1
|
Zheng N, Yao Z, Tao S, Almadhor A, Alqahtani MS, Ghoniem RM, Zhao H, Li S. Application of nanotechnology in breast cancer screening under obstetrics and gynecology through the use of CNN and ANFIS. ENVIRONMENTAL RESEARCH 2023; 234:116414. [PMID: 37390953 DOI: 10.1016/j.envres.2023.116414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Breast cancer is the leading reason of death among women aged 35 to 54. Breast cancer diagnosis still presents significant challenges, and preventing the disease's most severe symptoms requires early detection. The role of nanotechnology in the tumor-treatment has recently attracted a lot of interest. In cancer therapies, nanotechnology plays a major role in the medication distribution process. Nanoparticles have the ability to target tumors. Nanoparticles are favorable and maybe preferable for usage in tumor detection and imaging due to their incredibly small size. Quantum dots, semiconductor crystals with increased labeling and imaging capabilities for cancer cells, are one of the particles that have received the most research attention. The design of the research is cross-sectional and descriptive. From April through September of 2020, data were gathered at the State Hospital. All pregnant women who came to the hospital throughout the first and second trimesters of the research's data collection were included in the study population. 100 pregnant women between the ages of 20 and 40 who had not yet had a mammogram comprised the research sample. 1100 digitized mammography images are included in the dataset, which was obtained from a hospital. Convolutional neural networks (CNN) were used to scan all images, and breast masses and mass comparisons were made using the malignant-benign categorization. The adaptive neuro-fuzzy inference system (ANFIS) then examined all of the data obtained by CNN in order to identify breast cancer early using inputs based on the nine different inputs. The precision of the mechanism used in this technique to determine the ideal radius value is significantly impacted by the radius value. Nine variables that define breast cancer indicators were utilized as inputs to the ANFIS classifier, which was then used to identify breast cancer. The parameters were given the necessary fuzzy functions, and the combined dataset was applied to train the method. Testing was initially performed by 30% of dataset that was later done with the real data obtained from the hospital. The accuracy of the results for 30% data was 84% (specificity =72.7%, sensitivity =86.7%) and the results for the real data was 89.8% (sensitivity =82.3%, specificity =75.9%), respectively.
Collapse
Affiliation(s)
- Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Zhiang Yao
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China
| | - Shanhui Tao
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China
| | - Ahmad Almadhor
- Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Rania M Ghoniem
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Huajun Zhao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Shijun Li
- Institute of Life Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
3
|
Jouad K, Eliseeva SV, Collet G, Colas C, Da Silva D, Hiebel MA, El Brahmi N, Akssira M, Petoud S, El Kazzouli S, Suzenet F. Near-Infrared Emitting Poly(amidoamine) Dendrimers with an Anthraquinone Core toward Versatile Non-Invasive Biological Imaging. Biomacromolecules 2022; 23:1392-1402. [PMID: 35235298 DOI: 10.1021/acs.biomac.1c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Today, there is a very strong demand for versatile near-infrared (NIR) imaging agents suitable for non-invasive optical imaging in living organisms (in vivo imaging). Here, we created a family of NIR-emitting macromolecules that take advantage of the unique structure of dendrimers. In contrast to existing fluorescent dendrimers bearing fluorophores at their periphery or in their cavities, a NIR fluorescent structure is incorporated into the core of the dendrimer. Using the poly(amidoamine) dendrimer structure, we want to promote the biocompatibility of the NIR-emissive system and to have functional groups available at the periphery to obtain specific biological functionalities such as the ability to deliver drugs or for targeting a biological location. We report here the divergent synthesis and characterization by NMR and mass spectrometries of poly(amidoamine) dendrimers derived from the fluorescent NIR-emitting anthraquinone core (AQ-PAMAF). AQ-PAMAFs ranging from the generation -0.5 up to 3 were synthesized with a good level of control resulting in homogeneous and complete dendrimers. Absorption, excitation, and emission spectra, as well as quantum yields, of AQ-PAMAFs have been determined in aqueous solutions and compared with the corresponding properties of the AQ-core. It has been demonstrated that the absorption bands of AQ-PAMAFs range from UV to 750 nm while emission is observed in the range of 650-950 nm. Fluorescence macroscopy experiments confirmed that the NIR signal of AQ-PAMAFs can be detected with a satisfactory signal-to-noise ratio in aqueous solution, in blood, and through 1 mm thick tissue-mimicking phantom. The results show that our approach is highly promising for the design of an unprecedented generation of versatile NIR-emitting agents.
Collapse
Affiliation(s)
- Kamal Jouad
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Guillaume Collet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France.,Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - David Da Silva
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Mohamed Akssira
- Faculty of Sciences and Technologies of Mohammedia, URAC 22 FSTM, University Hassan II, BP 146, 28800 Mohammedia, Morocco
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| |
Collapse
|
4
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
5
|
Zhang W, Zhao L, Laursen BW, Chen J. Revealing the sensing mechanism of a fluorescent pH probe based on a bichromophore approach. Phys Chem Chem Phys 2022; 24:26731-26737. [DOI: 10.1039/d2cp04339d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The pH sensing mechanism of TMARh is investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations, showing that this new type of sensor can be better understood using the bichromophore model.
Collapse
Affiliation(s)
- Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Division of Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden
| | - Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bo W. Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Junsheng Chen
- Division of Chemical Physics and NanoLund, Lund University, Box 124, Lund 22100, Sweden
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
7
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Schleyer KA, Datko BD, Burnside B, Cui C, Ma X, Grey JK, Cui L. Responsive Fluorophore Aggregation Provides Spectral Contrast for Fluorescence Lifetime Imaging. Chembiochem 2020; 21:2196-2204. [PMID: 32180309 PMCID: PMC8247454 DOI: 10.1002/cbic.202000056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Indexed: 11/06/2022]
Abstract
Fluorophores experience altered emission lifetimes when incorporated into and liberated from macromolecules or molecular aggregates; this trend suggests the potential for a fluorescent, responsive probe capable of undergoing self-assembly and aggregation and consequently altering the lifetime of its fluorescent moiety to provide contrast between the active and inactive probes. We developed a cyanobenzothioazole-fluorescein conjugate (1), and spectroscopically examined the lifetime changes caused by its reduction-induced aggregation in vitro. A decrease in lifetime was observed for compound 1 in a buffered system activated by the biological reducing agent glutathione, thus suggesting a possible approach for designing responsive self-aggregating lifetime imaging probes.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - Benjamin D Datko
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Brandon Burnside
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Chao Cui
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - Xiaowei Ma
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - John K Grey
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Lina Cui
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-43. [PMID: 32406215 PMCID: PMC7219965 DOI: 10.1117/1.jbo.25.7.071203] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Tiffany M. Heaster
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Joe T. Sharick
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani A. Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
10
|
Application of the Tumor Site Recognizable and Dual-Responsive Nanoparticles for Combinational Treatment of the Drug-Resistant Colorectal Cancer. Pharm Res 2020; 37:72. [PMID: 32215748 DOI: 10.1007/s11095-020-02791-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Combination of PCI and chemotherapy represents a promising strategy for combating drug resistance of cancer. However, poor solubility of photosensitizers and unselectively released drugs at unwanted sites significantly impaired the treatment efficacy. Therefore, in the present study, we aimed to develop a nano-platform which could efficiently co-entrapping photosensitizers and chemotherapeutics for active targeting therapy of drug resistant cancers. METHODS Two pro-drugs were respectively developed by covalently linking the Ce6 with each other via the GSH-sensitive linkage and the PTX with mPEG-PLA-COOH through the ROS sensitive-linker. The dual-responsive nanoparticles (PNP-Ce6) was developed by emulsion/solvent evaporation method and further modified with tLyp-1 peptides. Physicochemical properties of nanoparticles were determined by the TEM and DLC. Cellular uptake assay was investigated with the Ce6 acting as the fluorescent probe and cell growth was studied by the MTT experiment. In vivo tumor targeting and anti-tumor assay was investigated on the colorectal cancer-bearing mice. RESULTS The developed tPNP-Ce6 were stable enough under the normal physiological conditions. However, free Ce6 and PTX were completely released when exposed the tPNP-Ce6 to the redox environment. Excellent tumor-targeting drug delivery was achieved by the tPNP-Ce6, which in turn resulted in satisfactory anit-tumor effect. Of great importance, super inhibition effect on tumor progress was achieved by the combination therapy when compared with the group only received with chemotherapy.. CONCLUSION The results obtained in the present study indicated that the developed tPNP-Ce6 may have great potential in enhancing the therapeutic efficacy of drug-resistant colorectal cancer. Graphical Abstract Left: Targeting delivery of drug to tumor site by the tumor recognizable and dual-responsive nanoparticles and penetrating into tumor inner via the mediation of irradiation. Right: Nanoparticle distribution within tumor tissues with green represents the blood vessels stained with CD31, blue signal represents the cell nuclei stained with DAPI and red shows fluorescence of Ce6 as the indicator of the nanoparticles.
Collapse
|
11
|
Urbánek T, Jäger E, Jäger A, Hrubý M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers (Basel) 2019; 11:E1061. [PMID: 31248100 PMCID: PMC6630685 DOI: 10.3390/polym11061061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
In the last half-century, the development of biodegradable polyesters for biomedical applications has advanced significantly. Biodegradable polyester materials containing external stimuli-sensitive linkages are favored in the development of therapeutic devices for pharmacological applications such as delivery vehicles for controlled/sustained drug release. These selectively biodegradable polyesters degrade after particular external stimulus (e.g., pH or redox potential change or the presence of certain enzymes). This review outlines the current development of biodegradable synthetic polyesters materials able to undergo hydrolytic or enzymatic degradation for various biomedical applications, including tissue engineering, temporary implants, wound healing and drug delivery.
Collapse
Affiliation(s)
- Tomáš Urbánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
12
|
Strakosas X, Selberg J, Zhang X, Christie N, Hsu P, Almutairi A, Rolandi M. A Bioelectronic Platform Modulates pH in Biologically Relevant Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800935. [PMID: 30989015 PMCID: PMC6446605 DOI: 10.1002/advs.201800935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/20/2018] [Indexed: 05/08/2023]
Abstract
Bioelectronic devices that modulate pH can affect critical biological processes including enzymatic activity, oxidative phosphorylation, and neuronal excitability. A major challenge in controlling pH is the high buffering capacity of many biological media. To overcome this challenge, devices need to be able to store and deliver a large number of protons on demand. Here, a bioelectronic modulator that controls pH using palladium nanoparticles contacts with high surface area as a proton storage medium is developed. Reversible electronically triggered acidosis (low pH) and alkalosis (high pH) in physiologically relevant buffer conditions are achieved. As a proof of principle, this new platform is used to control the degradation and fluorescence of acid sensitive polymeric microparticles loaded with a pH sensitive fluorescent dye.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Xiaolin Zhang
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Noah Christie
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Peng‐Hao Hsu
- UCSD Center of ExcellenceDepartment of NanoEngineeringJacobs School of EngineeringUniversity of California San Diego9500 Gilman Dr.La JollaCA92093USA
| | - Adah Almutairi
- UCSD Center of ExcellenceDepartment of NanoEngineeringJacobs School of EngineeringUniversity of California San Diego9500 Gilman Dr.La JollaCA92093USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| |
Collapse
|
13
|
Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018; 47:3490-3529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pathological changes in a diseased site are often accompanied by abnormal activities of various biomolecules in and around the involved cells. Identifying the location and expression levels of these biomolecules could enable early-stage diagnosis of the related disease, the design of an appropriate treatment strategy, and the accurate assessment of the treatment outcomes. Over the past two decades, a great diversity of peptide-based nanoprobes (PBNs) have been developed, aiming to improve the in vitro and in vivo performances of water-soluble molecular probes through engineering of their primary chemical structures as well as the physicochemical properties of their resultant assemblies. In this review, we introduce strategies and approaches adopted for the identification of functional peptides in the context of molecular imaging and disease diagnostics, and then focus our discussion on the design and construction of PBNs capable of navigating through physiological barriers for targeted delivery and improved specificity and sensitivity in recognizing target biomolecules. We highlight the biological and structural roles that low-molecular-weight peptides play in PBN design and provide our perspectives on the future development of PBNs for clinical translation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Drug Research & Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tres F, Hall SD, Mohutsky MA, Taylor LS. Monitoring the Phase Behavior of Supersaturated Solutions of Poorly Water-Soluble Drugs Using Fluorescence Techniques. J Pharm Sci 2018; 107:94-102. [DOI: 10.1016/j.xphs.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 01/11/2023]
|
15
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
16
|
Chen MM, Liu YY, Su GH, Song FF, Liu Y, Zhang QQ. NIR responsive liposomal system for rapid release of drugs in cancer therapy. Int J Nanomedicine 2017; 12:4225-4239. [PMID: 28652729 PMCID: PMC5473596 DOI: 10.2147/ijn.s130861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To design a rapid release liposomal system for cancer therapy, a NIR responsive bubble-generating thermosensitive liposome (BTSL) system combined with photothermal agent (Cypate), doxorubicin (DOX), and NH4HCO3 was developed. Cypate/DOX-BTSL exhibited a good aqueous stability, photostability, and photothermal effect. In vitro release suggested that the amounts of DOX released from BTSL were obviously higher than that of (NH4)2SO4 liposomes at 42°C. After NIR irradiation, the hyperthermic temperature induced by Cypate led to the decomposition of NH4HCO3 and the generation of a large number of CO2 bubbles, triggering a rapid release of drugs. Confocal laser scanning microscope and acridine orange staining indicated that Cypate/DOX-BTSL upon irradiation could facilitate to disrupt the lysosomal membranes and realize endolysosomal escape into cytosol, improving the intracellular uptake of DOX clearly. MTT and trypan blue staining implied that the cell damage of Cypate/DOX-BTSL with NIR irradiation was more severe than that in the groups without irradiation. In vivo results indicated that Cypate/DOX-BTSL with irradiation could dramatically increase the accumulation of DOX in tumor, inhibit tumor growth, and reduce systemic side effects of DOX. These data demonstrated that Cypate/DOX-BTSL has the potential to be used as a NIR responsive liposomal system for a rapid release of drugs in thermochemotherapy.
Collapse
Affiliation(s)
- Ming-Mao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Yuan-Yuan Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Guang-Hao Su
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou
| | - Fei-Fei Song
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
| | - Yan Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou
| | - Qi-Qing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou
- Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People’s Republic of China
| |
Collapse
|
17
|
Yamada T, Kokado K, Sada K. Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2610-2616. [PMID: 28211701 DOI: 10.1021/acs.langmuir.6b04360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.
Collapse
Affiliation(s)
- Taihei Yamada
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kenta Kokado
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
18
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
19
|
Anees P, Sudheesh KV, Jayamurthy P, Chandrika AR, Omkumar RV, Ajayaghosh A. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor. Chem Sci 2016; 7:6808-6814. [PMID: 28042467 PMCID: PMC5134758 DOI: 10.1039/c6sc02659a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
Collapse
Affiliation(s)
- Palapuravan Anees
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| | - Karivachery V Sudheesh
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| | - Purushothaman Jayamurthy
- Agroprocessing and Natural Products Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , India
| | - Arunkumar R Chandrika
- Molecular Neurobiology Division , Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapuram 695 014 , India
| | - Ramakrishnapillai V Omkumar
- Molecular Neurobiology Division , Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapuram 695 014 , India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| |
Collapse
|
20
|
Chung CYS, Li SPY, Lo KKW, Yam VWW. Synthesis and Electrochemical, Photophysical, and Self-Assembly Studies on Water-Soluble pH-Responsive Alkynylplatinum(II) Terpyridine Complexes. Inorg Chem 2016; 55:4650-63. [DOI: 10.1021/acs.inorgchem.6b00513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Clive Yik-Sham Chung
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
21
|
Shankar BH, Jayaram DT, Ramaiah D. Naphthalene Imide Conjugates: Formation of Supramolecular Assemblies, and the Encapsulation and Release of Dyes through DNA-Mediated Disassembly. Chemistry 2015; 21:17657-63. [PMID: 26490366 DOI: 10.1002/chem.201502955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/01/2023]
Abstract
We report the synthesis of two new amphiphilic conjugates 1 and 2 based on naphthalene di- and monoimide chromophores and the investigation of their photophysical, self-assembly and DNA-binding properties. These conjugates showed aqueous good solubility and exhibited strong interactions with DNA and polynucleotides such as poly(dG⋅dC)-poly(dG⋅dC) and poly(dA⋅dT)-poly(dA⋅dT). The interaction of these conjugates with DNA was evaluated by photo- and biophysical techniques. These studies revealed that the conjugates interact with DNA through intercalation with association constants in the order of 5-8×10(4) M(-1) . Of these two conjugates, bolaamphiphile 1 exhibited a supramolecular assembly that formed vesicles with an approximate diameter of 220 nm in the aqueous medium at a critical aggregation concentration of 0.4 mM, which was confirmed by SEM and TEM. These vesicular structures showed a strong affinity for hydrophobic molecules such as Nile red through encapsulation. Uniquely, when exposed to DNA the vesicles disassembled, and therefore this transformation could be utilised for the encapsulation and release of hydrophobic molecules by employing DNA as a stimulus.
Collapse
Affiliation(s)
- Balaraman H Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India)
| | - Dhanya T Jayaram
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India)
| | - Danaboyina Ramaiah
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019 (India). , , .,CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785 006, Assam (India). , ,
| |
Collapse
|
22
|
García-Gallego S, Nyström AM, Malkoch M. Chemistry of multifunctional polymers based on bis-MPA and their cutting-edge applications. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yang Q, Wang H, Chen S, Lan X, Xiao H, Shi H, Ma Y. Fiber-Optic-Based Micro-Probe Using Hexagonal 1-in-6 Fiber Configuration for Intracellular Single-Cell pH Measurement. Anal Chem 2015; 87:7171-9. [DOI: 10.1021/acs.analchem.5b01040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qingbo Yang
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hanzheng Wang
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sisi Chen
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Xinwei Lan
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Hai Xiao
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Honglan Shi
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yinfa Ma
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
24
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
25
|
Hou XF, Chen Y, Liu Y. Enzyme-responsive protein/polysaccharide supramolecular nanoparticles. SOFT MATTER 2015; 11:2488-2493. [PMID: 25679755 DOI: 10.1039/c4sm02896a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biocompatible and enzyme-responsive supramolecular assemblies have attracted more and more interest in biomaterial fields, and find many feasible applications especially in the controlled drug release at specific sites where the target enzyme is located. In this work, novel supramolecular nanoparticles were successfully constructed from two biocompatible materials, i.e. a cyclic polysaccharide named sulfato-β-cyclodextrin (SCD) and a protein named protamine, through non-covalent association, and fully characterized by means of atomic force microscopy (AFM) and high-resolution transmission electron microscopy (TEM). Significantly, the disassembly of the resulting nanoparticles can respond especially to trypsin over other enzymes. Owing to their trypsin-triggered disassembly behaviors, these nanoparticles can efficiently release the encapsulated model substrate in a controlled manner. That is, the model substrate can be encapsulated inside the nanoparticles with a high stability and released when treated with trypsin.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.
| | | | | |
Collapse
|
26
|
Jiang J, Zhang C, Lin W, Liu Y, Liu S, Xu Y, Zhao Q, Huang W. Long-Lived Phosphorescent Iridium(III) Complexes Conjugated with Cationic Polyfluorenes for Heparin Sensing and Cellular Imaging. Macromol Rapid Commun 2015; 36:640-6. [DOI: 10.1002/marc.201400654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/07/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Jiayang Jiang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Chuanqi Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Wenpeng Lin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Yahong Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Yunjian Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts & Telecommunications (NUPT); Nanjing 210023 P.R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); Nanjing 211816 P.R. China
| |
Collapse
|
27
|
|
28
|
Zhegalova NG, He S, Zhou H, Kim DM, Berezin MY. Minimization of self-quenching fluorescence on dyes conjugated to biomolecules with multiple labeling sites via asymmetrically charged NIR fluorophores. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:355-62. [PMID: 24764130 PMCID: PMC4198576 DOI: 10.1002/cmmi.1585] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022]
Abstract
Self-aggregation of dyes even at low concentrations poses a considerable challenge in preparing sufficiently bright molecular probes for in vivo imaging, particularly in the conjugation of near infrared cyanine dyes to polypeptides with multiple labeling sites. Such self-aggregation leads to a significant energy transfer between the dyes, resulting in severe quenching and low brightness of the targeted probe. To address this problem, we designed a novel type of dye with an asymmetrical distribution of charge. Asymmetrical distribution prevents the chromophores from π-stacking thus minimizing the energy transfer and fluorescence quenching. The conjugation of the dye to polypeptides showed only a small presence of an H-aggregate band in the absorption spectra and, hence, a relatively high quantum efficiency.
Collapse
Affiliation(s)
- Natalia G. Zhegalova
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Shawn He
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Haiying Zhou
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - David M. Kim
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
29
|
Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. Smart chemistry in polymeric nanomedicine. Chem Soc Rev 2014; 43:6982-7012. [DOI: 10.1039/c4cs00133h] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Rao J, Hottinger C, Khan A. Enzyme-triggered cascade reactions and assembly of abiotic block copolymers into micellar nanostructures. J Am Chem Soc 2014; 136:5872-5. [PMID: 24720255 DOI: 10.1021/ja501632r] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Catalytic action of an enzyme is shown to transform a non-assembling block copolymer, composed of a completely non-natural repeat unit structure, into a self-assembling polymer building block. To achieve this, poly(styrene) is combined with an enzyme-sensitive methacrylate-based polymer segment carrying carefully designed azobenzene side chains. Once exposed to the enzyme azoreductase, in the presence of coenzyme NADPH, the azobenzene linkages undergo a bond scission reaction. This triggers a spontaneous 1,6-self-elimination cascade process and transforms the initially hydrophobic methacrylate polymer segment into a hydrophilic hydroxyethyl methacrylate structure. This change in chemical polarity of one of the polymer blocks confers an amphiphilic character to the diblock copolymer and permits it to self-assemble into a micellar nanostructure in water.
Collapse
Affiliation(s)
- Jingyi Rao
- Department of Materials, ETH-Zürich , CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Li J, Guo K, Shen J, Yang W, Yin M. A difunctional squarylium indocyanine dye distinguishes dead cells through diverse staining of the cell nuclei/membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1351-1360. [PMID: 24130101 DOI: 10.1002/smll.201302920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical, Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | | | | | | |
Collapse
|
32
|
Amado Torres D, Garzoni M, Subrahmanyam AV, Pavan GM, Thayumanavan S. Protein-triggered supramolecular disassembly: insights based on variations in ligand location in amphiphilic dendrons. J Am Chem Soc 2014; 136:5385-99. [PMID: 24641469 PMCID: PMC4004214 DOI: 10.1021/ja500634u] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 12/14/2022]
Abstract
We use monodisperse dendrons that allow control over functional group presentation to investigate the influence of the location of a ligand on protein-induced disassembly and release of encapsulated small molecules. Based on both experiments and molecular dynamics simulations, we demonstrate that ligand location greatly influences release of guest molecules from the dendron-based supramolecular assembly. We show that a ligand moiety grafted to the dendron periphery is more accessible for the target protein in aqueous solution. On the other hand, the ligand moiety placed at the focal point or at the intermediate layer within the dendritic scaffold is less accessible, since it is surrounded by an environment rich in PEG chains, which hinders binding and even influences nonspecific interactions. We also demonstrate that the specific binding between one ligand and the target protein can destabilize the dendritic assembly. Furthermore, if more ligands are available, multivalent interactions are also possible with extravidin, which speed up disassembly and trigger the release of hydrophobic guests.
Collapse
Affiliation(s)
- Diego Amado Torres
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Matteo Garzoni
- Department
of Innovative Technologies, University of
Applied Science of Southern Switzerland, Manno 6928, Switzerland
| | - Ayyagari V. Subrahmanyam
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Science of Southern Switzerland, Manno 6928, Switzerland
| | - S. Thayumanavan
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
33
|
Nazemi A, Gillies ER. Dendrimer Bioconjugates: Synthesis and Applications. CHEMISTRY OF BIOCONJUGATES 2014:146-183. [DOI: 10.1002/9781118775882.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
34
|
Chang S, Wu X, Li Y, Niu D, Gao Y, Ma Z, Gu J, Zhao W, Zhu W, Tian H, Shi J. A pH-responsive hybrid fluorescent nanoprober for real time cell labeling and endocytosis tracking. Biomaterials 2013; 34:10182-90. [DOI: 10.1016/j.biomaterials.2013.09.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
|
35
|
Liu T, Hu J, Jin Z, Jin F, Liu S. Two-photon ratiometric fluorescent mapping of intracellular transport pathways of pH-responsive block copolymer micellar nanocarriers. Adv Healthc Mater 2013; 2:1576-81. [PMID: 23703785 DOI: 10.1002/adhm.201200436] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 12/25/2022]
Abstract
Ultrasensitive ratiometric fluorescent pH probes based on dual dye-labeled pH-responsive diblock copolymer micellar scaffold are constructed. The pH-sensitive emitting nature of BTPE dyes and emission turn-on of CMA moieties triggered by pH-actuated micelle-to-unimer of diblock scaffold synergistically contribute to the observed ≈250-fold changes of BTPE/CMA emission intensity ratios in the whole pH range. Two-photon ratiometric fluorescent pH mapping of intracellular gradients subjected by pH-responsive micellar nanoparticles in their endocytic pathway has been thus achieved.
Collapse
Affiliation(s)
- Tao Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | | | | | | | | |
Collapse
|
36
|
Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 2013; 34:9124-33. [DOI: 10.1016/j.biomaterials.2013.08.022] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/09/2013] [Indexed: 01/08/2023]
|
37
|
Barnard A, Posocco P, Fermeglia M, Tschiche A, Calderon M, Pricl S, Smith DK. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. Org Biomol Chem 2013; 12:446-55. [PMID: 24263553 DOI: 10.1039/c3ob42202j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Aigner D, Ungerböck B, Mayr T, Saf R, Klimant I, Borisov SM. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-[3,4- c]pyrrole dyes†Electronic supplementary information (ESI) available: NMR and MS spectra, further sensor characteristics and sensor long-time performance. See DOI: 10.1039/c3tc31130aClick here for additional data file. JOURNAL OF MATERIALS CHEMISTRY. C 2013; 1:5685-5693. [PMID: 24078864 PMCID: PMC3778741 DOI: 10.1039/c3tc31130a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/16/2013] [Indexed: 05/05/2023]
Abstract
New optical pH-sensors relying on 1,4-diketopyrrolo-[3,4-c]pyrroles (DPPs) as fluorescent pH-indicators are presented. Different polymer hydrogels are useful as immobilization matrices, achieving excellent sensitivity and good brightness in the resulting sensor. The operational pH can be tuned over a wide range (pH 5-12) by selecting the fine structure of the indicator and the matrix. A ratiometric sensor in the form of nanoparticles is also presented. It is suitable for RGB camera readout, and its practical applicability for fluorescence imaging in microfluidic systems is demonstrated. The indicators are synthesized starting from the commercially available DPP pigments by a straightforward concept employing chlorosulfonation and subsequent reaction with amines. Their sensitivity derives from two distinct mechanisms. At high pH (>9), they exhibit a remarkable alteration of both absorption and fluorescence spectra due to deprotonation of the lactam nitrogen atoms. If a phenolic group is introduced, highly effective fluorescence quenching at near-neutral pH occurs due to photoinduced electron transfer (PET) involving the phenolate form.
Collapse
Affiliation(s)
- Daniel Aigner
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , Graz , Austria . ; Tel: +43 316 873 32516
| | - Birgit Ungerböck
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , Graz , Austria . ; Tel: +43 316 873 32516
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , Graz , Austria . ; Tel: +43 316 873 32516
| | - Robert Saf
- Institute for Chemistry and Technology of Materials , Graz University of Technology , Stremayrgasse 9 , A-8010 Graz , Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , Graz , Austria . ; Tel: +43 316 873 32516
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , Graz , Austria . ; Tel: +43 316 873 32516
| |
Collapse
|
39
|
Rao J, Khan A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J Am Chem Soc 2013; 135:14056-9. [PMID: 24033317 DOI: 10.1021/ja407514z] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigate the potential of an artificial structural motif, azobenzene, in the preparation of enzyme sensitive polymeric nanostructures. For this purpose, an azobenzene linkage is established at the copolymer junction of an amphiphilic diblock copolymer. This polymer assembles into a micellar structure in water. Treatment with the enzyme azoreductase, in the presence of coenzyme NADPH, results in the cleavage of the azo-based copolymer junction and disruption of the micellar assembly. These results suggest that azobenezene is a useful non-natural structural motif for the preparation of enzyme responsive polymer nanoparticles. Due to the presence of azoreductase in the human intestine, such nanomaterials are anticipated to find applicability in the arena of colon-specific delivery systems.
Collapse
Affiliation(s)
- Jingyi Rao
- Department of Materials, ETH-Zürich , CH-8093 Zürich, Switzerland
| | | |
Collapse
|
40
|
Chung CYS, Yam VWW. Dual pH- and Temperature-Responsive Metallosupramolecular Block Copolymers with Tunable Critical Micelle Temperature by Modulation of the Self-Assembly of NIR-Emissive Alkynylplatinum(II) Complexes Induced by Changes in Hydrophilicity and Electrostatic Ef. Chemistry 2013; 19:13182-92. [DOI: 10.1002/chem.201301547] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 12/18/2022]
|
41
|
Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Xiao J, Cheng Y. Glutathione-Triggered “Off–On” Release of Anticancer Drugs from Dendrimer-Encapsulated Gold Nanoparticles. J Am Chem Soc 2013; 135:9805-10. [DOI: 10.1021/ja402903h] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xinyu Wang
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai 200062, P.R. China
| | - Xiaopan Cai
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingjing Hu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, P.R.
China
| | - Naimin Shao
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai 200062, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai 200062, P.R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai 200062, P.R. China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, P.R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
42
|
Dhal PK, Polomoscanik SC, Gianolio DA, Starremans PG, Busch M, Alving K, Chen B, Miller RJ. Well-Defined Aminooxy Terminated N-(2-Hydroxypropyl) Methacrylamide Macromers for Site Specific Bioconjugation of Glycoproteins. Bioconjug Chem 2013; 24:865-77. [DOI: 10.1021/bc300472e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Pradeep K. Dhal
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Steven C. Polomoscanik
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Diego A. Gianolio
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Patrick G. Starremans
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Michelle Busch
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Kim Alving
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Bo Chen
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Robert J. Miller
- Polymer & Biomaterial R&D, Sanofi-Genzyme R&D Center, Genzyme Corporation—A Sanofi Company, 270 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Synthesis, characterisation, electronic spectra and electrochemical investigation of ferrocenyl-terminated dendrimers. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ma G. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2835-2844. [PMID: 23448359 DOI: 10.1021/am3028519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interest in optical molecular imaging of small animals in vivo has been steadily increased in the last two decades as it is being adopted by not only academic laboratories but also the biotechnical and pharmaceutical industries. In this Spotlight paper, the elements for in vivo optical molecular imaging are briefly reviewed, including contrast agents, i.e., various fluorescent reporters, and the most commonly used technologies to detect the reporters. The challenges particularly for in vivo fluorescence imaging are discussed and solutions to overcome the said-challenges are presented. An advanced imaging technique, in vivo fluorescence lifetime imaging, is introduced together with a few application examples. Taking advantage of the long fluorescence lifetime of quantum dots, a method to achieve background-free in vivo fluorescence small animal imaging is demonstrated.
Collapse
Affiliation(s)
- Guobin Ma
- ART Advanced Research Technologies Inc., 2300 Alfred-Nobel Boulevard, Montreal, Quebec, Canada H4S 2A4.
| |
Collapse
|
45
|
Wang YX, Guo DS, Cao Y, Liu Y. Phosphatase-responsive amphiphilic calixarene assembly. RSC Adv 2013. [DOI: 10.1039/c3ra40453f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Chung CYS, Li SPY, Louie MW, Lo KKW, Yam VWW. Induced self-assembly and disassembly of water-soluble alkynylplatinum(ii) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 2013. [DOI: 10.1039/c3sc50196e] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
47
|
Lee H, Berezin MY, Tang R, Zhegalova N, Achilefu S. Pyrazole-substituted near-infrared cyanine dyes exhibit pH-dependent fluorescence lifetime properties. Photochem Photobiol 2012; 89:326-31. [PMID: 23094959 DOI: 10.1111/php.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/10/2012] [Indexed: 11/28/2022]
Abstract
Near-infrared heptamethine cyanine dye is functionalized with pyrazole derivatives at the meso-position to induce pH-dependent photophysical properties. The presence of pyrazole unsubstituted at (1) N-position is essential to induce pH-dependent fluorescence intensity and lifetime changes in these dyes. Replacement of meso-chloro group of cyanine dye IR820 with (1) N-unsubstituted pyrazole resulted in the pH-dependent fluorescence lifetime changes from 0.93 ns in neutral media to 1.27 ns in acidic media in DMSO. Time-resolved emission spectra (TRES) revealed that at lower pH, the pyrazole consists of fluorophores with two distinct lifetimes, which cor-responds to pH-sensitive and non-pH-sensitive species. In contrast, (1) N-substituted pyrazoles do not exhibit pH response, suggesting excited state electron transfer as the mechanism of pH-dependent fluorescence lifetime sensitivity for this class of compounds.
Collapse
Affiliation(s)
- Hyeran Lee
- Department of Radiology, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
48
|
Shirazi RS, Ewert KK, Silva BFB, Leal C, Li Y, Safinya CR. Structural evolution of environmentally responsive cationic liposome-DNA complexes with a reducible lipid linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10495-503. [PMID: 22616637 PMCID: PMC3399028 DOI: 10.1021/la301181b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Environmentally responsive materials (i.e., materials that respond to changes in their environment with a change in their properties or structure) are attracting increasing amounts of interest. We recently designed and synthesized a series of cleavable multivalent lipids (CMVLn, with n = 2-5 being the number of positive headgroup charges at full protonation) with a disulfide bond in the linker between their cationic headgroup and hydrophobic tails. The self-assembled complexes of the CMVLs and DNA are a prototypical environmentally responsive material, undergoing extensive structural rearrangement when exposed to reducing agents. We investigated the structural evolution of CMVL-DNA complexes at varied complex composition, temperature, and incubation time using small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A related lipid with a stable linker, TMVL4, was used as a control. In a nonreducing environment, CMVL-DNA complexes form the lamellar (L(α)(C)) phase, with DNA rods sandwiched between lipid bilayers. However, new self-assembled phases form when the disulfide linker is cleaved by dithiothreitol or the biologically relevant reducing agent glutathione. The released DNA and cleaved CMVL headgroups form a loosely organized phase, giving rise to a characteristic broad SAXS correlation profile. CMVLs with high headgroup charge also form condensed DNA bundles. Intriguingly, the cleaved hydrophobic tails of the CMVLs reassemble into tilted chain-ordered L(β') phases upon incubation at physiological temperature (37 °C), as indicated by characteristic WAXS peaks. X-ray scattering further reveals that two of the three phases (L(βF), L(βL), and L(βI)) constituting the L(β') phase coexist in these samples. The described system may have applications in lipid-based nanotechnologies.
Collapse
Affiliation(s)
- Rahau S. Shirazi
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kai K. Ewert
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Bruno F. B. Silva
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Cecilia Leal
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Cyrus R. Safinya
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
49
|
Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Anal Chem 2012; 84:6723-30. [PMID: 22738322 PMCID: PMC3413250 DOI: 10.1021/ac3011796] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this study, a series of new BF2-chelated
tetraarylazadipyrromethane
dyes are synthesized and are shown to be suitable for the preparation
of on/off photoinduced electron transfer modulated fluorescent sensors.
The new indicators are noncovalently entrapped in polyurethane hydrogel
D4 and feature absorption maxima in the range 660–710 nm and
fluorescence emission maxima at 680–740 nm. Indicators have
high molar absorption coefficients of ∼80 000 M–1 cm–1, good quantum yields (up to
20%), excellent photostability and low cross-sensitivity to the ionic
strength. pKa values of indicators are
determined from absorbance and fluorescence measurements and range
from 7 to 11, depending on the substitution pattern of electron-donating
and -withdrawing functionalities. Therefore, the new indicators are
suitable for exploitation and adaptation in a diverse range of analytical
applications. Apparent pKa values in sensor
films derived from fluorescence data show 0.5–1 pH units lower
values in comparison with those derived from the absorption data due
to Förster resonance energy transfer from protonated to deprotonated
form. A dual-lifetime referenced sensor is prepared, and application
for monitoring of pH in corals is demonstrated.
Collapse
Affiliation(s)
- Tijana Jokic
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Zhou K, Liu H, Zhang S, Huang X, Wang Y, Huang G, Sumer BD, Gao J. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J Am Chem Soc 2012; 134:7803-11. [PMID: 22524413 PMCID: PMC3427786 DOI: 10.1021/ja300176w] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tunable, ultra-pH responsive fluorescent nanoparticles with multichromatic emissions are highly valuable in a variety of biological studies, such as endocytic trafficking, endosome/lysosome maturation, and pH regulation in subcellular organelles. Small differences (e.g., <1 pH unit) and yet finely regulated physiological pH inside different endocytic compartments present a huge challenge to the design of such a system. Herein, we report a general strategy to produce pH-tunable, highly activatable multicolored fluorescent nanoparticles using commonly available pH-insensitive dyes with emission wavelengths from green to near IR range. The primary driving force of fluorescence activation between the ON (unimer) and OFF (micelle) states is the pH-induced micellization. Among three possible photochemical mechanisms, homo Förster resonance energy transfer (homoFRET)-enhanced decay was found to be the most facile strategy to render ultra-pH response over the H-dimer and photoinduced electron transfer (PeT) mechanisms. Based on this insight, we selected several fluorophores with small Stoke shifts (<40 nm) and established a panel of multicolored nanoparticles with wide emission range (500-820 nm) and different pH transitions. Each nanoparticle maintained the sharp pH response (ON/OFF < 0.25 pH unit) with corresponding pH transition point at pH 5.2, 6.4, 6.9, and 7.2. Incubation of a mixture of multicolored nanoparticles with human H2009 lung cancer cells demonstrated sequential activation of the nanoparticles inside endocytic compartments directly correlating with their pH transitions. This multicolored, pH-tunable nanoplatform offers exciting opportunities for the study of many important cell physiological processes, such as pH regulation and endocytic trafficking of subcellular organelles.
Collapse
Affiliation(s)
- Kejin Zhou
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|