1
|
Farcas A, Janosi L. GTP-Bound N-Ras Conformational States and Substates Are Modulated by Membrane and Point Mutation. Int J Mol Sci 2024; 25:1430. [PMID: 38338709 PMCID: PMC11154311 DOI: 10.3390/ijms25031430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the "inactive" state 1 and the "active" state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras' conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).
Collapse
Affiliation(s)
| | - Lorant Janosi
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Araya MK, Gorfe AA. Conformational ensemble-dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. Commun Biol 2023; 6:1111. [PMID: 37919400 PMCID: PMC10622456 DOI: 10.1038/s42003-023-05487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. Here we show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we find that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
Affiliation(s)
- Mussie K Araya
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA.
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., TX, 77030, USA.
| |
Collapse
|
3
|
Liu J, Arora N, Zhou Y. RAS GTPases and Interleaflet Coupling in the Plasma Membrane. Cold Spring Harb Perspect Biol 2023; 15:a041414. [PMID: 37463719 PMCID: PMC10513163 DOI: 10.1101/cshperspect.a041414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
RAS genes are frequently mutated in cancer. The primary signaling compartment of wild-type and constitutively active oncogenic mutant RAS proteins is the inner leaflet of the plasma membrane (PM). Thus, a better understanding of the unique environment of the PM inner leaflet is important to shed further light on RAS function. Over the past few decades, an integrated approach of superresolution imaging, molecular dynamic simulations, and biophysical assays has yielded new insights into the capacity of RAS proteins to sort lipids with specific headgroups and acyl chains, to assemble signaling nanoclusters on the inner PM. RAS proteins also sense and respond to changes in components of the outer PM leaflet, including glycophosphatidylinositol-anchored proteins, sphingophospholipids, glycosphingolipids, and galectins, as well as cholesterol that translocates between the two leaflets. Such communication between the inner and outer leaflets of the PM, called interleaflet coupling, allows RAS to potentially integrate extracellular mechanical and electrostatic information with intracellular biochemical signaling events, and reciprocally allows mutant RAS-transformed tumor cells to modify tumor microenvironments. Here, we review RAS-lipid interactions and speculate on potential mechanisms that allow communication between the opposing leaflets of the PM.
Collapse
Affiliation(s)
- Junchen Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center and University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Araya MK, Gorfe AA. Conformational ensemble dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553039. [PMID: 37609330 PMCID: PMC10441427 DOI: 10.1101/2023.08.11.553039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. We show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we found that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
|
5
|
Ikari M, Yagi H, Kasai T, Inomata K, Ito M, Higuchi K, Matsuda N, Ito Y, Kigawa T. Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy. JACS AU 2023; 3:1658-1669. [PMID: 37388687 PMCID: PMC10302746 DOI: 10.1021/jacsau.3c00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific 19F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF3Phe) at three different sites of H-Ras, i.e., Tyr32 in switch I, Tyr96 interacting with switch II, and Tyr157 on helix α5, allowed the characterization of their conformational states depending on the nucleotide-bound states and an oncogenic mutational state. Exogenously delivered 19F-labeled H-Ras protein containing a C-terminal hypervariable region was assimilated via endogenous membrane-trafficking, enabling proper association with the cell membrane compartments. Despite poor sensitivity of the in-cell NMR spectra of membrane-associated H-Ras, the Bayesian spectral deconvolution identified distinct signal components on three 19F-labeled sites, thus offering the conformational multiplicity of H-Ras on the PM. Our study may be helpful in elucidating the atomic-scale picture of membrane-associated proteins in living cells.
Collapse
Affiliation(s)
- Masaomi Ikari
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Hiromasa Yagi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Takuma Kasai
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Kohsuke Inomata
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Ito
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kae Higuchi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Natsuko Matsuda
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- SI Innovation
Center, Taiyo Nippon Sanso Corporation, Tokyo 206-0001, Japan
| | - Yutaka Ito
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takanori Kigawa
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| |
Collapse
|
6
|
Zhou Y, Hancock JF. RAS nanoclusters are cell surface transducers that convert extracellular stimuli to intracellular signalling. FEBS Lett 2023; 597:892-908. [PMID: 36595205 PMCID: PMC10919257 DOI: 10.1002/1873-3468.14569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Mutations of rat sarcoma virus (RAS) oncogenes (HRAS, KRAS and NRAS) can contribute to the development of cancers and genetic disorders (RASopathies). The spatiotemporal organization of RAS is an important property that warrants further investigation. In order to function, wild-type or oncogenic mutants of RAS must be localized to the inner leaflet of the plasma membrane (PM), which is driven by interactions between their C-terminal membrane-anchoring domains and PM lipids. The isoform-specific RAS-lipid interactions promote the formation of nanoclusters on the PM. As main sites for effector recruitment, these nanoclusters are biologically important. Since the spatial distribution of lipids is sensitive to changing environments, such as mechanical and electrical perturbations, RAS nanoclusters act as transducers to convert external stimuli to intracellular mitogenic signalling. As such, effective inhibition of RAS oncogenesis requires consideration of the complex interplay between RAS nanoclusters and various cell surface and extracellular stimuli. In this review, we discuss in detail how, by sorting specific lipids in the PM, RAS nanoclusters act as transducers to convert external stimuli into intracellular signalling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, McGovern Medical School, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and University of Texas Health Science Center, TX, USA
| |
Collapse
|
7
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
8
|
Zhou Y, Gorfe AA, Hancock JF. RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains. Front Mol Biosci 2021; 8:686338. [PMID: 34222339 PMCID: PMC8245699 DOI: 10.3389/fmolb.2021.686338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
RAS proteins are lipid-anchored small GTPases that switch between the GTP-bound active and GDP-bound inactive states. RAS isoforms, including HRAS, NRAS and splice variants KRAS4A and KRAS4B, are some of the most frequently mutated proteins in cancer. In particular, constitutively active mutants of KRAS comprise ∼80% of all RAS oncogenic mutations and are found in 98% of pancreatic, 45% of colorectal and 31% of lung tumors. Plasma membrane (PM) is the primary location of RAS signaling in biology and pathology. Thus, a better understanding of how RAS proteins localize to and distribute on the PM is critical to better comprehend RAS biology and to develop new strategies to treat RAS pathology. In this review, we discuss recent findings on how RAS proteins sort lipids as they undergo macromolecular assembly on the PM. We also discuss how RAS/lipid nanoclusters serve as signaling platforms for the efficient recruitment of effectors and signal transduction, and how perturbing the PM biophysical properties affect the spatial distribution of RAS isoforms and their functions.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
9
|
López CA, Agarwal A, Van QN, Stephen AG, Gnanakaran S. Unveiling the Dynamics of KRAS4b on Lipid Model Membranes. J Membr Biol 2021; 254:201-216. [PMID: 33825026 PMCID: PMC8052243 DOI: 10.1007/s00232-021-00176-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
10
|
Basu I, Maiti PK. Insight into the Mechanism of Carrier-Mediated Delivery of siRNA in the Cell Membrane Using MD Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:266-277. [PMID: 33369423 DOI: 10.1021/acs.langmuir.0c02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effective translocation of small interfering RNA (siRNA) across cell membranes has become one of the main challenges in gene silencing therapy. In this study, we have carried out molecular dynamics simulations to investigate a systematic procedure with different carriers that could be convenient for efficient siRNA delivery into the cell. Starting with poly-amido-amine (PAMAM) dendrimers and cholesterol molecules as carriers, we have found cholesterol as the most efficient carrier for siRNA when it is covalently attached with the siRNA terminal group. Our simulations show that binding of this complex in the lipid membrane alters the structure and dynamics of the nearby lipids to initiate the translocation process. Potential of mean force (PMF) was computed for siRNA with the carriers along the bilayer normal to understand the spontaneity of the process. Though all the PMF profiles show repulsive interaction inside the bilayer, the siRNA with cholesterol shows a comparative attractive interaction (∼27 kcal/mol) with respect to the siRNA-PAMAM complex. Altogether, our results demonstrate the binding interaction of the siRNA-carrier complex in the lipid membrane and propose a theoretical model for the efficient carrier by comparative study of the binding. The probable mechanism of the translocation process is also provided by the alteration of the lipid structure and dynamics for specifically siRNA-cholesterol binding.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
11
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Krishna A, Sengupta D. Interplay between Membrane Curvature and Cholesterol: Role of Palmitoylated Caveolin-1. Biophys J 2018; 116:69-78. [PMID: 30579563 DOI: 10.1016/j.bpj.2018.11.3127] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/14/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
Caveolin-1 (cav-1) is an important player in cell signaling and endocytosis that has been shown to colocalize with cholesterol-rich membrane domains. Experimental studies with varying cav-1 constructs have suggested that it can induce both cholesterol clustering and membrane curvature. Here, we probe the molecular origin of membrane curvature and cholesterol clustering by cav-1 by using coarse-grain molecular dynamics simulations. We have performed a series of simulations of a functionally important cav-1 construct, comprising the membrane-interacting domains and a C-terminal palmitoyl tail. Our results suggest that cav-1 is able to induce cholesterol clustering in the membrane leaflet to which it is bound as well as the opposing leaflet. A positive membrane curvature is observed upon cav-1 binding in cholesterol-containing bilayers. Interestingly, we observe an interplay between cholesterol clustering and membrane curvature such that cav-1 is able to induce higher membrane curvature in cholesterol-rich membranes. The role of the cav-1 palmitoyl tail is less clear and appears to increase the membrane contacts. Further, we address the importance of the secondary structure of cav-1 domains and show that it could play an important role in membrane curvature and cholesterol clustering. Our work is an important step toward a molecular picture of caveolae and vesicular endocytosis.
Collapse
Affiliation(s)
- Anjali Krishna
- CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Pune, Maharashtra, India.
| |
Collapse
|
13
|
Zhou Y, Prakash P, Gorfe AA, Hancock JF. Ras and the Plasma Membrane: A Complicated Relationship. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031831. [PMID: 29229665 DOI: 10.1101/cshperspect.a031831] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary site of Ras signal transduction is the plasma membrane (PM). On the PM, the ubiquitously expressed Ras isoforms, H-, N-, and K-Ras, spatially segregate to nonoverlapping nanometer-sized domains, called nanoclusters, with further lateral segregation into nonoverlapping guanosine triphosphate (GTP)-bound and guanosine diphosphate (GDP)-bound nanoclusters. Effector binding and activation is restricted to GTP nanoclusters, rendering the underlying assembly mechanism essential to Ras signaling. Ras nanoclusters have distinct lipid compositions as a result of lipid-sorting specificity encoded in each Ras carboxy-terminal membrane anchor. The role of the G-domain in regulating anchor-membrane interactions is becoming clearer. Ras G-domains undergo significant conformational orientation changes on guanine nucleotide switch, leading to differential direct contacts between the G-domain and reorganization of the membrane anchor. Ras G-domains also contain weak dimer interfaces, resulting in homodimerization, which is an obligate step of nanoclustering. Modulating the formation of Ras dimers, the lipid composition of the PM or lateral dynamics of key PM phospholipids represent novel mechanisms whereby the extent of Ras nanoclustering can be regulated to tune the gain in Ras signaling circuits.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
14
|
Cohen BE. Membrane Thickness as a Key Factor Contributing to the Activation of Osmosensors and Essential Ras Signaling Pathways. Front Cell Dev Biol 2018; 6:76. [PMID: 30087894 PMCID: PMC6066546 DOI: 10.3389/fcell.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
The cell membrane provides a functional link between the external environment and the replicating DNA genome by using ligand-gated receptors and chemical signals to activate signaling transduction pathways. However, increasing evidence has also indicated that the phospholipid bilayer itself by altering various physical parameters serves as a sensor that regulate membrane proteins in a specific manner. Changes in thickness and/or curvature of the membrane have been shown to be induced by mechanical forces and transmitted through the transmembrane helices of several types of mechanosensitive (MS) ion channels underlying functions such as osmoregulation in bacteria and sensory processing in mammalian cells. This review focus on recent protein functional and structural data indicating that the activation of bacterial and yeast osmosensors is consistent with thickness-induced tilting changes of the transmembrane domains of these proteins. Membrane thinning in combination with curvature changes may also lead to the lateral transfer of the small lipid-anchored GTPases Ras1 and H-Ras out of lipid rafts for clustering and signaling. The modulation of signaling pathways by amphiphilic peptides and the membrane-active antibiotics colistin and Amphotericin B is also discussed.
Collapse
Affiliation(s)
- B Eleazar Cohen
- Division of External Activities, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
15
|
Chung JK, Lee YK, Denson JP, Gillette WK, Alvarez S, Stephen AG, Groves JT. K-Ras4B Remains Monomeric on Membranes over a Wide Range of Surface Densities and Lipid Compositions. Biophys J 2018; 114:137-145. [PMID: 29320680 PMCID: PMC5984903 DOI: 10.1016/j.bpj.2017.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - John-Paul Denson
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California.
| |
Collapse
|
16
|
Ray A, Jatana N, Thukral L. Lipidated proteins: Spotlight on protein-membrane binding interfaces. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:74-84. [DOI: 10.1016/j.pbiomolbio.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/21/2023]
|
17
|
Ras Proteolipid Nanoassemblies on the Plasma Membrane Sort Lipids With High Selectivity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.abl.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output. Cell 2016; 168:239-251.e16. [PMID: 28041850 DOI: 10.1016/j.cell.2016.11.059] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/12/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022]
Abstract
K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.
Collapse
|
19
|
AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2. Mol Cell Biol 2016; 36:3086-3099. [PMID: 27697864 DOI: 10.1128/mcb.00365-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function.
Collapse
|
20
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Thukral L, Sengupta D, Ramkumar A, Murthy D, Agrawal N, Gokhale RS. The Molecular Mechanism Underlying Recruitment and Insertion of Lipid-Anchored LC3 Protein into Membranes. Biophys J 2016; 109:2067-78. [PMID: 26588566 DOI: 10.1016/j.bpj.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Lipid modification of cytoplasmic proteins initiates membrane engagement that triggers diverse cellular processes. Despite the abundance of lipidated proteins in the human proteome, the key determinants underlying membrane recognition and insertion are poorly understood. Here, we define the course of spontaneous membrane insertion of LC3 protein modified with phosphatidylethanolamine using multiple coarse-grain simulations. The partitioning of the lipid anchor chains proceeds through a concerted process, with its two acyl chains inserting one after the other. Concurrently, a conformational rearrangement involving the α-helix III of LC3, especially in the three basic residues Lys65, Arg68, and Arg69, ensures stable insertion of the phosphatidylethanolamine anchor into membranes. Mutational studies validate the crucial role of these residues, and further live-cell imaging analysis shows a substantial reduction in the formation of autophagic vesicles for the mutant proteins. Our study captures the process of water-favored LC3 protein recruitment to the membrane and thus opens, to our knowledge, new avenues to explore the cellular dynamics underlying vesicular trafficking.
Collapse
Affiliation(s)
- Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| | | | - Amrita Ramkumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Divya Murthy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Nikhil Agrawal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| |
Collapse
|
22
|
The Role of Signaling via Aqueous Pore Formation in Resistance Responses to Amphotericin B. Antimicrob Agents Chemother 2016; 60:5122-9. [PMID: 27381391 DOI: 10.1128/aac.00878-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a normal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibiotic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells.
Collapse
|
23
|
Jang H, Banerjee A, Chavan TS, Lu S, Zhang J, Gaponenko V, Nussinov R. The higher level of complexity of K-Ras4B activation at the membrane. FASEB J 2016; 30:1643-55. [PMID: 26718888 PMCID: PMC4799498 DOI: 10.1096/fj.15-279091] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
Abstract
Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5'-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.-Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane.
Collapse
Affiliation(s)
- Hyunbum Jang
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avik Banerjee
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tanmay S Chavan
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaoyong Lu
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jian Zhang
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Gaponenko
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Nussinov
- *Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland, USA; Department of Chemistry, Department of Medicinal Chemistry, and Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis, Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China; and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
25
|
Lu S, Banerjee A, Jang H, Zhang J, Gaponenko V, Nussinov R. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site. J Biol Chem 2015; 290:28887-900. [PMID: 26453300 PMCID: PMC4661403 DOI: 10.1074/jbc.m115.664755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.
Collapse
Affiliation(s)
- Shaoyong Lu
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China, Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | | | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jian Zhang
- From the Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China,
| | - Vadim Gaponenko
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, and
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., NCI-Frederick, Frederick, Maryland 21702, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
26
|
Basu I, Mukhopadhyay C. Insights into binding of cholera toxin to GM1 containing membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15244-15252. [PMID: 25425333 DOI: 10.1021/la5036618] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Interactions of cholera toxin (CT) with membrane are associated with the massive secretory diarrhea seen in Asiatic cholera. Ganglioside GM1 has been shown to be responsible for the binding of the B subunit of cholera toxin (CT-B), which then helps CT to pass through the membrane, but the exact mechanism remains to be explored. In this work, we have carried out atomistic scale molecular dynamics simulation to investigate the structural changes of CT upon membrane binding and alteration in membrane structure and dynamics. Starting from the initial structure where the five units of B subunit bind with five GM1, only three of five units remain bound and the whole CT is tilted such that the three binding units are deeper in the membrane. The lipids that are in contact with those units of the CT-B behave differently from the rest of the lipids. Altogether, our results demonstrate the atomistic interaction of CT with GM1 containing lipid membrane and provide a probable mechanism of the early stage alteration of lipid structure and dynamics, which can make a passage for penetration of CT on membrane surface.
Collapse
Affiliation(s)
- Ipsita Basu
- Department of Chemistry, University of Calcutta , 92, A. P. C. Road, Kolkata - 700009, India
| | | |
Collapse
|
27
|
Zhou Y, Hancock JF. Ras nanoclusters: Versatile lipid-based signaling platforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:841-9. [PMID: 25234412 DOI: 10.1016/j.bbamcr.2014.09.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022]
Abstract
Ras proteins assemble into transient nanoclusters on the plasma membrane. Nanoclusters are the sites of Ras effector recruitment and activation and are therefore essential for signal transmission. The dynamics of nanocluster formation and disassembly result in interesting emergent properties including high-fidelity signal transmission. More recently the lipid structure of Ras nanoclusters has been reported and shown to contribute to isoform-specific Ras signaling. In addition specific lipids play critical roles in mediating the formation, stability and dynamics of Ras nanoclusters. In consequence the spatiotemporal organization of these lipids has emerged as important and novel regulators of Ras function. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030, USA.
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Prakash P, Gorfe AA. Overview of simulation studies on the enzymatic activity and conformational dynamics of the GTPase Ras. MOLECULAR SIMULATION 2014; 40:839-847. [PMID: 26491216 DOI: 10.1080/08927022.2014.895000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last 40 years, we have learnt a great deal about the Ras onco-proteins. These intracellular molecular switches are essential for the function of a variety of physiological processes, including signal transduction cascades responsible for cell growth and proliferation. Molecular simulations and free energy calculations have played an essential role in elucidating the conformational dynamics and energetics underlying the GTP hydrolysis reaction catalysed by Ras. Here we present an overview of the main lessons from molecular simulations on the GTPase reaction and conformational dynamics of this important anti-cancer drug target. In the first part, we summarise insights from quantum mechanical and combined quantum mechanical/molecular mechanical simulations as well as other free energy methods and highlight consensus viewpoints as well as remaining controversies. The second part provides a very brief overview of new insights emerging from large-scale molecular dynamics simulations. We conclude with a perspective regarding future studies of Ras where computational approaches will likely play an active role.
Collapse
Affiliation(s)
- Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
29
|
Li Z, Gorfe AA. Deformation of a Two-domain Lipid Bilayer due to Asymmetric Insertion of Lipid-modified Ras Peptides. SOFT MATTER 2013; 9:10.1039/C3SM51388B. [PMID: 24358048 PMCID: PMC3864742 DOI: 10.1039/c3sm51388b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ras proteins are attached to the inner leaflet of the plasma membrane via a lipid-modified anchor. Membrane-bound Ras proteins laterally segregate into nanoscale signaling platforms called nanoclusters. It has been shown that the membrane domain preference of Ras nanoclusters varies with the nature of lipidation but their effect on the membrane has not been well understood. To investigate the effect of Ras insertion on membrane structure, we carried out numerous coarse-grained molecular dynamics (CGMD) simulations on a two-domain DPPC/DLiPC/cholesterol lipid bilayer in which different number and type of H-ras peptides were attached on one side. We have shown previously that this lipid mixture forms co-existing liquid-ordered/liquid-disordered (L o /L d ) domains and that different H-ras peptides form clusters that variously accumulate at the L o /L d regions or the boundary between them. Here we show that asymmetric insertion of each of these peptides induces a vertical relative displacement of the domains and deforms the bilayer, with the domain boundary serving as the center of deformation. The extent of the deformation, however, varies with the type and number of lipid modification. This is because the number and type of the Ras lipid tails determines the degree to which the stress caused by asymmetric peptide insertion is relieved by inter-leaflet cholesterol transfer and lipid tilt. In addition, we have characterized the mechanism of bilayer deformation based on the collective effect of the Ras peptides on inter-leaflet surface area, pressure profile and line tension differences. This allowed us to elucidate how Ras lipid modification affects membrane geometry and how a two-domain bilayer adjusts its shape through boundary deformation. The result contributes to a better understanding of Ras signaling platforms and highlights some of the mechanisms by which a multi-domain membrane responds to external perturbation.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030
| |
Collapse
|
30
|
Abstract
Oncogenic mutant K-Ras is highly prevalent in multiple human tumors. Despite significant efforts to directly target Ras activity, no K-Ras-specific inhibitors have been developed and taken into the clinic. Since Ras proteins must be anchored to the inner leaflet of the plasma membrane (PM) for full biological activity, we devised a high-content screen to identify molecules with ability to displace K-Ras from the PM. Here we summarize the biochemistry and biology of three classes of compound identified by this screening method that inhibit K-Ras PM targeting: staurosporine and analogs, fendiline, and metformin. All three classes of compound significantly abrogate cell proliferation and Ras signaling in K-Ras-transformed cancer cells. Taken together, these studies provide an important proof of concept that blocking PM localization of K-Ras is a tractable therapeutic target.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
31
|
Prakash P, Gorfe AA. Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta Gen Subj 2013; 1830:5211-8. [PMID: 23906604 DOI: 10.1016/j.bbagen.2013.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. SCOPE OF REVIEW Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments. MAJOR CONCLUSIONS The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research. GENERAL SIGNIFICANCE Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Li H, Gorfe AA. Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLoS One 2013; 8:e71018. [PMID: 23923044 PMCID: PMC3724741 DOI: 10.1371/journal.pone.0071018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022] Open
Abstract
Lipid-anchored Ras oncoproteins assemble into transient, nano-sized substructures on the plasma membrane. These substructures, called nanoclusters, were proposed to be crucial for high-fidelity signal transmission in cells. However, the molecular basis of Ras nanoclustering is poorly understood. In this work, we used coarse-grained (CG) molecular dynamics simulations to investigate the molecular mechanism by which full-length H-ras proteins form nanoclusters in a model membrane. We chose two different conformations of H-ras that were proposed to represent the active and inactive state of the protein, and a domain-forming model bilayer made up of di16:0-PC (DPPC), di18:2-PC (DLiPC) and cholesterol. We found that, irrespective of the initial conformation, Ras molecules assembled into a single large aggregate. However, the two binding modes, which are characterized by the different orientation of the G-domain with respect to the membrane, differ in dynamics and organization during and after aggregation. Some of these differences involve regions of Ras that are important for effector/modulator binding, which may partly explain observed differences in the ability of active and inactive H-ras nanoclusters to recruit effectors. The simulations also revealed some limitations in the CG force field to study protein assembly in solution, which we discuss in the context of proposed potential avenues of improvement.
Collapse
Affiliation(s)
- Hualin Li
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
33
|
Mazhab-Jafari MT, Marshall CB, Stathopulos PB, Kobashigawa Y, Stambolic V, Kay LE, Inagaki F, Ikura M. Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc. J Am Chem Soc 2013; 135:3367-70. [PMID: 23409921 DOI: 10.1021/ja312508w] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Like most Ras superfamily proteins, the GTPase domain of Ras homologue enriched in brain (Rheb) is tethered to cellular membranes through a prenylated cysteine in a flexible C-terminal region; however, little is known about how Rheb or other GTPases interact with the membrane or how this environment may affect their GTPase functions. We used NMR methods to characterize Rheb tethered to nanodiscs, monodisperse protein-encapsulated lipid bilayers with a diameter of 10 nm. Membrane conjugation markedly reduced the rate of intrinsic nucleotide exchange, while GTP hydrolysis was unchanged. NMR measurements revealed that the GTPase domain interacts transiently with the surface of the bilayer in two distinct preferred orientations, which are determined by the bound nucleotide. We propose models of membrane-dependent signal regulation by Rheb that shed light on previously unexplained in vivo properties of this GTPase. The study presented provides a general approach for direct experimental investigation of membrane-dependent properties of other Ras-superfamily GTPases.
Collapse
Affiliation(s)
- Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cho KJ, Park JH, Piggott AM, Salim AA, Gorfe AA, Parton RG, Capon RJ, Lacey E, Hancock JF. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem 2012; 287:43573-84. [PMID: 23124205 DOI: 10.1074/jbc.m112.424457] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.
Collapse
Affiliation(s)
- Kwang-jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School-Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Z, Janosi L, Gorfe AA. Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition. J Am Chem Soc 2012; 134:17278-85. [PMID: 22994893 PMCID: PMC3479155 DOI: 10.1021/ja307716z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments have shown that homologous Ras proteins containing different lipid modification, which is required for membrane binding, form nonoverlapping nanoclusters on the plasma membrane. However, the physical basis for clustering and lateral organization remains poorly understood. We have begun to tackle this issue using coarse-grained molecular dynamics simulations of the H-ras lipid anchor (tH), a triply lipid-modified heptapeptide embedded in a domain-forming mixed lipid bilayer [Janosi L. et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8097]. Here we use the same simulation approach to investigate the effect of peptide concentration and bilayer composition on the clustering and lateral distribution of tH. We found no major difference in the clustering behavior of tH above a certain concentration. However, the simulations predict the existence of a critical concentration below which tH does not form nanoclusters. Moreover, our data demonstrate that cholesterol enhances the stability of tH nanoclusters but is not required for their formation. Finally, analyses of peptide distributions and partition free energies allowed us to quantitatively describe how clustering facilitates the accumulation of tH at the interface between ordered and disordered domains of the simulated bilayer systems. These thermodynamic insights represent some of the key elements for a comprehensive understanding of the molecular basis for the formation and stability of Ras signaling platforms.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030, USA
| | | | | |
Collapse
|
36
|
Abstract
The dynamic assembly and lateral organization of Ras proteins on the plasma membrane has been the focus of much research in recent years. It has been shown that different isoforms of Ras proteins share a nearly identical catalytic domain, yet form distinct and non-overlapping nanoclusters. Though this difference in the clustering behavior of Ras proteins has been attributed largely to their different C terminal lipid modification, its precise physical basis was not determined. Recently, we used computer simulations to study the mechanism by which the triply lipid-modified membrane-anchor of H-ras, and its partially de-lipidated variants, form nanoclusters in a model lipid bilayer. We found that the specific nature of the lipid modification is less important for cluster formation, but plays a key role for the domain-specific distribution of the nanoclusters. Here we provide additional details on the interplay between bilayer structure perturbation and peptide-peptide association that provide the physical driving force for clustering. We present some thoughts about how enthalpic (i.e., interaction) and entropic effects might regulate nanocluster size and stability.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | |
Collapse
|
37
|
The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:801-13. [PMID: 22851002 DOI: 10.1007/s00249-012-0841-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/26/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
Abstract
Ras proteins are proto-oncogenes that function as molecular switches linking extracellular stimuli with an overlapping but distinctive range of biological outcomes. Although modulatable interactions between the membrane and the Ras C-terminal hypervariable region (HVR) harbouring the membrane anchor motifs enable signalling specificity to be determined by their location, it is becoming clear that the spatial orientation of different Ras proteins is also crucial for their functions. To reveal the orientation of the G-domain at membranes, we conducted an extensive study on different Ras isoforms anchored to model raft membranes. The results show that the G-domain mediates the Ras-membrane interaction by inducing different sets of preferred orientations in the active and inactive states with largely parallel orientation relative to the membrane of most of the helices. The distinct locations of the different isoforms, exposing them to different effectors and regulators, coupled with different G-domain-membrane orientation, suggests synergy between this type of recognition motif and the specificity conferred by the HVR, thereby validating the concept of isoform specificity in Ras.
Collapse
|
38
|
Zhou Y, Cho KJ, Plowman SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem 2012; 287:16586-95. [PMID: 22433858 DOI: 10.1074/jbc.m112.348490] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ras proteins on the inner leaflet of the plasma membrane signal from transient nanoscale proteolipid assemblies called nanoclusters. Interactions between the Ras lipid anchors and plasma membrane phospholipids, cholesterol, and actin cytoskeleton contribute to the formation, stability, and dynamics of Ras nanoclusters. Many small biological molecules are amphiphilic and capable of intercalating into membranes and altering lipid immiscibility. In this study we systematically examined whether amphiphiles such as indomethacin influence Ras protein nanoclustering in intact plasma membrane. We found that indomethacin, a nonsteroidal anti-inflammatory drug, induced profound and complex effects on Ras spatial organization, all likely related to liquid-ordered domain stabilization. Indomethacin enhanced the clustering of H-Ras.GDP and N-Ras.GTP in cholesterol-dependent nanoclusters. Indomethacin also abrogated efficient GTP-dependent lateral segregation of H- and N-Ras between cholesterol-dependent and cholesterol-independent clusters, resulting in mixed heterotypic clusters of Ras proteins that normally are separated spatially. These heterotypic Ras nanoclusters showed impaired Raf recruitment and kinase activation resulting in significantly compromised MAPK signaling. All of the amphiphilic anti-inflammatory agents we tested had similar effects on Ras nanoclustering and signaling. The potency of these effects correlated with the membrane partition coefficients of the individual agents and was independent of COX inhibition. This study shows that biological amphiphiles have wide-ranging effects on plasma membrane heterogeneity and protein nanoclustering, revealing a novel mechanism of drug action that has important consequences for cell signaling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, McCammon JA, Gorfe AA. Novel allosteric sites on Ras for lead generation. PLoS One 2011; 6:e25711. [PMID: 22046245 PMCID: PMC3201956 DOI: 10.1371/journal.pone.0025711] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/08/2011] [Indexed: 12/31/2022] Open
Abstract
Aberrant Ras activity is a hallmark of diverse cancers and developmental diseases. Unfortunately, conventional efforts to develop effective small molecule Ras inhibitors have met with limited success. We have developed a novel multi-level computational approach to discover potential inhibitors of previously uncharacterized allosteric sites. Our approach couples bioinformatics analysis, advanced molecular simulations, ensemble docking and initial experimental testing of potential inhibitors. Molecular dynamics simulation highlighted conserved allosteric coupling of the nucleotide-binding switch region with distal regions, including loop 7 and helix 5. Bioinformatics methods identified novel transient small molecule binding pockets close to these regions and in the vicinity of the conformationally responsive switch region. Candidate binders for these pockets were selected through ensemble docking of ZINC and NCI compound libraries. Finally, cell-based assays confirmed our hypothesis that the chosen binders can inhibit the downstream signaling activity of Ras. We thus propose that the predicted allosteric sites are viable targets for the development and optimization of new drugs.
Collapse
Affiliation(s)
- Barry J. Grant
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (BG); (SL); (AG)
| | - Suryani Lukman
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (BG); (SL); (AG)
| | - Harrison J. Hocker
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jaqueline Sayyah
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (BG); (SL); (AG)
| |
Collapse
|
40
|
Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 2011; 23:145-53. [PMID: 21924373 DOI: 10.1016/j.semcdb.2011.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 12/30/2022]
Abstract
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes.
Collapse
|
41
|
Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells. Neoplasia 2011; 13:98-107. [PMID: 21403836 DOI: 10.1593/neo.101088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR), consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.
Collapse
|
42
|
Manna M, Mukhopadhyay C. Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3713-3722. [PMID: 21355573 DOI: 10.1021/la104046z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have performed molecular dynamics simulations of peptide hormone bradykinin (BK) and its fragment des-Arg9-BK in the presence of an anionic lipid bilayer, with an aim toward delineating the mechanism of action related to their bioactivity. Starting from the initial aqueous environment, both of the peptides are quickly adsorbed and stabilized on the cell surface. Whereas BK exhibits a stronger interaction with the membrane and prefers to stay on the interface, des-Arg9-BK, with the loss of C-terminal Arg, penetrates further. The heterogeneous lipid-water interface induces β-turn-like structure in the otherwise inherently flexible peptides. In the membrane-bound state, we observed C-terminal β-turn formation in BK, whereas for des-Arg9-BK, with the deletion of Arg9, turn formation occurred in the middle of the peptide. The basic Arg residues anchor the peptide to the bilayer by strong electrostatic interactions with charged lipid headgroups. Simulations with different starting orientations of the peptides with respect to the bilayer surface lead to the same observations, namely, the relative positioning of the peptides on the membrane surface, deeper penetration of the des-Arg9-BK, and the formation of turn structures. The lipid headgroups adjacent to the bound peptides become substantially tilted, causing bilayer thinning near the peptide contact region and increase the degree of disorder in nearby lipids. Again, because of hydrogen bonding with the peptide, the neighboring lipid's polar heads exhibit considerably reduced flexibility. Corroborating findings from earlier experiments, our results provide important information about how the lipid environment promotes peptide orientation/conformation and how the peptide adapts to the environment.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India
| | | |
Collapse
|
43
|
Janosi L, Gorfe AA. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 2011; 99:3666-74. [PMID: 21112291 DOI: 10.1016/j.bpj.2010.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022] Open
Abstract
The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
44
|
Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One 2011; 6:e15866. [PMID: 21253588 PMCID: PMC3017061 DOI: 10.1371/journal.pone.0015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/25/2010] [Indexed: 12/30/2022] Open
Abstract
Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and Δ12-PGJ2 selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ2. Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Díez-Dacal
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Bray
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario García de Lacoba
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Carlota A. García-Domínguez
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Grossauer J, Kosol S, Schrank E, Zangger K. The peptide hormone ghrelin binds to membrane-mimetics via its octanoyl chain and an adjacent phenylalanine. Bioorg Med Chem 2010; 18:5483-8. [PMID: 20621491 PMCID: PMC3038380 DOI: 10.1016/j.bmc.2010.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 02/01/2023]
Abstract
The peptide hormone ghrelin, which is the natural ligand of the membrane-bound growth hormone secretagogue receptor (GHS-R), regulates overall body and cell growth, energy homeostasis, carbohydrate, protein and lipid metabolism and water electrolyte balance. It contains an O-acyl linked octanoyl group on Ser3 and is the only peptide known to contain such a modification. Using solution state NMR spectroscopy and ultrafiltration we found that human ghrelin binds to membrane-mimetic environments via its octanoyl group as well as the aromatic moiety of Phe4. Relaxation enhancements in a paramagnetic environment reveal that both the octanoyl group on Ser3 and the aromatic group on Phe4 are inserted deep into the hydrophobic core of phosphocholine assemblies while the remaining peptide is freely mobile in solution. In contrast, no binding was observed for des-octanoyl ghrelin. Thus, the octanoyl chain, together with the Phe4 aromatic group of ghrelin, functions as a membrane anchor. Our results are in parallel with the previous finding that a bulky hydrophobic group on Ser3 and Phe4 of ghrelin are necessary for its function and thus indicate that membrane-binding is essential for ghrelin function.
Collapse
Affiliation(s)
- Jörg Grossauer
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Graz, Austria.
| | | | | | | |
Collapse
|
46
|
Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P, Pérez-Sala D. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11:1221-33. [PMID: 20573066 DOI: 10.1111/j.1600-0854.2010.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.
Collapse
Affiliation(s)
- Ruth A Valero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Pérez-Sala D, Boya P, Ramos I, Herrera M, Stamatakis K. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS One 2009; 4:e8117. [PMID: 19956591 PMCID: PMC2780327 DOI: 10.1371/journal.pone.0008117] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. METHODOLOGY/PRINCIPAL FINDINGS By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. CONCLUSIONS/SIGNIFICANCE Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | |
Collapse
|
48
|
Manna M, Mukhopadhyay C. Cause and effect of melittin-induced pore formation: a computational approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12235-12242. [PMID: 19754202 DOI: 10.1021/la902660q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Melittin embedded in a palmitoyl oleyl phosphatidylcholine bilayer at a high peptide/lipid ratio (1:30) was simulated in the presence of explicit water and ions. The simulation results indicate the incipience of an ion-permeable water pore through collective membrane perturbation by bound peptides. The positively charged residues of melittin not only act as "anchors" but also disrupt the membrane, leading to cell lysis. A detailed analysis of the lipid tail order parameter profile depicts localized membrane perturbation. The lipids in the vicinity of the aqueous cavity adopt a tilted conformation, which allows local bilayer thinning. The prepore thus formed can be considered as the melittin-induced structural defects in the bilayer membrane. Because of the strong cationic nature, the melittin-induced prepore exhibits selectivity toward anions over cations. As Cl(-) ions entered into the prepore, they are electrostatically entrapped by positively charged residues located at its wall. The confined motion of the Cl(-) ions in the membrane interior is obvious from calculated diffusion coefficients. Moreover, reorientation of the local lipids occurs in such a way that few lipid heads along with peptide helices can line the surface of the penetrating aqueous phase. The flipping of lipids argued in favor of melittin-induced toroidal pore over a barrel-stave mechanism. Thus, our result provides atomistic level details of the mechanism of membrane disruption by antimicrobial peptide melittin.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India
| | | |
Collapse
|
49
|
Cini E, Lampariello LR, Rodriquez M, Taddei M. Synthesis and application in SPPS of a stable amino acid isostere of palmitoyl cysteine. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Gorfe AA, McCammon JA. Similar membrane affinity of mono- and Di-S-acylated ras membrane anchors: a new twist in the role of protein lipidation. J Am Chem Soc 2008; 130:12624-5. [PMID: 18761454 PMCID: PMC2646725 DOI: 10.1021/ja805110q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Indexed: 11/28/2022]
Abstract
The functionally required membrane attachment of Ras is achieved through an invariant isoprenylation of a C-terminal Cys, supplemented by further lipid modification of adjacent Cys residues by one (N-ras) or two (H-ras) palmitoyls. However, whether the triply lipidated membrane anchor of H-ras has a higher membrane affinity than its doubly lipidated counterpart, or whether the affinity contribution of the two palmitates and the farnesyl is additive, was not known. To address this issue, we carried out potential of mean force (PMF or free energy profile) calculations on a hexadecylated but nonpalmitoylated anchor (Cys186-HD), hexadecylated and monopalmitoylated anchors (Cys181-monopalmitate and Cys184-monopalmitate), and a nonlipid-modified anchor. We found that the overall insertion free energy follows the trend Cys181/Cys184-bipalmitate (wild type) approximately Cys181-monopalmitate > Cys184-monopalmitate >> nonpalmitoylated anchor. Consistent with suggestions from recent cell biological experiments, the computed PMFs, coupled with structural analysis, demonstrate that membrane affinity of the Ras anchor depends on both the hydrophobicity of the palmitate and the prenyl groups and the spacing between them. The data further suggest that while Cys181-palmitate and Cys186-farnesyl together provide sufficient hydrophobic force for tight membrane binding, the palmitoyl at Cys184 is likely designed to serve another, presumably functional, role.
Collapse
Affiliation(s)
- Alemayehu A Gorfe
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093-0365, USA.
| | | |
Collapse
|