
|
Sharma AK, Schultz JW, Prior JT, Rath NP, Mirica LM. Coordination Chemistry of Bifunctional Chemical Agents Designed for Applications in 64Cu PET Imaging for Alzheimer's Disease. Inorg Chem 2017; 56:13801-13814. [PMID: 29112419 PMCID: PMC5698879 DOI: 10.1021/acs.inorgchem.7b01883] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Positron emission
tomography (PET) is emerging as one of the most important diagnostic
tools for brain imaging, yet the most commonly used radioisotopes
in PET imaging, 11C and 18F, have short half-lives,
and their usage is thus somewhat limited. By comparison, the 64Cu radionuclide has a half-life of 12.7 h, which is ideal
for administering and imaging purposes. In spite of appreciable research
efforts, high-affinity copper chelators suitable for brain imaging
applications are still lacking. Herein, we present the synthesis and
characterization of a series of bifunctional compounds (BFCs) based
on macrocyclic 1,4,7-triazacyclononane and 2,11-diaza[3.3](2,6)pyridinophane
ligand frameworks that exhibit a high affinity for Cu2+ ions. In addition, these BFCs contain a 2-phenylbenzothiazole fragment
that is known to interact tightly with amyloid β fibrillar aggregates.
Determination of the protonation constants (pKa values) and stability constants (log β values) of these
BFCs, as well as characterization of the isolated copper complexes
using X-ray crystallography, electron paramagnetic resonance spectroscopy,
and electrochemical studies, suggests that these BFCs exhibit desirable
properties for the development of novel 64Cu PET imaging
agents for Alzheimer’s disease. Novel bifunctional chelators
(BFCs) containing 1,4,7-triazacyclononane or pyridinophane macrocycles
and amyloid-binding 2-phenylbenzothiazole fragments have been synthesized,
and their copper coordination properties have been characterized in
detail. These BFCs are attractive candidates for the development of
novel 64Cu-labeled PET imaging agents for Alzheimer’s
disease.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Jason W Schultz
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - John T Prior
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri St. Louis , One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M Mirica
- Department of Chemistry, Washington University , One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
40
|
Atrián-Blasco E, Conte-Daban A, Hureau C. Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Trans 2017; 46:12750-12759. [PMID: 28937157 PMCID: PMC5656098 DOI: 10.1039/c7dt01344b] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
While metal ions such as copper and zinc are essential in biology, they are also linked to several amyloid-related diseases, including Alzheimer's disease (AD). Zinc and copper can indeed modify the aggregation pathways of the amyloid-β (Aβ) peptide, the key component encountered in AD. In addition, the redox active copper ions do produce Reactive Oxygen Species (ROS) when bound to the Aβ peptide. While Cu(i) or Cu(ii) or Zn(ii) coordination to the Aβ has been extensively studied in the last ten years, characterization of hetero-bimetallic Aβ complexes is still scarce. This is also true for the metal induced Aβ aggregation and ROS production, for which studies on the mutual influence of the copper and zinc ions are currently appearing. Last but not least, zinc can strongly interfere in therapeutic approaches relying on copper detoxification. This will be exemplified with a biological lead, namely metallothioneins, and with synthetic ligands.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Amandine Conte-Daban
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Christelle Hureau
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| |
Collapse
|
41
|
Bandara N, Sharma AK, Krieger S, Schultz JW, Han BH, Rogers BE, Mirica LM. Evaluation of 64Cu-Based Radiopharmaceuticals that Target Aβ Peptide Aggregates as Diagnostic Tools for Alzheimer's Disease. J Am Chem Soc 2017; 139:12550-12558. [PMID: 28823165 PMCID: PMC5677763 DOI: 10.1021/jacs.7b05937] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) imaging agents that detect amyloid plaques containing amyloid beta (Aβ) peptide aggregates in the brain of Alzheimer's disease (AD) patients have been successfully developed and recently approved by the FDA for clinical use. However, the short half-lives of the currently used radionuclides 11C (20.4 min) and 18F (109.8 min) may limit the widespread use of these imaging agents. Therefore, we have begun to evaluate novel AD diagnostic agents that can be radiolabeled with 64Cu, a radionuclide with a half-life of 12.7 h, ideal for PET imaging. Described herein are a series of bifunctional chelators (BFCs), L1-L5, that were designed to tightly bind 64Cu and shown to interact with Aβ aggregates both in vitro and in transgenic AD mouse brain sections. Importantly, biodistribution studies show that these compounds exhibit promising brain uptake and rapid clearance in wild-type mice, and initial microPET imaging studies of transgenic AD mice suggest that these compounds could serve as lead compounds for the development of improved diagnostic agents for AD.
Collapse
Affiliation(s)
- Nilantha Bandara
- Mallinckrodt
Institute of Radiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Anuj K. Sharma
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Stephanie Krieger
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Jason W. Schultz
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Byung Hee Han
- Department
of Pharmacology, A.T. Still University of
Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, Missouri 63501, United States
| | - Buck E. Rogers
- Mallinckrodt
Institute of Radiology, Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Radiation Oncology, Washington University
School of Medicine, St. Louis, Missouri 63108, United States
| | - Liviu M. Mirica
- Department
of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United States
- Hope
Center for Neurological Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
42
|
Zhao C, Sun S, Tong WL, Chan MCW. Poly(Zn-salphen)-alt-(p-phenyleneethynylene)s as Dynamic Helical Metallopolymers: Luminescent Properties and Conformational Behavior. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chao Zhao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shenmei Sun
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wah-Leung Tong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Michael C. W. Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Jones MR, Mathieu E, Dyrager C, Faissner S, Vaillancourt Z, Korshavn KJ, Lim MH, Ramamoorthy A, Wee Yong V, Tsutsui S, Stys PK, Storr T. Multi-target-directed phenol-triazole ligands as therapeutic agents for Alzheimer's disease. Chem Sci 2017; 8:5636-5643. [PMID: 28989601 PMCID: PMC5621006 DOI: 10.1039/c7sc01269a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/04/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease that is characterized by the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) plaque deposits. Increased oxidative stress, metal ion dysregulation, and the formation of toxic Aβ peptide oligomers are all considered to contribute to the etiology of AD. In this work we have developed a series of ligands that are multi-target-directed in order to address several disease properties. 2-(1-(3-Hydroxypropyl)-1H-1,2,3-triazol-4-yl)phenol (POH), 2-(1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PMorph), and 2-(1-(2-thiomorpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PTMorph) have been synthesized and screened for their antioxidant capacity, Cu-binding affinity, interaction with the Aβ peptide and modulation of Aβ peptide aggregation, and the ability to limit Aβ1-42-induced neurotoxicity in human neuronal culture. The synthetic protocol and structural variance incorporated via click chemistry, highlights the influence of R-group modification on ligand-Aβ interactions and neuroprotective effects. Overall, this study demonstrates that the phenol-triazole ligand scaffold can target multiple factors associated with AD, thus warranting further therapeutic development.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Emilie Mathieu
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Christine Dyrager
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Simon Faissner
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
- Department of Neurology , St. Josef-Hospital , Ruhr-University , Bochum , Germany
| | - Zavier Vaillancourt
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Kyle J Korshavn
- Department of Chemistry , University of Michigan , Ann Arbor , USA
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan , Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry , University of Michigan , Ann Arbor , USA
- Department of Biophysics , University of Michigan , Ann Arbor , USA
| | - V Wee Yong
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Peter K Stys
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
44
|
Conte-Daban A, Day A, Faller P, Hureau C. How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study. Dalton Trans 2016; 45:15671-15678. [PMID: 27711738 PMCID: PMC5123634 DOI: 10.1039/c6dt02308h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/23/2016] [Indexed: 01/31/2023]
Abstract
The role of Cu and Zn ions in Alzheimer's disease is linked to the consequences of their coordination to the amyloid-β (Aβ) peptide, i.e. to the modulation of Aβ aggregation and to the production of Reactive Oxygen Species (ROS), two central events of the so-called amyloid cascade. The role of both ions in Aβ aggregation is still controversial. Conversely the higher toxicity of the redox competent Cu ions (compared to the redox inert Zn ions) in ROS production is acknowledged. Thus the Cu ions can be considered as the main therapeutic target. Because Zn ions are present in higher quantity than Cu ions in the synaptic cleft, they can prevent detoxification of Cu by chelators unless they have an unusually high Cu over Zn selectivity. We describe a proof-of-concept study where the role of Zn on the metal swap reaction between two prototypical ligands and the Cu(Aβ) species has been investigated by several complementary spectroscopic techniques (UV-Vis, EPR and XANES). The first ligand has a higher Cu over Zn selectivity relative to the one of Aβ peptide while the second one exhibits a classical Cu over Zn selectivity. How Zn impacts the effect of the ligands on Cu-induced ROS production and Aβ aggregation is also reported.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Adam Day
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
45
|
Green KN, Johnston HM, Burnett ME, Brewer SM. Hybrid Antioxidant and Metal Sequestering Small Molecules Targeting the Molecular Features of Alzheimer’s Disease. COMMENT INORG CHEM 2016. [DOI: 10.1080/02603594.2016.1241616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Ionophoric polyphenols selectively bind Cu2+, display potent antioxidant and anti-amyloidogenic properties, and are non-toxic toward Tetrahymena thermophila. Bioorg Med Chem 2016; 24:3657-70. [DOI: 10.1016/j.bmc.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023]
|
47
|
Derrick JS, Kerr RA, Korshavn KJ, McLane MJ, Kang J, Nam E, Ramamoorthy A, Ruotolo BT, Lim MH. Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorg Chem 2016; 55:5000-13. [PMID: 27119456 DOI: 10.1021/acs.inorgchem.6b00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex and multifaceted pathology of Alzheimer's disease (AD) continues to present a formidable challenge to the establishment of long-term treatment strategies. Multifunctional compounds able to modulate the reactivities of various pathological features, such as amyloid-β (Aβ) aggregation, metal ion dyshomeostasis, and oxidative stress, have emerged as a useful tactic. Recently, an incorporation approach to the rational design of multipurpose small molecules has been validated through the production of a multifunctional ligand (ML) as a potential chemical tool for AD. In order to further the development of more diverse and improved multifunctional reagents, essential pharmacophores must be identified. Herein, we report a series of aminoquinoline derivatives (AQ1-4, AQP1-4, and AQDA1-3) based on ML's framework, prepared to gain a structure-reactivity understanding of ML's multifunctionality in addition to tuning its metal binding affinity. Our structure-reactivity investigations have implicated the dimethylamino group as a key component for supplying the antiamyloidogenic characteristics of ML in both the absence and presence of metal ions. Two-dimensional NMR studies indicate that structural variations of ML could tune its interaction sites along the Aβ sequence. In addition, mass spectrometric analyses suggest that the ability of our aminoquinoline derivatives to regulate metal-induced Aβ aggregation may be influenced by their metal binding properties. Moreover, structural modifications to ML were also observed to noticeably change its metal binding affinities and metal-to-ligand stoichiometries that were shown to be linked to their antiamyloidogenic and antioxidant activities. Overall, our studies provide new insights into rational design strategies for multifunctional ligands directed at regulating metal ions, Aβ, and oxidative stress in AD and could advance the development of improved next-generation multifunctional reagents.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | | | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | | | | | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
48
|
Sugar-metal ion interactions: The coordination behavior of cesium ion with lactose, d-arabinose and l-arabinose. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Fu CL, Hsu LS, Liao YF, Hu MK. New Hydroxyquinoline-Based Derivatives as Potent Modulators of Amyloid-β Aggregations. Arch Pharm (Weinheim) 2016; 349:327-41. [PMID: 27027880 DOI: 10.1002/ardp.201500453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022]
Abstract
Copper and zinc have been found to contribute to the burden of amyloid-β (Aβ) aggregations in neurodegenerative Alzheimer's disease (AD). Dysregulation of these metals leads to the generation of reactive oxygen species (ROS) and eventually results in oxidative damage and accumulation of the Aβ peptide, which are the key elements of the disease. Aiming to pursue the discovery of new modulators for the disease, we here rationally focused on conjugating the core hydroxyquinoline of the metal-protein attenuating compound PBT2 and the N-methylanilide analogous moiety of the Aβ imaging agent to build a new type of multi-target modulators of Aβ aggregations. We found that the N,N-dimethylanilinyl imines 7a, 8a, and the corresponding amines 7b, 8b exerted efficient inhibition of Cu(2+) - or Zn(2+) -induced Aβ aggregations and significant disassembly of metal-mediated Aβ aggregated fibrils. Further, 7a and 7b also exhibited significant ROC scavenging effects compared to PBT2. The results suggested that 7a and 7b are promising lead compounds for the development of a new therapy for AD.
Collapse
Affiliation(s)
- Chin-Lan Fu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Shin Hsu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Feng Liao
- Laboratories of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Kuan Hu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
50
|
Li X, Dong X, Liu Y, Meng Y, Zhang Y, Zhang D, Liu C. Ultraviolet irradiation-mediated formation of Aβ 42oligomers and reactive oxygen species in Zn 2+-bound Aβ 42aggregates irrespective of the removal of Zn 2+. NEW J CHEM 2016; 40:9385-9394. [DOI: 10.1039/c6nj02004f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The controlled UV light exposure converts redox-inert Zn2+-bound Aβ42aggregates into cytotoxic Aβ42oligomers and reactive oxygen species.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| | - Xiongwei Dong
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| | - Yaojing Liu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| | - Yan Meng
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| | - Yong Zhang
- School of Chemical and Materials Engineering
- Hubei Polytechnic University
- Huangshi 435003
- People's Republic of China
| | - Dan Zhang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education, and School of Chemistry
- Central China Normal University
- Wuhan 430079
- People's Republic of China
| |
Collapse
|