1
|
Aarsen C, Liguori A, Mattsson R, Sipponen MH, Hakkarainen M. Designed to Degrade: Tailoring Polyesters for Circularity. Chem Rev 2024; 124:8473-8515. [PMID: 38936815 PMCID: PMC11240263 DOI: 10.1021/acs.chemrev.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A powerful toolbox is needed to turn the linear plastic economy into circular. Development of materials designed for mechanical recycling, chemical recycling, and/or biodegradation in targeted end-of-life environment are all necessary puzzle pieces in this process. Polyesters, with reversible ester bonds, are already forerunners in plastic circularity: poly(ethylene terephthalate) (PET) is the most recycled plastic material suitable for mechanical and chemical recycling, while common aliphatic polyesters are biodegradable under favorable conditions, such as industrial compost. However, this circular design needs to be further tailored for different end-of-life options to enable chemical recycling under greener conditions and/or rapid enough biodegradation even under less favorable environmental conditions. Here, we discuss molecular design of the polyester chain targeting enhancement of circularity by incorporation of more easily hydrolyzable ester bonds, additional dynamic bonds, or degradation catalyzing functional groups as part of the polyester chain. The utilization of polyester circularity to design replacement materials for current volume plastics is also reviewed as well as embedment of green catalysts, such as enzymes in biodegradable polyester matrices to facilitate the degradation process.
Collapse
Affiliation(s)
- Celine
V. Aarsen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Anna Liguori
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rebecca Mattsson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106
91 Stockholm, Sweden
| | - Minna Hakkarainen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
2
|
Besseling PJ, Krebber MM, Fledderus JO, Teraa M, den Ouden K, van de Kaa M, de Bree PM, Serrero A, Bouten CVC, Dankers PYW, Cox MAJ, Verhaar MC. The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts. APL Bioeng 2023; 7:026107. [PMID: 37234843 PMCID: PMC10208679 DOI: 10.1063/5.0138808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red+, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis.
Collapse
Affiliation(s)
| | - Merle M. Krebber
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Krista den Ouden
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Melanie van de Kaa
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. de Bree
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, TU/e, Eindhoven, The Netherlands
| | | | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Erdal NB, Hakkarainen M. Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules 2022; 23:2713-2729. [PMID: 35763720 PMCID: PMC9277587 DOI: 10.1021/acs.biomac.2c00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable polymers complement recyclable materials in battling plastic waste because some products are difficult to recycle and some will end up in the environment either because of their application or due to wear of the products. Natural biopolymers, such as cellulose, are inherently biodegradable, but chemical modification typically required for the obtainment of thermoplastic properties, solubility, or other desired material properties can hinder or even prevent the biodegradation process. This Review summarizes current knowledge on the degradation of common cellulose derivatives in different laboratory, natural, and man-made environments. Depending on the environment, the degradation can be solely biodegradation or a combination of several processes, such as chemical and enzymatic hydrolysis, photodegradation, and oxidation. It is clear that the type of modification and especially the degree of substitution are important factors controlling the degradation process of cellulose derivatives in combination with the degradation environment. The big variation of conditions in different environments is also briefly considered as well as the importance of the proper testing environment, characterization of the degradation process, and confirmation of biodegradability. To ensure full sustainability of the new cellulose derivatives under development, the expected end-of-life scenario, whether material recycling or "biological" recycling, should be included as an important design parameter.
Collapse
Affiliation(s)
- Nejla B Erdal
- KTH Royal Institute of Technology, FibRe - Centre for Lignocellulose-based Thermoplastics, Department of Fibre and Polymer Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- KTH Royal Institute of Technology, FibRe - Centre for Lignocellulose-based Thermoplastics, Department of Fibre and Polymer Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
4
|
Kim HJ, Hillmyer MA, Ellison CJ. Enhanced Polyester Degradation through Transesterification with Salicylates. J Am Chem Soc 2021; 143:15784-15790. [PMID: 34529416 DOI: 10.1021/jacs.1c07229] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyesters constitute nearly 10% of the global plastic market, but most are essentially non-degradable under ambient conditions or in engineered environments. A range of degradable polyesters have been developed as more sustainable alternatives; however, limitations of practical degradability and scalability have hindered their viability. Here, we utilized transesterification approaches, including in situ polymerization-transesterification, between a salicylate and a polyester to incorporate salicylate units into commercial polyester backbones. The strategy is scalable and practically relevant given that high molar mass polymers can be obtained from melt-processing of commercial polyesters using common compounders or extruders. Polylactide containing sparse salicylate moieties shows enhanced hydrolytic degradability in aqueous buffer, seawater, and alkaline solutions without sacrificing the thermal, mechanical, and O2 barrier properties of the parent material. Additionally, salicylate sequences were incorporated into polycaprolactone and a derivative of poly(ethylene terephthalate), and those modified polymers also exhibited facile degradation behavior in alkaline solution, further expanding the scope of this approach. This work provides insights and direction for the development of high-performance yet more sustainable and degradable alternatives to conventional polyesters.
Collapse
|
5
|
Vollrath A, Kretzer C, Beringer-Siemers B, Shkodra B, Czaplewska JA, Bandelli D, Stumpf S, Hoeppener S, Weber C, Werz O, Schubert US. Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers (Basel) 2021; 13:2557. [PMID: 34372160 PMCID: PMC8347491 DOI: 10.3390/polym13152557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Seven polycaprolactones (PCL) with constant hydrophobicity but a varying degree of crystallinity prepared from the constitutional isomers ε-caprolactone (εCL) and δ-caprolactone (δCL) were utilized to formulate nanoparticles (NPs). The aim was to investigate the effect of the crystallinity of the bulk polymers on the enzymatic degradation of the particles. Furthermore, their efficiency to encapsulate the hydrophobic anti-inflammatory drug BRP-187 and the final in vitro performance of the resulting NPs were evaluated. Initially, high-throughput nanoprecipitation was employed for the εCL and δCL homopolymers to screen and establish important formulation parameters (organic solvent, polymer and surfactant concentration). Next, BRP-187-loaded PCL nanoparticles were prepared by batch nanoprecipitation and characterized using dynamic light scattering, scanning electron microscopy and UV-Vis spectroscopy to determine and to compare particle size, polydispersity, zeta potential, drug loading as well as the apparent enzymatic degradation as a function of the copolymer composition. Ultimately, NPs were examined for their potency in vitro in human polymorphonuclear leukocytes to inhibit the BRP-187 target 5-lipoxygenase-activating protein (FLAP). It was evident by Tukey's multi-comparison test that the degree of crystallinity of copolymers directly influenced their apparent enzymatic degradation and consequently their efficiency to inhibit the drug target.
Collapse
Affiliation(s)
- Antje Vollrath
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Baerbel Beringer-Siemers
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
| | - Blerina Shkodra
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Justyna A. Czaplewska
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Damiano Bandelli
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Steffi Stumpf
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Stephanie Hoeppener
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christine Weber
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| |
Collapse
|
6
|
Shi C, Li ZC, Caporaso L, Cavallo L, Falivene L, Chen EYX. Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Nifant’ev I, Shlyakhtin A, Komarov P, Tavtorkin A, Kananykhina E, Elchaninov A, Vishnyakova P, Fatkhudinov T, Ivchenko P. In Vitro and In Vivo Studies of Biodegradability and Biocompatibility of Poly(εCL)- b-Poly(EtOEP)-Based Films. Polymers (Basel) 2020; 12:E3039. [PMID: 33353096 PMCID: PMC7766882 DOI: 10.3390/polym12123039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
The control of surface bioadhesive properties of the subcutaneous implants is essential for the development of biosensors and controlled drug release devices. Poly(alkyl ethylene phosphate)-based (co)polymers are structurally versatile, biocompatible and biodegradable, and may be regarded as an alternative to poly(ethylene glycol) (PEG) copolymers in the creation of antiadhesive materials. The present work reports the synthesis of block copolymers of ε-caprolactone (εCL) and 2-ethoxy-1,3,2-dioxaphospholane-2-oxide (ethyl ethylene phosphate, EtOEP) with different content of EtOEP fragments, preparation of polymer films, and the results of the study of the impact of EtOEP/εCL ratio on the hydrophilicity (contact angle of wetting), hydrolytic stability, cytotoxicity, protein and cell adhesion, and cell proliferation using umbilical cord multipotent stem cells. It was found that the increase of EtOEP/εCL ratio results in increase of hydrophilicity of the polymer films with lowering of the protein and cell adhesion. MTT cytotoxicity test showed no significant deviations in toxicity of poly(εCL) and poly(εCL)-b-poly(EtOEP)-based films. The influence of the length of poly(EtOEP)chain in block-copolymers on fibrotic reactions was analyzed using subcutaneous implantation experiments (Wistar line rats), the increase of the width of the fibrous capsule correlated with higher EtOEP/εCL ratio. However, the copolymer-based film with highest content of polyphosphate had been subjected to faster degradation with a formation of developed contact surface of poly(εCL). The rate of the degradation of polyphosphate in vivo was significantly higher than the rate of the degradation of polyphosphate in vitro, which only confirms an objective value of in vivo experiments in the development of polymer materials for biomedical applications.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia; (A.S.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia; (P.K.); (A.T.)
- Faculty of Chemistry, National Research University Higher School of Economics, 20 Miasnitskaya Str., 101000 Moscow, Russia
| | - Andrey Shlyakhtin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia; (A.S.); (P.I.)
| | - Pavel Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia; (P.K.); (A.T.)
| | - Alexander Tavtorkin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia; (P.K.); (A.T.)
| | - Evgeniya Kananykhina
- Research Institute of Human Morphology, 3 Tsyurupy St., 117418 Moscow, Russia; (E.K.); (T.F.)
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Str., 117997 Moscow, Russia; (A.E.); (P.V.)
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Str., 117997 Moscow, Russia; (A.E.); (P.V.)
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, 3 Tsyurupy St., 117418 Moscow, Russia; (E.K.); (T.F.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, Miklukho‐Maklaya 6 Str., 117198 Moscow, Russia
| | - Pavel Ivchenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia; (A.S.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia; (P.K.); (A.T.)
| |
Collapse
|
8
|
Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating. Polymers (Basel) 2020; 12:polym12081849. [PMID: 32824691 PMCID: PMC7464575 DOI: 10.3390/polym12081849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
Porous poly(ε-caprolactone) (PCL) scaffolds were fabricated using the high internal polymerization emulsion (HIPE) technique. Bis(ε-caprolactone-4-yl) (BCY) was utilized as crosslinker. The crosslinking density and the volume fraction of the dispersed phase were varied in order to study the potential effect of these parameters on the hydrolytic degradation at 37 °C and 60 °C. After different hydrolysis times the remaining solid samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), while the degradation products in the aqueous aging solutions were analyzed by laser desorption ionization-mass spectrometry (LDI-MS). The effect of temperature on the degradation process and release of degradation products was, as expected, significant. The temperature effect was also shown by FTIR analysis that displayed a pronounced increase in the intensity of the hydroxyl-group absorption band after 70 days of hydrolysis at 60 °C indicating significant cleavage of the polymer chains. LDI-MS analysis proved the release of oligomers ranging from dimers to hexamers. The product patterns were similar, but the relative m/z signal intensities increased with increasing time, temperature and crosslinking density, indicating larger amounts of released products. The latter is probably due to the decreasing degree of crystallinity as a function of amount of crosslinker. The porous structure and morphology of the scaffolds were lost during the aging. The higher the crosslinking density, the longer the scaffolds retained their original porous structure and morphology.
Collapse
|
9
|
Xing Z, Cai J, Sun Y, Cao M, Li Y, Xue Y, Finne-Wistrand A, Kamal M. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12071453. [PMID: 32610488 PMCID: PMC7407625 DOI: 10.3390/polym12071453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent studies have suggested that both poly(l-lactide-co-1,5-dioxepan-2-one) (or poly(LLA-co-DXO)) and poly(l-lactide-co-ε-caprolactone) (or poly(LLA-co-CL)) porous scaffolds are good candidates for use as biodegradable scaffold materials in the field of tissue engineering; meanwhile, their surface properties, such as hydrophilicity, need to be further improved. METHODS We applied several different concentrations of the surfactant Tween 80 to tune the hydrophilicity of both materials. Moreover, the modification was applied not only in the form of solid scaffold as a film but also a porous scaffold. To investigate the potential application for tissue engineering, human bone marrow mesenchymal stem cells (hMSCs) were chosen to test the effect of hydrophilicity on cell attachment, proliferation, and differentiation. First, the cellular cytotoxicity of the extracted medium from modified scaffolds was investigated on HaCaT cells. Then, hMSCs were seeded on the scaffolds or films to evaluate cell attachment, proliferation, and osteogenic differentiation. The results indicated a significant increasing of wettability with the addition of Tween 80, and the hMSCs showed delayed attachment and spreading. PCR results indicated that the differentiation of hMSCs was stimulated, and several osteogenesis related genes were up-regulated in the 3% Tween 80 group. Poly(LLA-co-CL) with 3% Tween 80 showed an increased messenger Ribonucleic acid (mRNA) level of late-stage markers such as osteocalcin (OC) and key transcription factor as runt related gene 2 (Runx2). CONCLUSION A high hydrophilic scaffold may speed up the osteogenic differentiation for bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Jiazheng Cai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mengnan Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Correspondence: (Y.L.); (Y.X.)
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
- Correspondence: (Y.L.); (Y.X.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mustafa Kamal
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
10
|
Ehrmann K, Potzmann P, Dworak C, Bergmeister H, Eilenberg M, Grasl C, Koch T, Schima H, Liska R, Baudis S. Hard Block Degradable Polycarbonate Urethanes: Promising Biomaterials for Electrospun Vascular Prostheses. Biomacromolecules 2020; 21:376-387. [PMID: 31718163 DOI: 10.1021/acs.biomac.9b01255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report biodegradable thermoplastic polyurethanes for soft tissue engineering applications, where frequently used carboxylic acid ester degradation motifs were substituted with carbonate moieties to achieve superior degradation properties. While the use of carbonates in soft blocks has been reported, their use in hard blocks of thermoplastic polyurethanes is unprecedented. Soft blocks consist of poly(hexamethylene carbonate), and hard blocks combine hexamethylene diisocyanate with the newly synthesized cleavable carbonate chain extender bis(3-hydroxypropylene)carbonate (BHPC), mimicking the motif of poly(trimethylene carbonate) with highly regarded degradation properties. Simultaneously, the mechanical benefits of segmented polyurethanes are exploited. A lower hard block concentration in BHPC-based polymers was more suitable for vascular grafts. Nonacidic degradation products and hard block dependent degradation rates were found. Implantation of BHPC-based electrospun degradable vascular prostheses in a small animal model revealed high patency rates and no signs of aneurysm formations. Specific vascular graft remodeling and only minimal signs of inflammatory reactions were observed.
Collapse
Affiliation(s)
- Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Paul Potzmann
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Claudia Dworak
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Helga Bergmeister
- Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Magdalena Eilenberg
- Division of Biomedical Research , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Department of Surgery , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Center for Medical Physics and Biomedical Engineering , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Thomas Koch
- Institute of Materials Science and Technology , TU Wien , Getreidemarkt 9/308 , 1060 Vienna , Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular Research , Währinger Gürtel 18-20 , 1090 Vienna , Austria.,Center for Medical Physics and Biomedical Engineering , Medical University of Vienna , Währinger Gürtel 18-20 , 1090 Vienna , Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry , TU Wien , Getreidemarkt 9/163 MC , 1060 Vienna , Austria.,Austrian Cluster for Tissue Regeneration , 1200 Vienna , Austria
| |
Collapse
|
11
|
Liu X, Hong M. Transesterification by air/moisture-tolerant bifunctional organocatalyst to produce ‘nonstrained’ γ-butyrolactone-based aliphatic copolyesters: Turning a bane into a boon. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Joy J, Aid-Launais R, Pereira J, Pavon-Djavid G, Ray AR, Letourneur D, Meddahi-Pellé A, Gupta B. Gelatin-polytrimethylene carbonate blend based electrospun tubular construct as a potential vascular biomaterial. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110178. [PMID: 31753413 DOI: 10.1016/j.msec.2019.110178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 01/21/2023]
Abstract
The present work details the fabrication of electrospun tubular scaffolds based on the biocompatible and unexploited blend of gelatin and polytrimethylene carbonate (PTMC) as a media (middle layer of blood vessel) equivalent for blood vessel regeneration. An attempt to resemble the media stimulated the selection of gelatin as a matrix (substitution for collagen) with the inclusion of the biodegradable elastomer PTMC (substitution for elastin). -The work highlights the variation of electrospinning parameters and its assiduous selection based on fiber diameter distribution and pore size distribution to obtain smooth microfibers and micropores which is reported for the first time for this blend. Electrospun conduits of gelatin-PTMC blend had fibers sized 6-8 μm and pores sized ~100-150 μm. Young's modulus of 0.40 ± 0.045 MPa was observed, resembling the tunica media of the native artery (~0.5 MPa). An evaluation of the surface properties, topography, and mechanical properties validated its physical requirements for inclusion in a vascular graft. Preliminary biological tests confirmed its minimal in-vitro toxicity and in-vivo biocompatibility. MTT assay (indirect) elucidated cell viability above 70% with scaffold extract, considered to be non-toxic according to the EN ISO-10993-5/12 protocol. The in-vivo subcutaneous implantation in rat showed a marked reduction in macrophages within 15 days revealing its biocompatibility and its possibility for host integration. This comprehensive study presents for the first time the potential of microporous electrospun gelatin and PTMC blend based tubular construct as a potential biomaterial for vascular tissue engineering. The proposed media equivalent included in a bilayer or trilayer polymeric construct can be a promising off-shelf vascular graft.
Collapse
Affiliation(s)
- Jincy Joy
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Rachida Aid-Launais
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Jessica Pereira
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Graciela Pavon-Djavid
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Alok R Ray
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Didier Letourneur
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Anne Meddahi-Pellé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
13
|
Ring-opened 4-hydroxy-δ-valerolactone subunit as a key structural fragment of polyesters that degrade without acid formation. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Wu T, Wei Z, Ren Y, Yu Y, Leng X, Li Y. Highly branched linear-comb random copolyesters of ε-caprolactone and δ-valerolactone: Isodimorphism, mechanical properties and enzymatic degradation behavior. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Molecular Level Structure of Biodegradable Poly(Delta-Valerolactone) Obtained in the Presence of Boric Acid. Molecules 2018; 23:molecules23082034. [PMID: 30110952 PMCID: PMC6222617 DOI: 10.3390/molecules23082034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, low molecular weight poly(δ-valerolactone) (PVL) was synthesized through bulk-ring openings polymerization of δ-valerolactone with boric acid (B(OH)₃) as a catalyst and benzyl alcohol (BnOH) as an initiator. The resulting homopolymer was characterized with the aid of nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques to gain further understanding of its molecular structure. The electrospray ionization mass spectrometry (ESI-MS) spectra of poly(δ-valerolactone) showed the presence of two types of homopolyester chains-one terminated by benzyl ester and hydroxyl end groups and one with carboxyl and hydroxyl end groups. Additionally, a small amount of cyclic PVL oligomers was identified. To confirm the structure of PVL oligomers obtained, fragmentation of sodium adducts of individual polyester molecules terminated by various end groups was explored in ESI-MSn by using collision induced dissociation (CID) techniques. The ESI-MSn analyses were conducted both in positive- and negative ion mode. The comparison of the fragmentation spectra obtained with proposed respective theoretical fragmentation pathways allowed the structure of the obtained oligomers to be established at the molecular level. Additionally, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it was proven that regardless of the degree of oligomerization, the resulting PVL samples were a mixture of two types of linear PVL oligomers differing in end groups and containing just a small amount of cyclic oligomers that tended to be not visible at higher molar masses.
Collapse
|
16
|
Fan B, Yardley RE, Trant JF, Borecki A, Gillies ER. Tuning the hydrophobic cores of self-immolative polyglyoxylate assemblies. Polym Chem 2018. [DOI: 10.1039/c8py00350e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic block copolymers containing different self-immolative polyglyoxylates were synthesized and self-assembled to provide drug carriers with variable celecoxib loading capacities and release rates, as well as different in vitro toxicities.
Collapse
Affiliation(s)
- Bo Fan
- Department of Chemical and Biochemical Engineering and the Centre for Advanced Materials and Biomaterials Research
- The University of Western Ontario
- London
- Canada
| | | | - John F. Trant
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Aneta Borecki
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering and the Centre for Advanced Materials and Biomaterials Research
- The University of Western Ontario
- London
- Canada
- Department of Chemistry
| |
Collapse
|
17
|
Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response. Acta Biomater 2018; 65:259-271. [PMID: 29101019 DOI: 10.1016/j.actbio.2017.10.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023]
Abstract
Controlling the backbone architecture of poly(lactic-co-glycolic acid)s (PLGAs) is demonstrated to have a strong influence on the production and release of acidic degradation by-products in microparticle matrices. Previous efforts for controlling the internal and external accumulation of acidity for PLGA microparticles have focused on the addition of excipients including neutralization and anti-inflammatory agents. In this report, we utilize a sequence-control strategy to tailor the microstructure of PLGA. The internal acidic microclimate distributions within sequence-defined and random PLGA microparticles were monitored in vitro using a non-invasive ratiometric two-photon microscopy (TPM) methodology. Sequence-defined PLGAs were found to have minimal changes in pH distribution and lower amounts of percolating acidic by-products. A parallel scanning electron microscopy study further linked external morphological events to internal degradation-induced structural changes. The properties of the sequenced and random copolymers characterized in vitro translated to differences in in vivo behavior. The sequence alternating copolymer, poly LG, had lower granulomatous foreign-body reactions compared to random racemic PLGA with a 50:50 ratio of lactic to glycolic acid. STATEMENT OF SIGNIFICANCE This paper demonstrates that changing the monomer sequence in poly(lactic-co-glycolic acid)s (PLGAs) leads to dramatic differences in the rate of degradation and the internal acidic microclimate of microparticles degrading in vitro. We note that the acidic microclimates within these particles were imaged for the first time with two-photon microscopy, which gives an extremely clear and detailed picture of the degradation process. Importantly, we also document that the observed sequence-controlled in vitro processes translate into differences in the in vivo behavior of polymers which have the same L to G composition but differing microstructures. These data, placed in the context of our prior studies on swelling, erosion, and MW loss (Biomaterials2017, 117, 66 and other references cited within the manuscript), provide significant insight not only about sequence effects in PLGAs but into the underlying mechanisms of PLGA degradation in general.
Collapse
|
18
|
Affiliation(s)
- Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
19
|
Hong M, Tang X, Newell BS, Chen EYX. “Nonstrained” γ-Butyrolactone-Based Copolyesters: Copolymerization Characteristics and Composition-Dependent (Thermal, Eutectic, Cocrystallization, and Degradation) Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02174] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Miao Hong
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Brian S. Newell
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
20
|
Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Biomacromolecules 2017; 18:4171-4183. [PMID: 29020441 DOI: 10.1021/acs.biomac.7b01222] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer-bioceramic composites incorporate the desirable properties of each material while mitigating the limiting characteristics of each component. 1,6-Hexanediol l-phenylalanine-based poly(ester urea) (PEU) blended with hydroxyapatite (HA) nanocrystals were three-dimensional (3D) printed into porous scaffolds (75% porosity) via fused deposition modeling and seeded with MC3T3-E1 preosteoblast cells in vitro to examine their bioactivity. The resulting 3D printed scaffolds exhibited a compressive modulus of ∼50 MPa after a 1-week incubation in PBS at 37 °C, cell viability >95%, and a composition-dependent enhancement of radio-contrast. The influence of HA on MC3T3-E1 proliferation and differentiation was measured using quantitative real-time polymerase chain reaction, immunohistochemistry and biochemical assays. After 4 weeks, alkaline phosphatase activity increased significantly for the 30% HA composite with values reaching 2.5-fold greater than the control. Bone sialoprotein showed approximately 880-fold higher expression and 15-fold higher expression of osteocalcin on the 30% HA composite compared to those of the control. Calcium quantification results demonstrated a 185-fold increase of calcium concentration in mineralized extracellular matrix deposition after 4 weeks of cell culture in samples with higher HA content. 3D printed HA-containing PEU composites promote bone regeneration and have the potential to be used in orthopedic applications.
Collapse
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanyi Xu
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Shan Li
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Gabrielle V Seifert
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science and ∥Department of Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
21
|
Fan B, Trant JF, Gillies ER. End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02320] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bo Fan
- Department of Chemical
and Biochemical Engineering, The University of Western Ontario, 1151
Richmond St., London, Ontario, Canada N6A 5B9
| | - John F. Trant
- Department
of Chemistry, The University of Western Ontario, 1151 Richmond
St., London, Ontario, Canada N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemical
and Biochemical Engineering, The University of Western Ontario, 1151
Richmond St., London, Ontario, Canada N6A 5B9
- Department
of Chemistry, The University of Western Ontario, 1151 Richmond
St., London, Ontario, Canada N6A 5B7
| |
Collapse
|
22
|
Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1446] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Vasanthy Karmegam
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Michael C. Biewer
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Mihaela C. Stefan
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| |
Collapse
|
23
|
Song Q, Xia Y, Hu S, Zhao J, Zhang G. Tuning the crystallinity and degradability of PCL by organocatalytic copolymerization with δ-hexalactone. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Arias V, Olsén P, Odelius K, Höglund A, Albertsson AC. Forecasting linear aliphatic copolyester degradation through modular block design. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Gou J, Chao Y, Liang Y, Zhang N, He H, Yin T, Zhang Y, Xu H, Tang X. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier. Pharm Res 2016; 33:2140-51. [PMID: 27251415 DOI: 10.1007/s11095-016-1952-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). METHODS Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. RESULTS The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. CONCLUSION Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.
Collapse
Affiliation(s)
- Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yanhui Chao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuheng Liang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Tian Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
26
|
Al-Namnam NMN, Kim KH, Chai WL, Ha KO, Siar CH, Ngeow WC. Modified poly(caprolactone trifumarate) with embedded gelatin microparticles as a functional scaffold for bone tissue engineering. J Appl Polym Sci 2016. [DOI: 10.1002/app.43711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nisreen Mohammed Nagi Al-Namnam
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Kah Hwi Kim
- Department of Physiology; Faculty of Medicine; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry; Faculty of Dentistry; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Kien Oon Ha
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Chong Huat Siar
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Wei Cheong Ngeow
- Department of Oro-Maxillofacial Surgical and Medical Sciences; Faculty of Dentistry; University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
27
|
Feng Y, Liu W, Ren X, Lu W, Guo M, Behl M, Lendlein A, Zhang W. Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers (Basel) 2016; 8:E58. [PMID: 30979153 PMCID: PMC6432533 DOI: 10.3390/polym8030058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 01/30/2023] Open
Abstract
Functional artificial vascular meshes from biodegradable polymers have been widely explored for certain tissue engineered meshes. Still, the foreign body reaction and limitation in endothelialization are challenges for such devices. Here, degradable meshes from phase-segregated multiblock copolymers consisting of poly(ε-caprolactone) (PCL) and polydepsipeptide segments are successfully prepared by electrospinning and electrospraying techniques. The pEGFP-ZNF580 plasmid microparticles (MPs-pZNF580) were loaded into the electrospun meshes to enhance endothelialization. These functional meshes were evaluated in vitro and in vivo. The adhesion and proliferation of endothelial cells on the meshes were enhanced in loaded mesh groups. Moreover, the hemocompatibility and the tissue response of the meshes were further tested. The complete tests showed that the vascular meshes modified with MPs-pZNF580 possessed satisfactory performance with an average fiber diameter of 550 ± 160 nm, tensile strength of 27 ± 3 MPa, Young's modulus of 1. 9 ± 0.2 MPa, water contact angle of 95° ± 2°, relative cell number of 122% ± 1% after 7 days of culture, and low blood platelet adhesion as well as weak inflammatory reactions compared to control groups.
Collapse
Affiliation(s)
- Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wen Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China.
| | - Wei Lu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Mengyang Guo
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Marc Behl
- Institute of Biomaterial Science, Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany.
| | - Andreas Lendlein
- Institute of Biomaterial Science, Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
- Tianjin University⁻Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Kantstr. 55, 14513 Teltow, Germany.
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
28
|
Choi UH, Mittal A, Price TL, Colby RH, Gibson HW. Imidazolium-Based Ionic Liquids as Initiators in Ring Opening Polymerization: Ionic Conduction and Dielectric Response of End-Functional Polycaprolactones and Their Block Copolymers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- U Hyeok Choi
- Department of Materials Science and Engineering; Pennsylvania State University; University Park PA 16802 USA
- Functional Composites Department; Korea Institute of Materials Science; Changwon 642-831 Korea
| | - Anuj Mittal
- Department of Chemistry; Macromolecules and Interfaces Institute; Virginia Tech; Blacksburg VA 24061 USA
- Momentive Performance Materials Pvt. Ltd.; Bangalore Karnataka 560100 India
| | - Terry L. Price
- Department of Chemistry; Macromolecules and Interfaces Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Ralph H. Colby
- Department of Materials Science and Engineering; Pennsylvania State University; University Park PA 16802 USA
| | - Harry W. Gibson
- Department of Chemistry; Macromolecules and Interfaces Institute; Virginia Tech; Blacksburg VA 24061 USA
| |
Collapse
|
29
|
Bettini S, Bonfrate V, Syrgiannis Z, Sannino A, Salvatore L, Madaghiele M, Valli L, Giancane G. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules 2015; 16:2599-608. [PMID: 26270197 DOI: 10.1021/acs.biomac.5b00829] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento , Via per Arnesano, I-73100 Lecce, Italy
| | - Valentina Bonfrate
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Zois Syrgiannis
- Centre of Excellence for Nanostructured Materials (CENMAT), INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , via L. Giorgieri 1, 34127, Trieste, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento , Via per Arnesano, I-73100 Lecce, Italy
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento , Via Birago 64, I-73100 Lecce, Italy
| |
Collapse
|
30
|
Bruce C, Nilsson C, Malmström E, Fogelström L. Paper-sheet biocomposites based on wood pulp grafted with poly(ε-caprolactone). J Appl Polym Sci 2015. [DOI: 10.1002/app.42039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carl Bruce
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Camilla Nilsson
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Eva Malmström
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| | - Linda Fogelström
- Department of Fibre and Polymer Technology; KTH Royal Institute of Technology; SE-100 44 Stockholm Sweden
| |
Collapse
|
31
|
Gagliardi M, Di Michele F, Mazzolai B, Bifone A. Chemical synthesis of a biodegradable PEGylated copolymer from ε-caprolactone and γ-valerolactone: evaluation of reaction and functional properties. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0661-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Wang H, He J, Cao D, Zhang M, Li F, Tam KC, Ni P. Synthesis of an acid-labile polymeric prodrug DOX-acetal-PEG-acetal-DOX with high drug loading content for pH-triggered intracellular drug release. Polym Chem 2015. [DOI: 10.1039/c5py00569h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PEGylated doxorubicin (DOX) prodrugs with high drug loading content have been prepared via a combination of CuAAC “click” reaction and ammonolysis reaction, which can be used for pH-triggered delivery of doxorubicin.
Collapse
Affiliation(s)
- Hairong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Dongling Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Fei Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Kam Chiu Tam
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
33
|
Arias V, Olsén P, Odelius K, Höglund A, Albertsson AC. Selective degradation in aliphatic block copolyesters by controlling the heterogeneity of the amorphous phase. Polym Chem 2015. [DOI: 10.1039/c5py00136f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the course of the degradation of aliphatic polyesters is a key question when designing new degradable materials.
Collapse
Affiliation(s)
- Veluska Arias
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Peter Olsén
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | - Anders Höglund
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | | |
Collapse
|
34
|
Adjustable degradation properties and biocompatibility of amorphous and functional poly(ester-acrylate)-based materials. Biomacromolecules 2014; 15:2800-7. [PMID: 24915542 DOI: 10.1021/bm500689g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tuning the properties of materials toward a special application is crucial in the area of tissue engineering. The design of materials with predetermined degradation rates and controlled release of degradation products is therefore vital. Providing a material with various functional groups is one of the best ways to address this issue because alterations and modifications of the polymer backbone can be performed easily. Two different 2-methylene-1,3-dioxepane/glycidyl methacrylate-based (MDO/GMA) copolymers were synthesized with different feed ratios and immersed into a phosphate buffer solution at pH 7.4 and in deionized water at 37 °C for up to 133 days. After different time intervals, the molecular weight changes, mass loss, pH, and degradation products were determined. By increasing the amount of GMA functional groups in the material, the degradation rate and the amount of acidic degradation products released from the material were decreased. As a result, the composition of the copolymers greatly affected the degradation rate. A rapid release of acidic degradation products during the degradation process could be an important issue for biomedical applications because it might affect the biocompatibility of the material. The cytotoxicity of the materials was evaluated using a MTT assay. These tests indicated that none of the materials demonstrated any obvious cytotoxicity, and the materials could therefore be considered biocompatible.
Collapse
|
35
|
Sun Y, Xing Z, Xue Y, Mustafa K, Finne-Wistrand A, Albertsson AC. Surfactant as a Critical Factor When Tuning the Hydrophilicity in Three-Dimensional Polyester-Based Scaffolds: Impact of Hydrophilicity on Their Mechanical Properties and the Cellular Response of Human Osteoblast-Like Cells. Biomacromolecules 2014; 15:1259-68. [DOI: 10.1021/bm401818e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yang Sun
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zhe Xing
- Department
of Clinical Dentistry-Center for Clinical Dental Research, Faculty
of Medicine and Dentistry, University of Bergen, Norway
| | - Ying Xue
- Department
of Clinical Dentistry-Center for Clinical Dental Research, Faculty
of Medicine and Dentistry, University of Bergen, Norway
| | - Kamal Mustafa
- Department
of Clinical Dentistry-Center for Clinical Dental Research, Faculty
of Medicine and Dentistry, University of Bergen, Norway
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ann-Christine Albertsson
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
36
|
Ruan C, Hu Y, Jiang L, Cai Q, Pan H, Wang H. Tunable degradation of piperazine-based polyurethane ureas. J Appl Polym Sci 2014. [DOI: 10.1002/app.40527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changshun Ruan
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Yang Hu
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Lixin Jiang
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Qingqing Cai
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Haobo Pan
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| | - Huaiyu Wang
- Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
- Shenzhen Key Laboratory of Marine Biomedical Materials; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen 518055 China
| |
Collapse
|
37
|
Ruan C, Hu N, Hu Y, Jiang L, Cai Q, Wang H, Pan H, Lu WW, Wang Y. Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Yu J, Lin F, Lin P, Gao Y, Becker ML. Phenylalanine-Based Poly(ester urea): Synthesis, Characterization, and in vitro Degradation. Macromolecules 2013. [DOI: 10.1021/ma401752b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiayi Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Fei Lin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Panpan Lin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yaohua Gao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Austen Bioinnovation Institute in Akron, Akron, Ohio 44308, United States
| |
Collapse
|
39
|
Köhler J, Marquardt F, Teske M, Keul H, Sternberg K, Möller M. Enhanced hydrolytic degradation of heterografted polyglycidols: phosphonoethylated monoester and polycaprolactone grafts. Biomacromolecules 2013; 14:3985-96. [PMID: 24088140 DOI: 10.1021/bm401428b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel biodegradable materials with tunable hydrolytic degradation rate are prepared by grafting of phosphonoethylated polyglycidols with polyesters. First, the hydrolytically degradable polyester grafts are attached to polyglycidols partially grafted with phosphonoethylated diethyl esters through chemical-catalyzed grafting using tin(II) octanoate, then the diethyl ester groups are chemoselectively converted to the corresponding monoester (mixed phosphonate/phosphonic acid) using alkali metal halides. The products are characterized by means of (1)H, (13)C, and (31)P NMR spectroscopy, as well as size-exclusion chromatography and differential scanning calorimetry. The in vitro degradation of the copolymers is studied in phosphate buffered solution at 55 °C. The copolymers are of the same architecture, molecular weight, and crystallinity, only differing in the pendant phosphonate and mixed phosphonate/phosphonic acid groups, respectively. On the basis of mass loss, decrease of the molecular weight, and morphological analysis of the copolymers, the strong impact of mixed phosphonate/phosphonic acid groups on the hydrolytic degradation rate is demonstrated.
Collapse
Affiliation(s)
- Jens Köhler
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University and Interactive Materials Research - DWI at RWTH Aachen e.V. , Forckenbeckstr. 50, D-52056 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Glavas L, Olsén P, Odelius K, Albertsson AC. Achieving micelle control through core crystallinity. Biomacromolecules 2013; 14:4150-6. [PMID: 24066701 PMCID: PMC3876746 DOI: 10.1021/bm401312j] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
We
have designed a pathway for controlling the critical micelle
concentration and micelle size of polyester-based systems. This was
achieved by creating an array of different copolymers with semicrystalline
or amorphous hydrophobic blocks. The hydrophobic block was constructed
through ring-opening polymerization of ε-caprolactone, l-lactide, and ε-decalactone, either as homopolymers or random
copolymers, using PEG as both the initiator and the hydrophilic block.
Micelles formed with amorphous cores exhibited considerably higher
critical micelle concentrations than those with semicrystalline cores.
Micelles with amorphous cores also became larger in size with an increased
molecular weight of the hydrophobic bock, in contrast to micelles
with semicrystalline cores, which displayed the opposite behavior.
Hence, core crystallinity was found to be a potent tool for tailoring
micelle properties and thereby facilitating the optimization of drug
delivery systems. The introduction of PEG-PεDL also proved to
be a valuable asset in the tuning of micelle properties.
Collapse
Affiliation(s)
- Lidija Glavas
- Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH, Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
|
42
|
Aminlashgari N, Höglund OV, Borg N, Hakkarainen M. Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels. Acta Biomater 2013; 9:6898-904. [PMID: 23438863 DOI: 10.1016/j.actbio.2013.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/11/2013] [Accepted: 02/05/2013] [Indexed: 11/18/2022]
Abstract
A resorbable device for ligation of blood vessels was developed and tested in vitro to reveal the degradation profile of the device and to predict the clinical performance in terms of adequate mechanical support during a healing period of 1week. In addition, preliminary clinical testing was performed that showed complete hemostasis and good tissue grip of renal arteries in five pigs. The device was made by injection molding of poly(glycolide-co-trimethylene carbonate) triblock copolymer, and it consisted of a case with a locking mechanism connected to a partly perforated flexible band. A hydrolytic degradation study was carried out for 7, 30 and 60days in water and buffer medium, following the changes in mass, water absorption, pH and mechanical properties. A new rapid matrix-free laser desorption ionization-mass spectrometry (LDI-MS) method was developed for direct screening of degradation products released into the degradation medium. The combination of LDI-MS and electrospray ionization-mass spectrometry analyses enabled the comparison of the degradation product patterns in water and buffer medium. The identified degradation products were rich in trimethylene carbonate units, indicating preferential hydrolysis of amorphous regions where trimethylene units are located. The crystallinity of the material was doubled after 60days of hydrolysis, additionally confirming the preferential hydrolysis of trimethylene carbonate units and the enrichment of glycolide units in the remaining solid matrix. The mechanical performance of the perforated band was followed for the first week of hydrolysis and the results suggest that sufficient strength is retained during the healing time of the blood vessels.
Collapse
Affiliation(s)
- Nina Aminlashgari
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
43
|
Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5798-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Dånmark S, Gladnikoff M, Frisk T, Zelenina M, Mustafa K, Russom A, Finne-Wistrand A. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. Biomed Microdevices 2013; 14:885-93. [PMID: 22714394 DOI: 10.1007/s10544-012-9668-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using the latest innovations in microfabrication technology, 3-dimensional microfluidic cell culture systems have been developed as an attractive alternative to traditional 2-dimensional culturing systems as a model for long-term microscale cell-based research. Most microfluidic systems are based on the embedding of cells in hydrogels. However, physiologically realistic conditions based on hydrogels are difficult to obtain and the systems are often too complicated. We have developed a microfluidic cell culture device that incorporates a biodegradable rigid 3D polymer scaffold using standard soft lithography methods. The device permits repeated high-resolution fluorescent imaging of live cell populations within the matrix over a 4 week period. It was also possible to track cell development at the same spatial location throughout this time. In addition, human primary periodontal ligament cells were induced to produce quantifiable calcium deposits within the system. This simple and versatile device should be readily applicable for cell-based studies that require long-term culture and high-resolution bioimaging.
Collapse
Affiliation(s)
- Staffan Dånmark
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang G, Zhang M, He J, Ni P. Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxel–polyphosphoester–folic acid for targeted drug delivery. Polym Chem 2013. [DOI: 10.1039/c3py00419h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Srinath D, Lin S, Knight DK, Rizkalla AS, Mequanint K. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. J Tissue Eng Regen Med 2012; 8:578-88. [DOI: 10.1002/term.1562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/10/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Deepta Srinath
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; London; ON; Canada
| | - Shigang Lin
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; London; ON; Canada
| | - Darryl K. Knight
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; London; ON; Canada
| | | | | |
Collapse
|
47
|
Aminlashgari N, Hakkarainen M. Surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) for analysis of polyester degradation products. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1071-1076. [PMID: 22392621 DOI: 10.1007/s13361-012-0360-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Novel surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed for rapid analysis of low molecular mass polyesters and their degradation products by laser desorption ionization-mass spectrometry. Three polycaprolactone materials were analyzed by the developed method before and after hydrolytic degradation. The signal-to-noise values obtained by SALDI-MS were 20-100 times higher compared with the ones obtained by using traditional MALDI-MS matrices. A clean background at low mass range and higher resolution was obtained by SALDI-MS. Different nanoparticle, cationizing agent, and solvent combinations were evaluated. Halloysite nanoclay and magnesium hydroxide showed the best potential as SALDI surfaces. The SALDI-MS spectrum of the polyester hydrolysis products was verified by ESI-MS. The developed SALDI-MS method possesses several advantages over existing methods for similar analyses.
Collapse
Affiliation(s)
- Nina Aminlashgari
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
48
|
Andersson SR, Hakkarainen M, Albertsson AC. Long-term properties and migration of low molecular mass compounds from modified PLLA materials during accelerated ageing. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Padavan DT, Hamilton AM, Boughner DR, Wan W. Synthesis and In Vitro Biocompatibility Assessment of a Poly(amic acid) Derived from Ethylenediaminetetraacetic Dianhydride. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:683-700. [DOI: 10.1163/092050610x490149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Donna T. Padavan
- a Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Fordham Center for Biomedical Engineering, Department of Chemical & Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Amanda M. Hamilton
- b Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Derek R. Boughner
- c Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Wankei Wan
- d Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Fordham Center for Biomedical Engineering, Department of Chemical & Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
50
|
Zhou L, Liang D, He X, Li J, Tan H, Li J, Fu Q, Gu Q. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials 2012; 33:2734-45. [DOI: 10.1016/j.biomaterials.2011.11.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/05/2011] [Indexed: 12/29/2022]
|