1
|
Lantz C, Xi Z, Rider RL, Walker TE, Hebert M, Russell DH. Temperature-Dependent Trimethylamine N-Oxide Induced the Formation of Substance P Dimers. J Phys Chem B 2024. [PMID: 39504981 DOI: 10.1021/acs.jpcb.4c04951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Interactions of the peptide substance P (SP) (RPKPQQFFGLM-NH2) with trimethylamine N-oxide (TMAO) were investigated by using cryo-ion mobility-mass spectrometry (cryo-IM-MS), variable-temperature (278-358 K) electrospray ionization (vT-ESI) MS, and molecular dynamics (MD) simulations. Cryo-IM-MS provides evidence that cold solutions containing SP and TMAO yield abundant hydrated SP dimer ions, but dimer formation is inhibited in solutions that also contain urea. In addition, we show that SP dimer formation at cold solution temperatures (<298 K) is favored when TMAO interacts with the hydrophobic C-terminus of SP and is subject to reduced entropic penalty when compared to warmer solution conditions (>298 K). MD simulations show that TMAO lowers the free energy barrier for dimerization and that monomers dimerize by forming hydrogen bonds (HBs). Moreover, differences in oligomer abundances for SP mutants (P4A, P2,4A, G9P, and P2,4A/G9P) provide evidence that oligomerization facilitated by TMAO is sensitive to the cis/trans orientation of residues at positions 2, 4, and 9.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhenyu Xi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Robert L Rider
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Suddala KC, Yoo J, Fan L, Zuo X, Wang YX, Chung HS, Zhang J. Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble. Nat Commun 2023; 14:5438. [PMID: 37673863 PMCID: PMC10482949 DOI: 10.1038/s41467-023-41155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
T-box riboswitches are multi-domain noncoding RNAs that surveil individual amino acid availabilities in most Gram-positive bacteria. T-boxes directly bind specific tRNAs, query their aminoacylation status to detect starvation, and feedback control the transcription or translation of downstream amino-acid metabolic genes. Most T-boxes rapidly recruit their cognate tRNA ligands through an intricate three-way stem I-stem II-tRNA interaction, whose establishment is not understood. Using single-molecule FRET, SAXS, and time-resolved fluorescence, we find that the free T-box RNA assumes a broad distribution of open, semi-open, and closed conformations that only slowly interconvert. tRNA directly binds all three conformers with distinct kinetics, triggers nearly instantaneous collapses of the open conformations, and returns the T-box RNA to their pre-binding conformations upon dissociation. This scissors-like dynamic behavior is enabled by a hinge-like pseudoknot domain which poises the T-box for rapid tRNA-induced domain closure. This study reveals tRNA-chaperoned folding of flexible, multi-domain mRNAs through a Venus flytrap-like mechanism.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Janghyun Yoo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yun-Xing Wang
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD, 21702, USA
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Cho SS, Green AT, Hyeon C, Thirumalai D. TMAO Destabilizes RNA Secondary Structure via Direct Hydrogen Bond Interactions. J Phys Chem B 2023; 127:438-445. [PMID: 36602908 DOI: 10.1021/acs.jpcb.2c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trimethylamine N-oxide (TMAO) is an osmolyte that accumulates in cells in response to osmotic stress. TMAO stabilizes proteins by the entropic stabilization mechanism, which pictures TMAO as a nanocrowder that predominantly destabilizes the unfolded state. However, the mechanism of action of TMAO on RNA is much less understood. Here, we use all-atom molecular dynamics simulations to investigate how TMAO interacts with a 12-nt RNA hairpin with a high melting temperature, and an 8-nt RNA hairpin, which has a relatively fluid native basin in the absence of TMAO. The use of the two hairpins with different free energy of stabilization allows us to probe the origin of the destabilization effect of TMAO on RNA molecules without the possibility of forming tertiary interactions. We generated multiple trajectories using all-atom molecular dynamics (MD) simulations in explicit water by employing AMBER and CHARMM force fields, both in the absence and presence of TMAO. We observed qualitatively similar RNA-TMAO interaction profiles from the simulations using the two force fields. TMAO hydrogen bond interactions are largely depleted around the paired RNA bases and ribose sugars. In contrast, we show that the oxygen atom in TMAO, the hydrogen bond acceptor, preferentially interacts with the hydrogen bond donors in the solvent exposed bases, such as those in the stem-loop and the destabilized base stacks in the unfolded state, especially in the marginally stable 8-nt RNA hairpin. The predicted destabilization mechanism through TMAO-RNA hydrogen bond interactions could be tested using two-dimensional IR spectroscopy. Since TMAO does not significantly interact with the hydroxyl group of the ribose sugars, we predict that similar results must also hold for DNA.
Collapse
Affiliation(s)
- Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Adam T Green
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules 2021; 11:biom11121892. [PMID: 34944536 PMCID: PMC8699500 DOI: 10.3390/biom11121892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.
Collapse
|
5
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
6
|
Tom AM, Kim WK, Hyeon C. Polymer brush-induced depletion interactions and clustering of membrane proteins. J Chem Phys 2021; 154:214901. [PMID: 34240971 DOI: 10.1063/5.0048554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We investigate the effect of mobile polymer brushes on proteins embedded in biological membranes by employing both Asakura-Oosawa type of theoretical model and coarse-grained molecular dynamics simulations. The brush polymer-induced depletion attraction between proteins changes non-monotonically with the size of brush. The depletion interaction, which is determined by the ratio of the protein size to the grafting distance between brush polymers, increases linearly with the brush size as long as the polymer brush height is shorter than the protein size. When the brush height exceeds the protein size, however, the depletion attraction among proteins is slightly reduced. We also explore the possibility of the brush polymer-induced assembly of a large protein cluster, which can be related to one of many molecular mechanisms underlying recent experimental observations of integrin nanocluster formation and signaling.
Collapse
Affiliation(s)
- Anvy Moly Tom
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
7
|
Feng C, Tan YL, Cheng YX, Shi YZ, Tan ZJ. Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement. Front Mol Biosci 2021; 8:666369. [PMID: 33928126 PMCID: PMC8078894 DOI: 10.3389/fmolb.2021.666369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Macromolecules, such as RNAs, reside in crowded cell environments, which could strongly affect the folded structures and stability of RNAs. The emergence of RNA-driven phase separation in biology further stresses the potential functional roles of molecular crowding. In this work, we employed the coarse-grained model that was previously developed by us to predict 3D structures and stability of the mouse mammary tumor virus (MMTV) pseudoknot under different spatial confinements over a wide range of salt concentrations. The results show that spatial confinements can not only enhance the compactness and stability of MMTV pseudoknot structures but also weaken the dependence of the RNA structure compactness and stability on salt concentration. Based on our microscopic analyses, we found that the effect of spatial confinement on the salt-dependent RNA pseudoknot stability mainly comes through the spatial suppression of extended conformations, which are prevalent in the partially/fully unfolded states, especially at low ion concentrations. Furthermore, our comprehensive analyses revealed that the thermally unfolding pathway of the pseudoknot can be significantly modulated by spatial confinements, since the intermediate states with more extended conformations would loss favor when spatial confinements are introduced.
Collapse
Affiliation(s)
- Chenjie Feng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yu-Xuan Cheng
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Zhi-Jie Tan
- Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, Center for Theoretical Physics, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Mateos B, Bernardo-Seisdedos G, Dietrich V, Zalba N, Ortega G, Peccati F, Jiménez-Osés G, Konrat R, Tollinger M, Millet O. Cosolute modulation of protein oligomerization reactions in the homeostatic timescale. Biophys J 2021; 120:2067-2077. [PMID: 33794151 PMCID: PMC8204390 DOI: 10.1016/j.bpj.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24-48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.
Collapse
Affiliation(s)
- Borja Mateos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain; Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Valentin Dietrich
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Nicanor Zalba
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Francesca Peccati
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gonzalo Jiménez-Osés
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Martin Tollinger
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain.
| |
Collapse
|
9
|
Maiti A, Daschakraborty S. Effect of TMAO on the Structure and Phase Transition of Lipid Membranes: Potential Role of TMAO in Stabilizing Cell Membranes under Osmotic Stress. J Phys Chem B 2021; 125:1167-1180. [PMID: 33481606 DOI: 10.1021/acs.jpcb.0c08335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extremophiles adopt strategies to deal with different environmental stresses, some of which are severely damaging to their cell membrane. To combat high osmotic stress, deep-sea organisms synthesize osmolytes, small polar organic molecules, like trimethylamine-N-oxide (TMAO), and incorporate them in the cell. TMAO is known to protect cells from high osmotic or hydrostatic pressure. Several experimental and simulation studies have revealed the roles of such osmolytes on stabilizing proteins. In contrast, the effect of osmolytes on the lipid membrane is poorly understood and broadly debated. A recent experiment has found strong evidence of the possible role of TMAO in stabilizing lipid membranes. Using the molecular dynamics (MD) simulation technique, we have demonstrated the effect of TMAO on two saturated fully hydrated lipid membranes in their fluid and gel phases. We have captured the impact of TMAO's concentration on the membrane's structural properties along with the fluid/gel phase transition temperatures. On increasing the concentration of TMAO, we see a substantial increase in the packing density of the membrane (estimated by area, thickness, and volume) and enhancement in the orientational order of lipid molecules. Having repulsive interaction with the lipid head group, the TMAO molecules are expelled away from the membrane surface, which induces dehydration of the lipid head groups, increasing the packing density. The addition of TMAO also increases the fluid/gel phase transition temperature of the membrane. All of these results are in close agreement with the experimental observations. This study, therefore, provides a molecular-level understanding of how TMAO can influence the cell membrane of deep-sea organisms and help in combating the osmotic stress condition.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
10
|
Oprzeska-Zingrebe EA, Smiatek J. Interactions of a DNA G-quadruplex with TMAO and urea: a molecular dynamics study on co-solute compensation mechanisms. Phys Chem Chem Phys 2021; 23:1254-1264. [PMID: 33355575 DOI: 10.1039/d0cp05356b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We study the individual and combined influence of TMAO and urea on a basket-type DNA G-quadruplex by means of atomistic molecular dynamics (MD) simulations. In combination with the Kirkwood-Buff theory of solutions, we propose a simple mechanism to elucidate the impact of TMAO and urea on the G-quadruplex. Our results reveal the importance of the molecular accumulation around the DNA in terms of stabilizing or destabilizing effects. The results for mixtures show only a weak interaction between both co-solutes, which highlights the additivity of contributions. Despite the fact, that TMAO can to some extent compensate the adverse impact of urea on the G-quadruplex structure, the destabilizing influence is not completely eliminated. This observation opens the door for further research on selective stabilization of DNA G-quadruplexes by modulating the concentrations of TMAO and urea in solution.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| |
Collapse
|
11
|
Hautke AC, Ebbinghaus S. Folding Stability and Self‐Association of a Triplet‐Repeat (CAG)
20
RNA Hairpin in Cytomimetic Media. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexander Christoph Hautke
- Institut für Physikalische und Theoretische Chemie TU Braunschweig Rebenring 56 38106 Braunschweig Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie TU Braunschweig Rebenring 56 38106 Braunschweig Germany
| |
Collapse
|
12
|
Abstract
RNA enzymes or ribozymes catalyze some of the most important reactions in biology and are thought to have played a central role in the origin and evolution of life on earth. Catalytic function in RNA has evolved in crowded cellular environments that are different from dilute solutions in which most in vitro assays are performed. The presence of molecules such as amino acids, polypeptides, alcohols, and sugars in the cell introduces forces that modify the kinetics and thermodynamics of ribozyme-catalyzed reactions. Synthetic molecules are routinely used in in vitro studies to better approximate the properties of biomolecules under in vivo conditions. This review discusses the various forces that operate within simulated crowded solutions in the context of RNA structure, folding, and catalysis. It also explores ideas about how crowding could have been beneficial to the evolution of functional RNAs and the development of primitive cellular systems in a prebiotic milieu.
Collapse
Affiliation(s)
- Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
13
|
Bockus AB, LaBreck CJ, Camberg JL, Collie JS, Seibel BA. Thermal Range and Physiological Tolerance Mechanisms in Two Shark Species from the Northwest Atlantic. THE BIOLOGICAL BULLETIN 2020; 238:131-144. [PMID: 32412839 DOI: 10.1086/708718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spiny dogfish (Squalus acanthias) and smoothhound (Mustelus canis) sharks in the northwest Atlantic undergo seasonal migrations driven by changes in water temperature. However, the recognized thermal habitats of these regional populations are poorly described. Here, we report the thermal range, catch frequency with bottom temperature, and catch frequency with time of year for both shark species in Narragansett Bay, Rhode Island. Additionally, we describe levels of two thermal stress response indicators, heat-shock protein 70 and trimethylamine N-oxide, with an experimental increase in water temperature from 15 °C to 21 °C. Our results show that S. acanthias can be found in this region year-round and co-occurs with M. canis from June to November. Further, adult S. acanthias routinely inhabits colder waters than M. canis (highest catch frequencies at bottom temperatures of 10 °C and 21 °C, respectively), but both exhibit similar upper thermal ranges in this region (bottom temperatures of 22-23 °C). Additionally, acute exposure to a 6 °C increase in water temperature for 72 hours leads to a nearly threefold increase in heat-shock protein 70 levels in S. acanthias but not M. canis. Therefore, these species display differences in their thermal tolerance and stress response with experimental exposure to 21 °C, a common summer temperature in Narragansett Bay. Further, in temperature-stressed S. acanthias there is no accumulation of trimethylamine N-oxide. At the whole-organism level, elasmobranchs' trimethylamine N-oxide regulatory capacity may be limited by other factors. Alternatively, elasmobranchs may not rely on trimethylamine N-oxide as a primary thermal protective mechanism under the conditions tested. Findings from this study are in contrast with previous research conducted with elasmobranch cells in vitro that showed accumulation of trimethylamine N-oxide after thermal stress and subsequent suppression of the heat-shock protein 70 response.
Collapse
|
14
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
15
|
Sung HL, Nesbitt DJ. Correction: High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:17008-17009. [DOI: 10.1039/d0cp90155e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation’ by Hsuan-Lei Sung et al., Phys. Chem. Chem. Phys., 2020, DOI: 10.1039/d0cp01921f.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA
- National Institute of Standards and Technology and University of Colorado
- Boulder
- USA
- Department of Chemistry and Biochemistry
| | - David J. Nesbitt
- JILA
- National Institute of Standards and Technology and University of Colorado
- Boulder
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
16
|
Knierbein M, Held C, Hölzl C, Horinek D, Paulus M, Sadowski G, Sternemann C, Nase J. Density variations of TMAO solutions in the kilobar range: Experiments, PC-SAFT predictions, and molecular dynamics simulations. Biophys Chem 2019; 253:106222. [PMID: 31421516 DOI: 10.1016/j.bpc.2019.106222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Abstract
We present measurements, molecular dynamics (MD) simulations, and predictions using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) of the density of aqueous solutions in a pressure range from 1 bar to 5000 bar, a pressure regime that is highly relevant for both biochemical applications and the fundamental understanding of solvation. The accurate determination of density data of pressurized solutions remains challenging. We determined relative density changes from the variations in X-ray absorption through the sample and developed a new water parameter set for PC-SAFT modeling that is appropriate for high pressure conditions in the kilobar regime. As a showcase, we studied trimethylamine N-oxide (TMAO) solutions and demonstrated that their compressibility decreases with the TMAO content. This result is linked to the stabilizing effect of TMAO on the local H-bond network of water. Experiments and calculations, which represent two independent methods, are in very good agreement and are in accordance with results of force field molecular dynamics simulations of the same systems.
Collapse
Affiliation(s)
- Michael Knierbein
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Held
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Hölzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Gabriele Sadowski
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany.
| |
Collapse
|
17
|
Knierbein M, Venhuis M, Held C, Sadowski G. Thermodynamic properties of aqueous osmolyte solutions at high-pressure conditions. Biophys Chem 2019; 253:106211. [PMID: 31280070 DOI: 10.1016/j.bpc.2019.106211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
Living organisms can be encountered in nature under extreme conditions. At the seabed, pressure may reach 1000 bar. Yet microorganisms can be found that still function under these conditions. On the one hand, it is known that high pressure even has a positive effect on piezophile enzymes increasing their activity. On the other hand, such microorganisms might contain up to very high concentrations of osmolytes that counteract osmotic stress. To better understand high-pressure influences on biochemical systems, fundamental knowledge about pressure effects on thermodynamic properties of such osmolytes is important. However, literature data is scarce and experiments at high-pressure conditions are challenging. Hence, new high-pressure density data of aqueous osmolyte solutions were measured in this work at temperatures between 298.15 K and 318.15 K and at osmolyte concentrations up to 3 mol/kg water. Further, the thermodynamic model PC-SAFT has been applied recently to successfully model vapor pressures of water and density of water up to 10 kbar [M. Knierbein et al., Density variations of TMAO solutions in the kilobar range: experiments, PC-SAFT predictions, and molecular dynamics simulations, Biophysical chemistry, (2019)]. This allowed accurately predicting effects of temperature and osmolyte concentration on thermodynamic properties (especially mixture densities) up to very high pressures. Common osmolytes (trimethylamine-N-oxide, urea, ectoine, glycerol, glycine) as well as the dipeptides acetyl-N-methylglycine amide, acetyl-N-methylalanine amide, and acetyl-N-methylleucine amide were under investigation.
Collapse
Affiliation(s)
| | | | - Christoph Held
- Laboratory of Thermodynamics, TU Dortmund, 44227 Dortmund, Germany
| | | |
Collapse
|
18
|
Arns L, Knop JM, Patra S, Anders C, Winter R. Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophys Chem 2019; 251:106190. [PMID: 31146215 DOI: 10.1016/j.bpc.2019.106190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
In this review we discuss results from temperature and pressure dependent single-molecule Förster resonance energy transfer (smFRET) studies on nucleic acids in the presence of macromolecular crowders and organic osmolytes. As representative examples, we have chosen fragments of both DNAs and RNAs, i.e., a synthetic DNA hairpin, a human telomeric G-quadruplex and the microROSE RNA hairpin. To mimic the effects of intracellular components, our studies include the macromolecular crowding agent Ficoll, a copolymer of sucrose and epichlorohydrin, and the organic osmolytes trimethylamine N-oxide, urea and glycine as well as natural occurring osmolyte mixtures from deep sea organisms. Furthermore, the impact of mutations in an RNA sequence on the conformational dynamics is examined. Different from proteins, the effects of the osmolytes and crowding agents seem to strongly dependent on the structure and chemical make-up of the nucleic acid.
Collapse
Affiliation(s)
- Loana Arns
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Jim-Marcel Knop
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Satyajit Patra
- Aix Marseille Université, CNRS, Centralle Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Christian Anders
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
19
|
Paudel BP, Fiorini E, Börner R, Sigel RKO, Rueda DS. Optimal molecular crowding accelerates group II intron folding and maximizes catalysis. Proc Natl Acad Sci U S A 2018; 115:11917-11922. [PMID: 30397128 PMCID: PMC6255197 DOI: 10.1073/pnas.1806685115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Unlike in vivo conditions, group II intron ribozymes are known to require high magnesium(II) concentrations ([Mg2+]) and high temperatures (42 °C) for folding and catalysis in vitro. A possible explanation for this difference is the highly crowded cellular environment, which can be mimicked in vitro by macromolecular crowding agents. Here, we combined bulk activity assays and single-molecule Förster Resonance Energy Transfer (smFRET) to study the influence of polyethylene glycol (PEG) on catalysis and folding of the ribozyme. Our activity studies reveal that PEG reduces the [Mg2+] required, and we found an "optimum" [PEG] that yields maximum activity. smFRET experiments show that the most compact state population, the putative active state, increases with increasing [PEG]. Dynamic transitions between folded states also increase. Therefore, this study shows that optimal molecular crowding concentrations help the ribozyme not only to reach the native fold but also to increase its in vitro activity to approach that in physiological conditions.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Virology, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Single Molecule Imaging, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Erica Fiorini
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Richard Börner
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - David S Rueda
- Molecular Virology, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom;
- Single Molecule Imaging, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
| |
Collapse
|
20
|
Quantum mechanical investigation of the nature of nucleobase-urea stacking interaction, a crucial driving force in RNA unfolding in aqueous urea. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Kumar R, Kumar R, Sharma D, Garg M, Kumar V, Agarwal MC. Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1102-1114. [DOI: 10.1016/j.bbapap.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/07/2018] [Accepted: 08/30/2018] [Indexed: 11/26/2022]
|
22
|
Julius K, Al-Ayoubi SR, Paulus M, Tolan M, Winter R. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys Chem Chem Phys 2018; 20:7093-7104. [DOI: 10.1039/c7cp08242h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compatible osmolytes are able to efficiently modulate the oligomeric state, stability and activity of enzymes at high pressures.
Collapse
Affiliation(s)
- Karin Julius
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Samy R. Al-Ayoubi
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - Michael Paulus
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Metin Tolan
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
23
|
Patra S, Anders C, Schummel PH, Winter R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys 2018; 20:13159-13170. [DOI: 10.1039/c8cp00907d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmolyte mixtures from deep sea organisms are able to rescue nucleic acids from pressure-induced unfolding.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Christian Anders
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Paul Hendrik Schummel
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
24
|
Pathak AK, Bandyopadhyay T. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study. J Chem Phys 2017; 146:165104. [DOI: 10.1063/1.4982049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Arup K. Pathak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
25
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology; TU Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
26
|
Gao M, Arns L, Winter R. Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angew Chem Int Ed Engl 2017; 56:2302-2306. [PMID: 28102930 DOI: 10.1002/anie.201611843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 12/31/2022]
Abstract
Folding of ribonucleic acids (RNAs) is driven by several factors, such as base pairing and stacking, chain entropy, and ion-mediated electrostatics, which have been studied in great detail. However, the power of background molecules in the cellular milieu is often neglected. Herein, we study the effect of common osmolytes on the folding equilibrium of a hairpin-structured RNA and, using pressure perturbation, provide novel thermodynamic and volumetric insights into the modulation mechanism. The presence of TMAO causes an increased thermal stability and a more positive volume change for the helix-to-coil transition, whereas urea destabilizes the hairpin and leads to an increased expansibility of the unfolded state. Further, we find a strong interplay between water, salt, and osmolyte in driving the thermodynamics and defining the temperature and pressure stability limit of the RNA. Our results support a universal working mechanism of TMAO and urea to (de)stabilize proteins and the RNA.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
27
|
Sukenik S, Dunsky S, Barnoy A, Shumilin I, Harries D. TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domains. Phys Chem Chem Phys 2017; 19:29862-29871. [DOI: 10.1039/c7cp04603k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TMAO induces an attractive force between lipid bilayers. The force is traced to the preferential repulsion of the osmolyte from lipid.
Collapse
Affiliation(s)
- Shahar Sukenik
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Shaked Dunsky
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Avishai Barnoy
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Ilan Shumilin
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| |
Collapse
|
28
|
Rodríguez-Ropero F, Rötzscher P, van der Vegt NFA. Comparison of Different TMAO Force Fields and Their Impact on the Folding Equilibrium of a Hydrophobic Polymer. J Phys Chem B 2016; 120:8757-67. [DOI: 10.1021/acs.jpcb.6b04100] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco Rodríguez-Ropero
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - Philipp Rötzscher
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| |
Collapse
|
29
|
Wang YL, Wang Y, Yi HB. High-Order Ca(II)–Chloro Complexes in Mixed CaCl2–LiCl Aqueous Solution: Insights from Density Functional Theory and Molecular Dynamics Simulations. J Phys Chem A 2016; 120:5635-48. [DOI: 10.1021/acs.jpca.6b01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Lin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Ying Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Hai-Bo Yi
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
30
|
Gao M, Gnutt D, Orban A, Appel B, Righetti F, Winter R, Narberhaus F, Müller S, Ebbinghaus S. Faltung einer RNA-Haarnadel in der dicht gedrängten Zelle. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mimi Gao
- Lehrstuhl für Physikalische Chemie II; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Deutschland
| | - David Gnutt
- Lehrstuhl für Physikalische Chemie II; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Deutschland
| | - Axel Orban
- Institut für Biochemie; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Bettina Appel
- Institut für Biochemie; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Francesco Righetti
- Biologie der Mikroorganismen; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Deutschland
| | - Roland Winter
- Lehrstuhl für Physikalische Chemie I; TU Dortmund; Otto-Hahn-Str. 4a 44227 Dortmund Deutschland
| | - Franz Narberhaus
- Biologie der Mikroorganismen; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Deutschland
| | - Sabine Müller
- Institut für Biochemie; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Simon Ebbinghaus
- Lehrstuhl für Physikalische Chemie II; Ruhr-Universität Bochum; Universitätsstr. 150 44801 Bochum Deutschland
| |
Collapse
|
31
|
Gao M, Gnutt D, Orban A, Appel B, Righetti F, Winter R, Narberhaus F, Müller S, Ebbinghaus S. RNA Hairpin Folding in the Crowded Cell. Angew Chem Int Ed Engl 2016; 55:3224-8. [PMID: 26833452 PMCID: PMC4762321 DOI: 10.1002/anie.201510847] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 12/02/2022]
Abstract
Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin‐structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high‐molecular‐weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - David Gnutt
- Physical Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Axel Orban
- Institute for Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Bettina Appel
- Institute for Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Francesco Righetti
- Microbial Biology, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Roland Winter
- Physical Chemistry I, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Sabine Müller
- Institute for Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Simon Ebbinghaus
- Physical Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
32
|
Kumar R, Sharma D, Jain R, Kumar S, Kumar R. Role of macromolecular crowding and salt ions on the structural-fluctuation of a highly compact configuration of carbonmonoxycytochrome c. Biophys Chem 2015; 207:61-73. [DOI: 10.1016/j.bpc.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 11/25/2022]
|
33
|
Kang H, Toan NM, Hyeon C, Thirumalai D. Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment. J Am Chem Soc 2015; 137:10970-8. [PMID: 26267166 DOI: 10.1021/jacs.5b04531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigate the conformations of DNA-like stiff chains, characterized by contour length (L) and persistence length (lp), in a variety of crowded environments containing monodisperse soft spherical (SS) and spherocylindrical (SC) particles, a mixture of SS and SC, and a milieu mimicking the composition of proteins in the Escherichia coli cytoplasm. The stiff chain, whose size modestly increases in SS crowders up to ϕ ≈ 0.1, is considerably more compact at low volume fractions (ϕ ≤ 0.2) in monodisperse SC particles than in a medium containing SS particles. A 1:1 mixture of SS and SC crowders induces greater chain compaction than the pure SS or SC crowders at the same ϕ, with the effect being highly nonadditive. We also discover a counterintuitive result that the polydisperse crowding environment, mimicking the composition of a cell lysate, swells the DNA-like polymer, which is in stark contrast to the size reduction of flexible polymers in the same milieu. Trapping of the stiff chain in a fluctuating tube-like environment created by large-sized crowders explains the dramatic increase in size and persistence length of the stiff chain. In the polydisperse medium, mimicking the cellular environment, the size of the DNA (or related RNA) is determined by L/lp. At low L/lp, the size of the polymer is unaffected, whereas there is a dramatic swelling at an intermediate value of L/lp. We use these results to provide insights into recent experiments on crowding effects on RNA and also make testable predictions.
Collapse
Affiliation(s)
| | | | | | - D Thirumalai
- Korea Institute for Advanced Study , Seoul 130-722, Korea
| |
Collapse
|
34
|
Hilaire MR, Abaskharon RM, Gai F. Biomolecular Crowding Arising from Small Molecules, Molecular Constraints, Surface Packing, and Nano-Confinement. J Phys Chem Lett 2015; 6:2546-53. [PMID: 26266732 PMCID: PMC4610718 DOI: 10.1021/acs.jpclett.5b00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The effect of macromolecular crowding on the structure, dynamics, and reactivity of biomolecules is well established and the relevant research has been extensively reviewed. Herein, we focus our discussion on crowding effects arising from small cosolvent molecules and densely packed surface conditions. In addition, we highlight recent efforts that capitalize on the excluded volume effect for various tailored biochemical and biophysical applications. Specifically, we discuss how a targeted increase in local mass density can be exploited to gain insight into the folding dynamics of the protein of interest and how confinement via reverse micelles can be used to study a range of biophysical questions, from protein hydration dynamics to amyloid formation.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
35
|
Holmstrom ED, Dupuis NF, Nesbitt DJ. Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding. J Phys Chem B 2015; 119:3687-96. [PMID: 25621404 DOI: 10.1021/jp512491n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influential role of monovalent and divalent metal cations in facilitating conformational transitions in both RNA and DNA has been a target of intense biophysical research efforts. However, organic neutrally charged cosolutes can also significantly alter nucleic acid conformational transitions. For example, highly soluble small molecules such as trimethylamine N-oxide (TMAO) and urea are occasionally utilized by organisms to regulate cellular osmotic pressure. Ensemble studies have revealed that these so-called osmolytes can substantially influence the thermodynamics of nucleic acid conformational transitions. In the present work, we exploit single-molecule FRET (smFRET) techniques to measure, for first time, the kinetic origins of these osmolyte-induced changes to the folding free energy. In particular, we focus on smFRET RNA and DNA constructs designed as model systems for secondary and tertiary structure formation. These findings reveal that TMAO preferentially stabilizes both secondary and tertiary interactions by increasing kfold and decreasing kunfold, whereas urea destabilizes both conformational transitions, resulting in the exact opposite shift in kinetic rate constants (i.e., decreasing kfold and increasing kunfold). Complementary temperature-dependent smFRET experiments highlight a thermodynamic distinction between the two different mechanisms responsible for TMAO-facilitated conformational transitions, while only a single mechanism is seen for the destabilizing osmolyte urea. Finally, these results are interpreted in the context of preferential interactions between osmolytes, and the solvent accessible surface area (SASA) associated with the (i) nucleobase, (ii) sugar, and (iii) phosphate groups of nucleic acids in order to map out structural changes that occur during the conformational transitions.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0440, United States
| | | | | |
Collapse
|
36
|
Kang H, Pincus PA, Hyeon C, Thirumalai D. Effects of macromolecular crowding on the collapse of biopolymers. PHYSICAL REVIEW LETTERS 2015; 114:068303. [PMID: 25723249 DOI: 10.1103/physrevlett.114.068303] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Experiments show that macromolecular crowding modestly reduces the size of intrinsically disordered proteins even at a volume fraction (ϕ) similar to that in the cytosol, whereas DNA undergoes a coil-to-globule transition at very small ϕ. We show using a combination of scaling arguments and simulations that the polymer size R̅(g)(ϕ) depends on x=R̅(g)(0)/D, where D is the ϕ-dependent distance between the crowders. If x≲O(1), there is only a small decrease in R̅(g)(ϕ) as ϕ increases. When x≫O(1), a cooperative coil-to-globule transition is induced. Our theory quantitatively explains a number of experiments.
Collapse
Affiliation(s)
- Hongsuk Kang
- Chemical Physics and Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Philip A Pincus
- Materials and Physics Departments, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | - D Thirumalai
- Chemical Physics and Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
37
|
RNA folding: structure prediction, folding kinetics and ion electrostatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:143-83. [PMID: 25387965 DOI: 10.1007/978-94-017-9245-5_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.
Collapse
|
38
|
Hyeon C, Denesyuk NA, Thirumalai D. Development and Applications of Coarse-Grained Models for RNA. Isr J Chem 2014. [DOI: 10.1002/ijch.201400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Jain R, Sharma D, Kumar S, Kumar R. Factor Defining the Effects of Glycine Betaine on the Thermodynamic Stability and Internal Dynamics of Horse Cytochrome c. Biochemistry 2014; 53:5221-35. [DOI: 10.1021/bi500356c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rishu Jain
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council
of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Sandeep Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Rajesh Kumar
- School
of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| |
Collapse
|
40
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
41
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
42
|
Molecular crowding inhibits U-insertion/deletion RNA editing in vitro: consequences for the in vivo reaction. PLoS One 2013; 8:e83796. [PMID: 24376749 PMCID: PMC3871654 DOI: 10.1371/journal.pone.0083796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/16/2013] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial pre-mRNAs in African trypanosomes are edited to generate functional transcripts. The reaction is typified by the insertion and deletion of U nucleotides and is catalyzed by a macromolecular complex, the editosome. Editosomes bind pre-edited mRNA/gRNA pairs and the reaction can be recapitulated in vitro by using pre-mRNA- and gRNA-mimicking oligoribonucleotides together with enriched editosome preparations. Although the in vitro assay has been instrumental in unraveling the basic steps of the editing cycle it is performed at dilute solvent conditions. This ignores the fact that editing takes place inside the highly crowded mitochondria. Here we investigate the effects of molecular crowding on RNA editing. By using neutral, macromolecular cosolutes we generate defined dilute, semidilute and crowded solvent properties and we demonstrate different thermodynamic stabilities of the pre-mRNA/gRNA hybrid RNAs at these conditions. Crowded conditions stabilize the RNAs by -30 kJ/mol. Furthermore, we show that the rate constants for the association and dissociation (kass/kdiss) of substrate RNAs to editosomes decrease, ultimately inhibiting the in vitro reaction. The data demonstrate that the current RNA editing in vitro system is sensitive to molecular crowding, which suggests that the in vivo reaction cannot rely on a diffusion-controlled, collision-based mechanism. Possible non-diffusional reaction pathways are discussed.
Collapse
|
43
|
Pincus DL, Thirumalai D. Force-induced unzipping transitions in an athermal crowded environment. J Phys Chem B 2013; 117:13107-14. [PMID: 23789729 DOI: 10.1021/jp402922q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using theoretical arguments and extensive Monte Carlo (MC) simulations of a coarse-grained three-dimensional off-lattice model of a β-hairpin, we demonstrate that the equilibrium critical force, Fc, needed to unfold the biopolymer increases nonlinearly with increasing volume fraction occupied by the spherical macromolecular crowding agent. Both scaling arguments and MC simulations show that the critical force increases as Fc ≈ φc(α). The exponent α is linked to the Flory exponent relating the size of the unfolded state of the biopolymer and the number of amino acids. The predicted power law dependence is confirmed in simulations of the dependence of the isothermal extensibility and the fraction of native contacts on φc. We also show using MC simulations that Fc is linearly dependent on the average osmotic pressure (P) exerted by the crowding agents on the β-hairpin. The highly significant linear correlation coefficient of 0.99657 between Fc and P makes it straightforward to predict the dependence of the critical force on the density of crowders. Our predictions are amenable to experimental verification using laser optical tweezers.
Collapse
Affiliation(s)
- David L Pincus
- Institute for Physical Science and Technology, University of Maryland , College Park, Maryland 20742, United States
| | | |
Collapse
|
44
|
Feig M, Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J Mol Graph Model 2013; 45:144-56. [PMID: 24036504 DOI: 10.1016/j.jmgm.2013.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
An increasing number of studies are aimed at modeling cellular environments in a comprehensive and realistic fashion. A major challenge in these efforts is how to bridge spatial and temporal scales over many orders of magnitude. Furthermore, there are additional challenges in integrating different aspects ranging from questions about biomolecular stability in crowded environments to the description of reactive processes on cellular scales. In this review, recent studies with models of biomolecules in cellular environments at different levels of detail are discussed in terms of their strengths and weaknesses. In particular, atomistic models, implicit representations of cellular environments, coarse-grained and spheroidal models of biomolecules, as well as the inclusion of reactive processes via reaction-diffusion models are described. Furthermore, strategies for integrating the different models into a comprehensive description of cellular environments are discussed.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry & Molecular Biology and Department of Chemistry, Michigan State University, 603 Wilson Road, BCH 218, East Lansing, MI 48824, United States; RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
45
|
Denning EJ, Thirumalai D, MacKerell AD. Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure. Biophys Chem 2013; 184:8-16. [PMID: 24012912 DOI: 10.1016/j.bpc.2013.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange simulations showed that a percentage of TMAO is indeed protonated, thus contributing to the stability of the tertiary but not the secondary structure of PreQ1. TMAOP results in an unfavorable dehydration of phosphodiester backbone, which is compensated by electrostatic attraction between TMAOP and the phosphate groups. In addition, TMAOP interacts with specific sites in the tertiary RNA structure, mimicking the behavior of positively charged ions and of the PreQ1 ligand in stabilizing RNA. Finally, we predict that TMAO-induced stabilization of RNA tertiary structures should be strongly pH dependent.
Collapse
Affiliation(s)
- Elizabeth J Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
46
|
Wu D, Minton AP. Quantitative characterization of the compensating effects of trimethylamine-N-oxide and guanidine hydrochloride on the dissociation of human cyanmethmoglobin. J Phys Chem B 2013; 117:9395-9. [PMID: 23863125 PMCID: PMC4327910 DOI: 10.1021/jp4065399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic light scattering was used to measure the extent of dissociation of human cyanmethemoglobin (HbCN) α2β2 tetramers into αβ dimers as a function of HbCN concentration in the presence of varying concentrations of guanidine hydrochloride (GuHCl) and trimethylamine-N-oxide (TMAO). It was found that increasing concentrations of GuHCl enhance the dissociation of HbCN, and that GuHCl-induced dissociation is progressively inhibited with increasing concentrations of TMAO. The effects of both cosolutes upon the free energy of HbCN dissociation are shown to be additive. The effect of TMAO on Hb dissociation is largely attributed to steric volume exclusion but is partially compensated by a small attractive interaction between TMAO and the protein.
Collapse
Affiliation(s)
- Di Wu
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Yoon J, Thirumalai D, Hyeon C. Urea-induced denaturation of preQ1-riboswitch. J Am Chem Soc 2013; 135:12112-21. [PMID: 23863126 DOI: 10.1021/ja406019s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urea, a polar molecule with a large dipole moment, not only destabilizes folded RNA structures but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all-atom molecular dynamics simulations to determine the molecular underpinnings of urea-induced RNA denaturation. Urea displays its denaturing power in both secondary and tertiary motifs of the riboswitch structure. Our simulations reveal that the denaturation of RNA structures is mainly driven by the hydrogen-bonding and stacking interactions of urea with the bases. Through detailed studies of the simulation trajectories, we found that geminate pairs between urea and bases due to hydrogen bonds and stacks persist only ~0.1-1 ns, which suggests that the urea-base interaction is highly dynamic. Most importantly, the early stage of base-pair disruption is triggered by penetration of water molecules into the hydrophobic domain between the RNA bases. The infiltration of water into the narrow space between base pairs is critical in increasing the accessibility of urea to transiently disrupted bases, thus allowing urea to displace inter-base hydrogen bonds. This mechanism--water-induced disruption of base pairs resulting in the formation of a "wet" destabilized RNA followed by solvation by urea--is the exact opposite of the two-stage denaturation of proteins by urea. In the latter case, initial urea penetration creates a dry globule, which is subsequently solvated by water, leading to global protein unfolding. Our work shows that the ability to interact with both water and polar or nonpolar components of nucleotides makes urea a powerful chemical denaturant for nucleic acids.
Collapse
Affiliation(s)
- Jeseong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | | | | |
Collapse
|
48
|
Larini L, Shea JE. Double Resolution Model for Studying TMAO/Water Effective Interactions. J Phys Chem B 2013; 117:13268-77. [DOI: 10.1021/jp403635g] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luca Larini
- Department of Chemistry
and Biochemistry
and of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United
States
| | - Joan-Emma Shea
- Department of Chemistry
and Biochemistry
and of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United
States
| |
Collapse
|
49
|
Denesyuk NA, Thirumalai D. Entropic stabilization of the folded states of RNA due to macromolecular crowding. Biophys Rev 2013; 5:225-232. [PMID: 28510164 DOI: 10.1007/s12551-013-0119-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/25/2022] Open
Abstract
We review the effects of macromolecular crowding on the folding of RNA by considering the simplest scenario when excluded volume interactions between crowding particles and RNA dominate. Using human telomerase enzyme as an example, we discuss how crowding can alter the equilibrium between pseudoknot and hairpin states of the same RNA molecule-a key aspect of crowder-RNA interactions. We summarize data showing that the crowding effect is significant only if the size of the spherical crowding particle is smaller than the radius of gyration of the RNA in the absence of crowding particles. The implication for function of the wild type and mutants of human telomerase is outlined by using a relationship between enzyme activity and its conformational equilibrium. In addition, we discuss the interplay between macromolecular crowding and ionic strength of the RNA buffer. Finally, we briefly review recent experiments which illustrate the connection between excluded volume due to macromolecular crowding and the thermodynamics of RNA folding.
Collapse
Affiliation(s)
- Natalia A Denesyuk
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
50
|
Tan ZJ, Chen SJ. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 2013; 103:827-36. [PMID: 22947944 DOI: 10.1016/j.bpj.2012.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 12/28/2022] Open
Abstract
RNAs are negatively charged molecules that reside in cellular environments with macromolecular crowding. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the effect of confinement on ion-mediated RNA structural collapse for a simple model system. We find that for both Na(+) and Mg(2+), the ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. This enhancement of ion efficiency is attributed to the decreased electrostatic free-energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Collapse
Affiliation(s)
- Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People's Republic of China.
| | | |
Collapse
|