1
|
Šoltysová M, Řezáčová P. Structure and function of bacterial transcription regulators of the SorC family. Transcription 2024:1-22. [PMID: 39223991 DOI: 10.1080/21541264.2024.2387895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| | - Pavlína Řezáčová
- Structural Biology, Institute of Organic Chemistry and Biochemistry of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Khatun MA, Hoque MA, Koffas M, Feng Y. Reducing the virulence of Pseudomonas aeruginosa by using multiple quorum-quenching enzymes. J Ind Microbiol Biotechnol 2023; 50:kuad028. [PMID: 37738438 PMCID: PMC10536470 DOI: 10.1093/jimb/kuad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa in healthcare settings poses a tremendous challenge to traditional antibiotic therapy. Pseudomonas aeruginosa utilizes quorum sensing (QS) to coordinate the production of virulence factors and the formation of drug-resistant biofilms. QS is mediated by signal compounds produced by P. aeruginosa as well as signal molecules produced by other non-pseudomonad bacteria. A potential strategy to prevent bacterial pathogenicity is utilizing enzymes to interfere with QS. Here, we used AidC, a quorum-quenching (QQ) enzyme from Chryseobacterium sp. strain StRB126 that can effectively hydrolyze N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) and N-butanoyl-homoserine lactone (C4-HSL), the major signal molecules synthesized by P. aeruginosa. The exogenous addition of AidC to P. aeruginosa wild-type strain PAO1 cultures significantly reduced the total protease and elastase activities and the production of pyocyanin. In addition, the application of AidC resulted in thin and sparse biofilm formation. Later, we used a metagenomic-derived QQ enzyme, QQ-2, in combination with AidC to attenuate PAO1 virulence when the presence of a non-pseudomonad signal compound, autoinducer-2, aggravated it. These findings suggest that using a combined antimicrobial approach may lead to a more efficacious therapeutic intervention against P. aeruginosa PAO1 infection, as its behavior is modulated in the presence of intraspecies and interspecies signal compounds. ONE-SENTENCE SUMMARY In this work, the potential of dual enzymes was investigated to interfere with quorum sensing as a novel concept for reducing the virulence of P. aeruginosa, which is influenced by both intra species and interspecies communication.
Collapse
Affiliation(s)
- Mst Afroza Khatun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Md Anarul Hoque
- Department of Chemical and Biochemical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biochemical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Rodrigues MV, Kis P, Xavier KB, Ventura MR. Synthesis and potential of Autoinducer‐2 and analogs to manipulate inter‐species Quorum Sensing. Isr J Chem 2023. [DOI: 10.1002/ijch.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Peter Kis
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
- Institute of Chemistry Slovak Academy of Sciences 845 38 Bratislava Slovakia
| | | | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
4
|
Xue B, Shen Y, Zuo J, Song D, Fan Q, Zhang X, Yi L, Wang Y. Bringing Antimicrobial Strategies to a New Level: The Quorum Sensing System as a Target to Control Streptococcus suis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122006. [PMID: 36556371 PMCID: PMC9782415 DOI: 10.3390/life12122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen. It mainly uses quorum sensing (QS) to adapt to complex and changeable environments. QS is a universal cell-to-cell communication system that has been widely studied for its physiological functions, including the regulation of bacterial adhesion, virulence, and biofilm formation. Quorum sensing inhibitors (QSIs) are highly effective at interfering with the QS system and bacteria have trouble developing resistance to them. We review the current research status of the S. suis LuxS/AI-2 QS system and QSIs. Studies showed that by inhibiting the formation of AI-2, targeting the LuxS protein, inhibiting the expression of luxs gene can control the LuxS/AI-2 QS system of S. suis. Other potential QSIs targets are summarized, which may be preventing and treating S. suis infections, including AI-2 production, transmission, LuxS protein, blockage of AI-2 binding to receptors, AI-2-mediated QS. Since antibiotics are becoming increasingly ineffective due to the emergence of resistant bacteria, including S. suis, it is thus critical to find new antibacterial drugs with different mechanisms of action. QSIs provide hope for the development of such drugs.
Collapse
Affiliation(s)
- Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| |
Collapse
|
5
|
Keizers M, Dobrindt U, Berger M. A Simple Biosensor-Based Assay for Quantitative Autoinducer-2 Analysis. ACS Synth Biol 2022; 11:747-759. [PMID: 35090122 DOI: 10.1021/acssynbio.1c00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria produce and react to interspecies signaling molecules in order to control the expression of genes that are particularly beneficial when they are expressed by a bacterial community. In addition to intraspecies communication, the signaling molecule autoinducer-2 (AI-2) can also serve for interspecies communication between Gram-positive and Gram-negative bacteria and is therefore of particular interest. The analysis and quantification of AI-2 are essential for understanding population density-dependent changes in bacterial behavior and pathogenicity. However, currently available bioassays for AI-2 quantification are rather complex, have narrow detection ranges, and are very sensitive to trace components of, for example, growth media. To facilitate and improve the detection of AI-2, we have developed an Escherichia coli biosensor-based assay that is sensitive, cheap, fast, robust, and reliable in the quantification of biologically active AI-2. The bioassay is based on an lsr promoter-fluorescent reporter gene fusion cassette that we chromosomally integrated in a biosensor strain, but the cassette can also be used in a low-copy number plasmid for the application in other Gram-negative bacterial species. We show here that AI-2 quantification was possible in a concentration range from 400 nM to 100 μM and that a critical interpretation of the kinetics of the measurements can reveal sugar interference. With the help of our biosensor strain, coculture experiments were done to test the capability and kinetics of AI-2 secretion by various Gram-negative bacteria in real time. Finally, calibration curves were used to calculate the absolute AI-2 concentration in cell-free bacterial samples.
Collapse
Affiliation(s)
- Marla Keizers
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| |
Collapse
|
6
|
Ranava D, Backes C, Karthikeyan G, Ouari O, Soric A, Guiral M, Cárdenas ML, Giudici-Orticoni MT. Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules. mBio 2021; 12:e02758-20. [PMID: 33468690 PMCID: PMC7845633 DOI: 10.1128/mbio.02758-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Formation of multispecies communities allows nearly every niche on earth to be colonized, and the exchange of molecular information among neighboring bacteria in such communities is key for bacterial success. To clarify the principles controlling interspecies interactions, we previously developed a coculture model with two anaerobic bacteria, Clostridium acetobutylicum (Gram positive) and Desulfovibrio vulgaris Hildenborough (Gram negative, sulfate reducing). Under conditions of nutritional stress for D. vulgaris, the existence of tight cell-cell interactions between the two bacteria induced emergent properties. Here, we show that the direct exchange of carbon metabolites produced by C. acetobutylicum allows D vulgaris to duplicate its DNA and to be energetically viable even without its substrates. We identify the molecular basis of the physical interactions and how autoinducer-2 (AI-2) molecules control the interactions and metabolite exchanges between C. acetobutylicum and D. vulgaris (or Escherichia coli and D. vulgaris). With nutrients, D. vulgaris produces a small molecule that inhibits in vitro the AI-2 activity and could act as an antagonist in vivo Sensing of AI-2 by D. vulgaris could induce formation of an intercellular structure that allows directly or indirectly metabolic exchange and energetic coupling between the two bacteria.IMPORTANCE Bacteria have usually been studied in single culture in rich media or under specific starvation conditions. However, in nature they coexist with other microorganisms and build an advanced society. The molecular bases of the interactions controlling this society are poorly understood. Use of a synthetic consortium and reducing complexity allow us to shed light on the bacterial communication at the molecular level. This study presents evidence that quorum-sensing molecule AI-2 allows physical and metabolic interactions in the synthetic consortium and provides new insights into the link between metabolism and bacterial communication.
Collapse
Affiliation(s)
- David Ranava
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, Mediterranean Institute of Microbiology, Marseille, France
| | - Cassandra Backes
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, Mediterranean Institute of Microbiology, Marseille, France
| | | | - Olivier Ouari
- Aix-Marseille University, CNRS, UMR 7273, ICR, Marseille, France
| | - Audrey Soric
- Aix-Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France
| | - Marianne Guiral
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, Mediterranean Institute of Microbiology, Marseille, France
| | - María Luz Cárdenas
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, Mediterranean Institute of Microbiology, Marseille, France
| | - Marie Thérèse Giudici-Orticoni
- CNRS, Aix-Marseille University, Bioenergetic and Protein Engineering Laboratory, Mediterranean Institute of Microbiology, Marseille, France
| |
Collapse
|
7
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
8
|
Stephens K, Bentley WE. Synthetic Biology for Manipulating Quorum Sensing in Microbial Consortia. Trends Microbiol 2020; 28:633-643. [DOI: 10.1016/j.tim.2020.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
|
9
|
Liu Z, Hong CJ, Yang Y, Dai L, Ho CL. Advances in Bacterial Biofilm Management for Maintaining Microbiome Homeostasis. Biotechnol J 2020; 15:e1900320. [PMID: 32510869 DOI: 10.1002/biot.201900320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Certain microbial biofilm in the human-microbiota community can negatively impact the host microbiome. This gives rise to various methods to prevent the formation of biofilms or to facilitate biofilm dispersal from surfaces and tissues in the host. Despite all these efforts, these persistent microbial biofilms on surfaces and in the host tissue can result in health problems to the host and its microbiome. It is the adaptive behavior of microbes within the biofilm that confers on these tenacious microbes the resistance to harsh environments, antibiotic treatments, and the ability to evade the host immune system. In this review, the approaches to combat microbial biofilm in the last decade are discussed. The biochemical pathway regulating biofilm formation is first discussed, followed by the discussion of the three approaches to combat biofilm formation: physical, chemical, and biological approaches. The advances in these approaches have given rise to methods of effectively dispersing the microbial biofilm and preventing the adherence of these microbial communities altogether. As there are numerous approaches to target biofilm, in this review the attempt is to provide insights on how these approaches have been used to modulate the host-microbiome by looking at the individual strengths and weaknesses.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Can-Jian Hong
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yongshuai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
10
|
Wang S, Payne GF, Bentley WE. Quorum Sensing Communication: Molecularly Connecting Cells, Their Neighbors, and Even Devices. Annu Rev Chem Biomol Eng 2020; 11:447-468. [DOI: 10.1146/annurev-chembioeng-101519-124728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
11
|
Gatta V, Tomašič T, Ilaš J, Zidar N, Peterlin Mašič L, Barančoková M, Frlan R, Anderluh M, Kikelj D, Tammela P. A New Cell-Based AI-2-Mediated Quorum Sensing Interference Assay in Screening of LsrK-Targeted Inhibitors. Chembiochem 2020; 21:1918-1922. [PMID: 32026533 DOI: 10.1002/cbic.201900773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Quorum sensing (QS), a bacterial communication strategy, has been recognized as one of the control mechanisms of virulence in bacteria. Thus, targeting QS offers an interesting opportunity to impair bacterial pathogenicity and develop antivirulence agents. Aiming to enhance the discovery of QS inhibitors, we developed a bioreporter Escherichia coli JW5505 pET-Plsrlux and set up a cell-based assay for identifying inhibitors of autoinducer-2 (AI-2)-mediated QS. A comparative study on the performance of target- versus cell-based assays was performed, and 91 compounds selected with the potential to target the ATP binding pocket of LsrK, a key enzyme in AI-2 processing, were tested in an LsrK inhibition assay, providing 36 hits. The same set of compounds was tested by the AI-2-mediated QS interference assay, resulting in 24 active compounds. Among those, six were also found to be active against LsrK, whereas 18 might target other components of the pathway. Thus, this AI-2-mediated QS interference cell-based assay is an effective tool for complementing target-based assays, yet also stands as an independent assay for primary screening.
Collapse
Affiliation(s)
- Viviana Gatta
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014, Helsinki, Finland
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Michaela Barančoková
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Anderluh
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (PO Box 56), 00014, Helsinki, Finland
| |
Collapse
|
12
|
Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 2019; 31:161-187. [DOI: 10.1080/1120009x.2019.1599175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gene Expression Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh K. Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Shekhar C. Bisht
- Department of Biotechnology, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Vineeta Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kashyap Kumar Dubey
- Industrial Biotechnology Laboratory, University Institute of Engineering and Technology, M.D. University, Rohtak, Haryana, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Departments of Microbiology, University College of Medical Sciences (University of Delhi), Delhi, India
| |
Collapse
|
13
|
Stotani S, Gatta V, Medarametla P, Padmanaban M, Karawajczyk A, Giordanetto F, Tammela P, Laitinen T, Poso A, Tzalis D, Collina S. DPD-Inspired Discovery of Novel LsrK Kinase Inhibitors: An Opportunity To Fight Antimicrobial Resistance. J Med Chem 2019; 62:2720-2737. [PMID: 30786203 DOI: 10.1021/acs.jmedchem.9b00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibiotic resistance is posing a continuous threat to global public health and represents a huge burden for society as a whole. In the past decade, the interference with bacterial quorum sensing (QS) (i.e., cell-cell communication) mechanisms has extensively been investigated as a valid therapeutic approach in the pursuit of a next generation of antimicrobials. ( S)-4,5-Dihydroxy-2,3-pentanedione, commonly known as ( S)-DPD, a small signaling molecule that modulates QS in both Gram-negative and Gram-positive bacteria, is phosphorylated by LsrK, and the resulting phospho-DPD activates QS. We designed and prepared a small library of DPD derivatives, characterized by five different scaffolds, and evaluated their LsrK inhibition in the context of QS interference. SAR studies highlighted the pyrazole moiety as an essential structural element for LsrK inhibition. Particularly, four compounds were found to be micromolar LsrK inhibitors (IC50 ranging between 100 μM and 500 μM) encouraging further exploration of novel analogues as potential new antimicrobials.
Collapse
Affiliation(s)
- Silvia Stotani
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section , University of Pavia , Viale Taramelli 12 , 27100 Pavia , Italy.,Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Viviana Gatta
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Prasanthi Medarametla
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Mohan Padmanaban
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Anna Karawajczyk
- Selvita S.A. , Park Life Science, Bobrzyňskiego 14 , 30-348 Krakow , Poland
| | - Fabrizio Giordanetto
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Dimitros Tzalis
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Simona Collina
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| |
Collapse
|
14
|
Shaaban M, Elgaml A, Habib ESE. Biotechnological applications of quorum sensing inhibition as novel therapeutic strategies for multidrug resistant pathogens. Microb Pathog 2018; 127:138-143. [PMID: 30503958 DOI: 10.1016/j.micpath.2018.11.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/25/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
High incidence of antibiotic resistance among bacterial clinical isolates necessitates the discovery of new targets for inhibition of microbial pathogenicity, without stimulation of microbial resistance. This could be achieved by targeting virulence determinants, which cause host damage and disease. Many pathogenic bacteria elaborate signaling molecules for cellular communication. This signaling system is named quorum sensing system (QS), and it is contingent on the bacterial population density and mediated by signal molecules called pheromones or autoinducers (AIs). Bacteria utilize QS to regulate activities and behaviors including competence, conjugation, symbiosis, virulence, motility, sporulation, antibiotic production, and biofilm formation. Hence, targeting bacterial communicating signals and suppression of QS exhibit a fundamental approach for competing microbial communication. In this review, we illustrate the common up to date approaches to utilize QS circuits in pathogenic bacteria, including Vibrio fischeri, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii, as novel therapeutic targets.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt; Department of Microbiology, Faculty of Pharmacy, Horus University, New Damietta, 34517, Egypt
| | - El-Sayed E Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| |
Collapse
|
15
|
Ilina P, Ma X, Sintim HO, Tammela P. Miniaturized whole-cell bacterial bioreporter assay for identification of quorum sensing interfering compounds. J Microbiol Methods 2018; 154:40-45. [PMID: 30300658 DOI: 10.1016/j.mimet.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
The continuing emergence and spread of antibiotic-resistant bacteria is worrisome and new strategies to curb bacterial infections are being sought. The interference of bacterial quorum sensing (QS) signaling has been suggested as a prospective antivirulence strategy. The AI-2 QS system is present in multiple bacterial species and has been shown to be correlated with pathogenicity. To facilitate the discovery of novel compounds interfering with AI-2 QS, we established a high-throughput setup of whole-cell bioreporter assay, which can be performed in either 96- or 384-well format. Agonistic or antagonistic activities of the test compounds against Escherichia coli LsrB-type AI-2 QS system are monitored by measuring the level of β-galactosidase expression. A control strain expressing β-galactosidase in quorum sensing-independent manner is included into the assay for false-positive detection.
Collapse
Affiliation(s)
- Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Xiaochu Ma
- Institute for Drug Discovery, Department of Chemistry, Purdue University Center for Cancer Research, Purdue University, United States
| | - Herman O Sintim
- Institute for Drug Discovery, Department of Chemistry, Purdue University Center for Cancer Research, Purdue University, United States
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Huiszoon RC, Subramanian S, Ramiah Rajasekaran P, Beardslee LA, Bentley WE, Ghodssi R. Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms. IEEE Trans Biomed Eng 2018; 66:1337-1345. [PMID: 30281429 DOI: 10.1109/tbme.2018.2872896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GOAL This paper reports a platform for real-time monitoring and treatment of biofilm formation on three-dimensional biomedical device surfaces. METHODS We utilize a flexible platform consisting of gold interdigitated electrodes patterned on a polyimide substrate. The device was integrated onto the interior of a urinary catheter and characterization was performed in a custom-developed flow system. Biofilm growth was monitored via impedance change at 100 Hz ac with a 50 mV signal amplitude. RESULTS A 30% impedance decrease over 24 h corresponded to Escherichia coli biofilm formation. The platform also enabled removal of the biofilm through the bioelectric effect; a low concentration of antibiotic combined with the applied ac voltage signal led to a synergistic reduction in biofilm resulting in a 12% increase in impedance. Biomass characterization via crystal violet staining confirmed that the impedance detection results correlate with changes in the amount of biofilm biomass on the sensor. We also demonstrated integration with a chip-based impedance converter to enable miniaturization and allow in situ wireless implementation. A 5% impedance decrease measured with the impedance converter corresponded to biofilm growth, replicating the trend measured with the potentiostat. CONCLUSION This platform represents a promising solution for biofilm infection management in diverse vulnerable environments. SIGNIFICANCE Biofilms are the dominant mode of growth for microorganisms, where bacterial cells colonize hydrated surfaces and lead to recurring infections. Due to the inaccessible nature of the environments where biofilms grow and their increased tolerance of antimicrobials, identification, and removal on medical devices poses a challenge.
Collapse
|
17
|
Fteita D, Könönen E, Gürsoy M, Ma X, Sintim HO, Gürsoy UK. Quorum sensing molecules regulate epithelial cytokine response and biofilm-related virulence of three Prevotella species. Anaerobe 2018; 54:128-135. [PMID: 30189320 DOI: 10.1016/j.anaerobe.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
Abstract
Quorum sensing (QS) signaling regulates the motility, adhesion, and biofilm formation of bacteria, and at the same time activates immune response in eukaryotic organisms. We recently demonstrated that the QS molecule, dihydroxy-2, 3-pentanedione (DPD), and its analogs significantly inhibit estradiol-regulated virulence of Prevotella aurantiaca, one of the four species in the Prevotella intermedia group. Here, we examined the combined effects of estradiol and QS signaling on 1) cytokine response of human gingival keratinocytes (HMK) against whole cell extract (WCE) of P. intermedia, Prevotella nigrescens, and Prevotella pallens, and 2) biofilm formation of these three Prevotella species. All experiments were performed in the presence or absence of estradiol, and with different QS molecules: DPD and its analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD). Concentrations of interleukin (IL)-1β, -6, and -8 were determined by the Luminex multiplex immunoassay, biofilm mass was quantitatively evaluated by measuring protein concentration via the Bradford method, and the microtopography of biofilms was assessed by scanning electron microscopy (SEM) imaging. Concentrations of IL-6 and IL-8 were elevated when HMK cells were incubated with estradiol and WCE of P. intermedia and P. nigrescens, but decreased when incubated with estradiol and WCE of P. pallens. Butyl-DPD neutralized the estradiol- and WCE-induced regulation of HMK interleukin expression and, at the same time, inhibited the biofilm formation of P. intermedia and P. nigrescens. SEM micrographs revealed a decrease in biofilm mass after application of butyl-DPD, which was most detectable among the P. intermedia ATCC 25611 and P. nigrescens ATCC 33563 and AHN 8293 strains. In conclusion, butyl-DPD analog is able to neutralize the WCE-induced epithelial cytokine response and, at the same time, to inhibit the biofilm formation of P. intermedia and P. nigrescens.
Collapse
Affiliation(s)
- Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland; Welfare Division, Oral Health Care, City of Turku, Turku, Finland.
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Xiaochu Ma
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Herman O Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
18
|
Ha JH, Hauk P, Cho K, Eo Y, Ma X, Stephens K, Cha S, Jeong M, Suh JY, Sintim HO, Bentley WE, Ryu KS. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. SCIENCE ADVANCES 2018; 4:eaar7063. [PMID: 29868643 PMCID: PMC5983913 DOI: 10.1126/sciadv.aar7063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/18/2018] [Indexed: 05/30/2023]
Abstract
Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a "collective" phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its "perception" cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches.
Collapse
Affiliation(s)
- Jung-Hye Ha
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
- New Drug Development Center, 80 Cheombok-ro, Dong-gu, Daegu-si 41061, South Korea
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kun Cho
- Biomedical Omics Group, Korea Basic Science Institute, Chungcheongbuk-do 28119, South Korea
| | - Yumi Eo
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
| | - Xiaochu Ma
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Soyoung Cha
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
| | - Migyeong Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Herman O. Sintim
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kyoung-Seok Ryu
- Protein Structure Research Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
19
|
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 2018; 121:293-302. [PMID: 29857121 DOI: 10.1016/j.micpath.2018.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS) is a complex bacterial intercellular communication system. It is mediated by molecules called auto-inducers (AIs) and allows coordinated responses to a variety of environmental signals by inducing alterations in gene expression. Communication through QS can tremendously stimulate the pathogenicity and virulence via multiple mechanisms in pathogenic bacteria. The present review explores the major types of multitudinous QS systems known in Gram-positive and Gram-negative bacteria and their roles in bacterial pathogenesis and drug resistance. Because bacterial resistance to antibiotics is increasingly becoming a significant clinical challenge to human health; alternate strategies to combat drug resistance are warranted. Targeting bacterial pathogenicity by interruptions in QS using natural QS inhibitors and synthetic quorum-quenching analogs are being increasingly considered for development of next generation antimicrobials. The review highlights the recent advancements in discovery of promising new QS modulators and their efficiency in controlling infections caused by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering & Technology, Lucknow, 226021, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| |
Collapse
|
20
|
Wang R, Vega P, Xu Y, Chen CY, Irudayaraj J. Exploring the anti-quorum sensing activity of a d-limonene nanoemulsion for Escherichia coli O157:H7. J Biomed Mater Res A 2018; 106:1979-1986. [PMID: 29569833 DOI: 10.1002/jbm.a.36404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023]
Abstract
In this study, a d-limonene nanoemulsion was developed by using a spontaneous emulsification method and its potential to inhibit the quorum sensing (QS)-regulated properties of Escherichia coli O157:H7 (E. coli) were revealed. The results in this study showed that d-limonene nanoemulsion inhibited E. coli biofilm formation through the suppression of curli and extracellular polymeric substance (EPS) production without inhibiting cell growth, and decreased swimming and swarming ability. Further analyses showed that d-limonene nanoemulsion interfered with auto-inducer 2 (AI-2) communication and repressed the expression of curli related genes and AI-2 importer genes in E. coli. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1979-1986, 2018.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.,Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana.,Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China
| | - Pablo Vega
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Yi Xu
- Key disciplines laboratory of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing, China.,Microsystem Research Center, School of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Chin-Yi Chen
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| |
Collapse
|
21
|
Rhoads MK, Hauk P, Gupta V, Bookstaver ML, Stephens K, Payne GF, Bentley WE. Modification and Assembly of a Versatile Lactonase for Bacterial Quorum Quenching. Molecules 2018; 23:E341. [PMID: 29415497 PMCID: PMC6016966 DOI: 10.3390/molecules23020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Abstract
This work sets out to provide a self-assembled biopolymer capsule activated with a multi-functional enzyme for localized delivery. This enzyme, SsoPox, which is a lactonase and phosphotriesterase, provides a means of interrupting bacterial communication pathways that have been shown to mediate pathogenicity. Here we demonstrate the capability to express, purify and attach SsoPox to the natural biopolymer chitosan, preserving its activity to "neutralize" long-chain autoinducer-1 (AI-1) communication molecules. Attachment is shown via non-specific binding and by engineering tyrosine and glutamine affinity 'tags' at the C-terminus for covalent linkage. Subsequent degradation of AI-1, in this case N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL), serves to "quench" bacterial quorum sensing (QS), silencing intraspecies communication. By attaching enzymes to pH-responsive chitosan that, in turn, can be assembled into various forms, we demonstrate device-based flexibility for enzyme delivery. Specifically, we have assembled quorum-quenching capsules consisting of an alginate inner core and an enzyme "decorated" chitosan shell that are shown to preclude bacterial QS crosstalk, minimizing QS mediated behaviors.
Collapse
Affiliation(s)
- Melissa K Rhoads
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Valerie Gupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Elmanfi S, Ma X, Sintim HO, Könönen E, Syrjänen S, Gursoy UK. Quorum-sensing molecule dihydroxy-2,3-pentanedione and its analogs as regulators of epithelial integrity. J Periodontal Res 2018; 53:414-421. [PMID: 29344966 DOI: 10.1111/jre.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Quorum-sensing molecules regulate the behavior of bacteria within biofilms and at the same time elicit an immune response in host tissues. Our aim was to investigate the regulatory role of dihydroxy-2,3-pentanedione (DPD), the precursor of universal autoinducer-2 (AI-2), and its analogs (ethyl-DPD, butyl-DPD and isobutyl-DPD) in the integrity of gingival epithelial cells. MATERIAL AND METHODS Human gingival keratinocytes were incubated with four concentrations (10 μmol L-1 , 1 μmol L-1 , 100 nmol L-1 and 10 nmol L-1 ) of DPD and its analogs for 24 hours. The numbers of viable cells were determined using a proliferation kit, matrix metalloproteinase (MMP)-2 and -9 activities were determined by gelatin zymography, and expression of occludin protein and occludin mRNA were determined by western blotting and RT-qPCR, respectively. RESULTS Increased cell proliferation was observed in gingival keratinocytes incubated with 100 nmol L-1 of butyl-DPD. MMP-9 activity was elevated in cells incubated with 10 μmol L-1 of ethyl-DPD. On the other hand, MMP-2 activity did not show any significant change when gingival keratinocytes were incubated with or without DPD or analogs. Western blot analyses demonstrated five forms (105, 61, 52.2, 44 and 37 kDa) of occludin. Incubation with 1 μmol L-1 and 100 nmol L-1 of DPD and with 10 nmol L-1 of ethyl-DPD increased dimeric (105 kDa) forms of occludin, while incubation with 100 nmol L-1 of isobutyl-DPD increased monomeric (61 kDa) forms. DPD and ethyl-DPD decreased, and 100 nmol L-1 of isobutyl-DPD and 10 nmol L-1 of butyl-DPD increased, the monomeric (52.2 kDa and 44 kDa) forms of occludin, whereas ethyl-DPD decreased and isobutyl-DPD increased, the low-molecular-weight (37 kDa) forms. According to RT-qPCR analysis, the exposure of gingival keratinocytes to 10 μmol L-1 of isobutyl-DPD up-regulated expression of occludin. CONCLUSION The results indicate that isobutyl-DPD has the potential to enhance the integrity of the epithelium by stimulating the formation of occluding, without affecting the proliferation or gelatinolytic enzyme activities of the exposed cells. The modulatory effect of an AI-2 analog on the epithelial cell response is shown for the first time.
Collapse
Affiliation(s)
- S Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - X Ma
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - H O Sintim
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - E Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, Turku, Finland
| | - S Syrjänen
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - U K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Rhoads MK, Hauk P, Terrell J, Tsao CY, Oh H, Raghavan SR, Mansy SS, Payne GF, Bentley WE. Incorporating LsrK AI-2 quorum quenching capability in a functionalized biopolymer capsule. Biotechnol Bioeng 2017; 115:278-289. [PMID: 28782813 DOI: 10.1002/bit.26397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023]
Abstract
Antibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production. Intercepting and modulating communication networks provide a means to attenuate virulence without directly interacting with the bacteria of interest. In this work, we target communication mediated by the quorum sensing (QS) bacterial autoinducer-2, AI-2. We have assembled a capsule of biological polymers alginate and chitosan, attached an AI-2 processing kinase, LsrK, and provided substrate, ATP, for enzymatic alteration of AI-2 in culture fluids. Correspondingly, AI-2 mediated QS activity is diminished. All components of this system are "biofabricated"-they are biologically derived and their assembly is accomplished using biological means. Initially, component quantities and kinetics were tested as assembled in microtiter plates. Subsequently, the identical components and assembly means were used to create the "artificial cell" capsules. The functionalized capsules, when introduced into populations of bacteria, alter the dynamics of the AI-2 bacterial communication, attenuating QS activated phenotypes. We envision the assembly of these and other capsules or similar materials, as means to alter QS activity in a biologically compatible manner and in many environments, including in humans.
Collapse
Affiliation(s)
- Melissa K Rhoads
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jessica Terrell
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland
| | - Sheref S Mansy
- CIBIO-Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, Maryland.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
24
|
Subramanian S, Tolstaya EI, Winkler TE, Bentley WE, Ghodssi R. An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31362-31371. [PMID: 28816432 DOI: 10.1021/acsami.7b04828] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial biofilms are the primary cause of infections in medical implants and catheters. Delayed detection of biofilm infections contributes to the widespread use of high doses of antibiotics, leading to the emergence of antibiotic-resistant bacterial strains. Accordingly, there is an urgent need for systems that can rapidly detect and treat biofilm infections in situ. As a step toward this goal, in this work we have developed for the first time a threshold-activated feedback-based impedance sensor-treatment system for combined real-time detection and treatment of biofilms. Specifically, we demonstrate the use of impedimetric sensing to accurately monitor the growth of Escherichia coli biofilms in microfluidic flow cells by measuring the fractional relative change (FRC) in absolute impedance. Furthermore, we demonstrate the use of growth measurements as a threshold-activated trigger mechanism to initiate successful treatment of biofilms using bioelectric effect (BE), applied through the same sensing electrode array. This was made possible through a custom program that (a) monitored the growth and removal of biofilms within the microfluidic channels in real-time and (b) enabled the threshold-based activation of BE treatment. Such BE treatment resulted in a ∼74.8 % reduction in average biofilm surface coverage as compared to the untreated negative control. We believe that this smart microsystem for integrated biofilm sensing and treatment will enable future development of autonomous biosensors optimized for accurate real-time detection of the onset of biofilms and their in situ treatment, directly on the surfaces of medical implants.
Collapse
Affiliation(s)
- Sowmya Subramanian
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, ‡Department of Electrical and Computer Engineering, and §The Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Ekaterina I Tolstaya
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, ‡Department of Electrical and Computer Engineering, and §The Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Thomas E Winkler
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, ‡Department of Electrical and Computer Engineering, and §The Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - William E Bentley
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, ‡Department of Electrical and Computer Engineering, and §The Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Reza Ghodssi
- MEMS Sensors and Actuators Laboratory, Institute for Systems Research, ‡Department of Electrical and Computer Engineering, and §The Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment. Biomed Microdevices 2017; 18:95. [PMID: 27647148 DOI: 10.1007/s10544-016-0120-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing - autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment efficacy compared to conventional antibiotic therapy. Taken together these results suggest that the antibiotic-free combination treatment described here may provide an effective alternative to traditional antibiotic therapies against bacterial biofilm infections. Use of this combination treatment in the medical and environmental fields would alleviate side effects associated with high-dosage antibiotic therapies, and reduce the rise of antibiotic-resistant bacteria.
Collapse
|
26
|
Fteita D, Musrati AA, Könönen E, Ma X, Gürsoy M, Peurla M, Söderling E, Sintim HO, Gürsoy UK. Dipeptidyl peptidase IV and quorum sensing signaling in biofilm-related virulence of Prevotella aurantiaca. Anaerobe 2017; 48:152-159. [PMID: 28821458 DOI: 10.1016/j.anaerobe.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022]
Abstract
Biofilm formation and dipeptidyl peptidase IV (DPPIV) enzyme activity contribute to the virulence of oral bacteria, and these virulence factors are partly regulated by quorum sensing signaling system. We recently demonstrated that estradiol regulates growth properties and DPPIV activity of Prevotella intermedia, Prevotella nigrescens, and Prevotella pallens. Here, we examined the DPPIV dependency of biofilm formation of Prevotella aurantiaca. Three strains (two clinical strains AHN 37505 and 37552 and the type strain CCUG 57723) were incubated in three estradiol concentrations (30, 90, and 120 nmol/L). Regulation of DPPIV activity, biofilm and fimbria formation, and coaggregation of bacterial strains were analyzed after incubation with four concentrations (10 nM, 100 nM, 1 μM, 10 μM) of dihydroxy-2,3-pentaedione (DPD), the universal precursor of autoinducer -2 (AI-2), and analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD) for 24 h. Estradiol enhanced the planktonic growth, coaggregation, and biofilm formation of P. aurantiaca strains. The whole cell extract of AHN 37505 had the highest DPPIV activity, followed by CCUG 57723 and AHN 37552. Inhibition of DPPIV activity with di-isopropylfluorophosphate suppressed the effect of estradiol on biofilm formation. At 100 nM and 10 μM concentrations of DPD, butyl DPD, and isobutyl DPD, biofilm formation of P. aurantiaca was significantly inhibited. Fimbriae formation was enhanced up to concentrations of 100 nM and 1 μM followed by a significant inhibition at higher concentrations of DPD and all analogs. A slight but significant inhibitory effect of DPD and analogs on DPPIV activity was observed. Our results indicate that DPPIV plays a key role in the estradiol-regulated biofilm formation of P. aurantiaca. Quorum sensing autoinducer DPD and C1-alkyl analogs could inhibit biofilm-related virulence of P. aurantiaca.
Collapse
Affiliation(s)
- Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Ahmed Ali Musrati
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland; Welfare Division, Oral Health Care, City of Turku, Turku, Finland.
| | - Xiaochu Ma
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Markus Peurla
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Herman O Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
27
|
Strategies for Biofilm Inhibition and Virulence Attenuation of Foodborne Pathogen-Escherichia coli O157:H7. Curr Microbiol 2017; 74:1477-1489. [DOI: 10.1007/s00284-017-1314-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
28
|
Ha JH, Eo Y, Ahn HC, Ryu KS. Increasing the soluble expression and crystallization of the Escherichia coli quorum-sensing protein LsrK. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2017; 73:253-258. [PMID: 28471356 DOI: 10.1107/s2053230x1700468x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/26/2017] [Indexed: 11/10/2022]
Abstract
LsrK is one of the key components of the luxS-regulated (lsr) operon in Escherichia coli and plays an important role during the quorum-sensing (QS) process mediated by autoinducer-2 (AI-2). The AI-2 molecule is imported into the cell by the LsrACB transporter and is subsequently phosphorylated (to AI-2-P) by LsrK. AI-2-P binds to the repressor protein of the lsr operon (LsrR) and triggers various cellular responses related to QS by dissociating LsrR from the DNA. Although a large amount of purified LsrK is required for structural studies, recombinant GST-LsrK was mostly expressed in an insoluble form. To enhance the soluble expression of LsrK, an attempt was made to increase the expression of the cellular chaperone proteins that are well known to support proper protein folding. Transformed E. coli was cultured in high-salt LB medium and heat shock was applied prior to subsequent IPTG induction at 20°C. These procedures increased the yield of purified LsrK by about tenfold compared with standard IPTG induction at 20°C. The expressed LsrK was readily purified by GST-affinity chromatography. Crystals of LsrK were grown by the hanging-drop vapour-diffusion method. The X-ray diffraction data of the crystal were processed in a primitive hexagonal space group to 2.9 Å resolution.
Collapse
Affiliation(s)
- Jung Hye Ha
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Yumi Eo
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Hee Chul Ahn
- Department of Pharmacy, College of Pharmacy, Dongguk University Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Kyoung Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| |
Collapse
|
29
|
Polymicrobial–Host Interactions during Infection. J Mol Biol 2016; 428:3355-71. [DOI: 10.1016/j.jmb.2016.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023]
|
30
|
Hao WJ, Du Y, Wang D, Jiang B, Gao Q, Tu SJ, Li G. Catalytic Diazosulfonylation of Enynals toward Diazoindenes via Oxidative Radical-Triggered 5-exo-trig Carbocyclizations. Org Lett 2016; 18:1884-7. [DOI: 10.1021/acs.orglett.6b00655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen-Juan Hao
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yan Du
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Dan Wang
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Qian Gao
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Guigen Li
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
31
|
Tsuchikama K, Gooyit M, Harris TL, Zhu J, Globisch D, Kaufmann GF, Janda KD. Glycation Reactivity of a Quorum-Sensing Signaling Molecule. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Major Gooyit
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tyler L. Harris
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jie Zhu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Daniel Globisch
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Gunnar F. Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Worm Institute of Research & Medicine; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
32
|
Tsuchikama K, Gooyit M, Harris TL, Zhu J, Globisch D, Kaufmann GF, Janda KD. Glycation Reactivity of a Quorum-Sensing Signaling Molecule. Angew Chem Int Ed Engl 2016; 55:4002-6. [PMID: 26890076 DOI: 10.1002/anie.201511911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/23/2023]
Abstract
Reported herein is that (4S)-4,5-dihydroxy-2,3-pentanedione (DPD) can undergo a previously undocumented non-enzymatic glycation reaction. Incubation of DPD with viral DNA or the antibiotic gramicidin S resulted in significant biochemical alterations. A protein-labeling method was consequently developed that facilitated the identification of unrecognized glycation targets of DPD in a prokaryotic system. These results open new avenues toward tracking and understanding the fate and function of the elusive quorum-sensing signaling molecule.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Major Gooyit
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tyler L Harris
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jie Zhu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Daniel Globisch
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gunnar F Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kim D Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Worm Institute of Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Wang Z, Xiang Q, Yang T, Li L, Yang J, Li H, He Y, Zhang Y, Lu Q, Yu J. Autoinducer-2 of Streptococcus mitis as a Target Molecule to Inhibit Pathogenic Multi-Species Biofilm Formation In Vitro and in an Endotracheal Intubation Rat Model. Front Microbiol 2016; 7:88. [PMID: 26903968 PMCID: PMC4744849 DOI: 10.3389/fmicb.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mitis (S. mitis) and Pseudomonas aeruginosa (P. aeruginosa) are typically found in the upper respiratory tract of infants. We previously found that P. aeruginosa and S. mitis were two of the most common bacteria in biofilms on newborns' endotracheal tubes (ETTs) and in their sputa and that S. mitis was able to produce autoinducer-2 (AI-2), whereas P. aeruginosa was not. Recently, we also found that exogenous AI-2 and S. mitis could influence the behaviors of P. aeruginosa. We hypothesized that S. mitis contributes to this interspecies interaction and that inhibition of AI-2 could result in inhibition of these effects. To test this hypothesis, we selected PAO1 as a representative model strain of P. aeruginosa and evaluated the effect of S. mitis as well as an AI-2 analog (D-ribose) on mono- and co-culture biofilms in both in vitro and in vivo models. In this context, S. mitis promoted PAO1 biofilm formation and pathogenicity. Dual-species (PAO1 and S. mitis) biofilms exhibited higher expression of quorum sensing genes than single-species (PAO1) biofilms did. Additionally, ETTs covered in dual-species biofilms increased the mortality rate and aggravated lung infection compared with ETTs covered in mono-species biofilms in an endotracheal intubation rat model, all of which was inhibited by D-ribose. Our results demonstrated that S. mitis AI-2 plays an important role in interspecies interactions with PAO1 and may be a target for inhibition of biofilm formation and infection in ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Zhengli Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Qingqing Xiang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Ting Yang
- Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing, China
| | - Luquan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Jingli Yang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Hongong Li
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Yunhui Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Qi Lu
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| |
Collapse
|
34
|
Abstract
In the biofilm form, bacteria are more resistant to various antimicrobial treatments. Bacteria in a biofilm can also survive harsh conditions and withstand the host's immune system. Therefore, there is a need for new treatment options to treat biofilm-associated infections. Currently, research is focused on the development of antibiofilm agents that are nontoxic, as it is believed that such molecules will not lead to future drug resistance. In this review, we discuss recent discoveries of antibiofilm agents and different approaches to inhibit/disperse biofilms. These new antibiofilm agents, which contain moieties such as imidazole, phenols, indole, triazole, sulfide, furanone, bromopyrrole, peptides, etc. have the potential to disperse bacterial biofilms in vivo and could positively impact human medicine in the future.
Collapse
|
35
|
Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections. Antibiotics (Basel) 2016; 5:antibiotics5010003. [PMID: 27025518 PMCID: PMC4810405 DOI: 10.3390/antibiotics5010003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/27/2015] [Accepted: 12/30/2015] [Indexed: 11/17/2022] Open
Abstract
Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.
Collapse
|
36
|
Abid I, Gosselin P, Mathé-Allainmat M, Abid S, Dujardin G, Gaulon-Nourry C. TBAF-Triggered Aldol-Type Addition of α-Triethylsilyl-α-diazoacetone. J Org Chem 2015; 80:9980-8. [DOI: 10.1021/acs.joc.5b01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Imen Abid
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS, Faculté
des Sciences et Techniques, Université du Maine, 72085 Cedex 9 Le Mans, France
- Laboratoire de
Chimie Appliquée, Hétérocycles, Corps Gras et
Polymères, Faculté des Sciences de Sfax, 3038 Sfax, Tunisia
| | - Pascal Gosselin
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS, Faculté
des Sciences et Techniques, Université du Maine, 72085 Cedex 9 Le Mans, France
| | - Monique Mathé-Allainmat
- Laboratoire
CEISAM, UMR 6230 CNRS, Faculté des Sciences et des Techniques, Université de Nantes, 44322 Cedex 3 Nantes, France
| | - Souhir Abid
- Laboratoire de
Chimie Appliquée, Hétérocycles, Corps Gras et
Polymères, Faculté des Sciences de Sfax, 3038 Sfax, Tunisia
| | - Gilles Dujardin
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS, Faculté
des Sciences et Techniques, Université du Maine, 72085 Cedex 9 Le Mans, France
| | - Catherine Gaulon-Nourry
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS, Faculté
des Sciences et Techniques, Université du Maine, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
37
|
Guo M, Zheng Y, Terell JL, Ad M, Opoku-Temeng C, Bentley WE, Sintim HO. Geminal dihalogen isosteric replacement in hydrated AI-2 affords potent quorum sensing modulators. Chem Commun (Camb) 2015; 51:2617-20. [DOI: 10.1039/c4cc09361e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geminal dibromo moiety can replace hydrated carbonyl groups in AI-2, a quorum sensing autoinducer, without diminution of activity. This group can form halogen bond with active site electron donor.
Collapse
Affiliation(s)
- Min Guo
- Department of Chemistry and Biochemistry
- University of Maryland College Park
- USA
| | - Yue Zheng
- Department of Chemistry and Biochemistry
- University of Maryland College Park
- USA
| | - Jessica L. Terell
- Fischell Department of Bioengineering
- University of Maryland
- College Park
- USA
| | - Michal Ad
- Department of Chemistry and Biochemistry
- University of Maryland College Park
- USA
| | | | - William E. Bentley
- Fischell Department of Bioengineering
- University of Maryland
- College Park
- USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry
- University of Maryland College Park
- USA
| |
Collapse
|
38
|
LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2. Proc Natl Acad Sci U S A 2014; 111:14235-40. [PMID: 25225400 DOI: 10.1073/pnas.1408691111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quorum sensing signal autoinducer-2 (AI-2) regulates important bacterial behaviors, including biofilm formation and the production of virulence factors. Some bacteria, such as Escherichia coli, can quench the AI-2 signal produced by a variety of species present in the environment, and thus can influence AI-2-dependent bacterial behaviors. This process involves uptake of AI-2 via the Lsr transporter, followed by phosphorylation and consequent intracellular sequestration. Here we determine the metabolic fate of intracellular AI-2 by characterizing LsrF, the terminal protein in the Lsr AI-2 processing pathway. We identify the substrates of LsrF as 3-hydroxy-2,4-pentadione-5-phosphate (P-HPD, an isomer of AI-2-phosphate) and coenzyme A, determine the crystal structure of an LsrF catalytic mutant bound to P-HPD, and identify the reaction products. We show that LsrF catalyzes the transfer of an acetyl group from P-HPD to coenzyme A yielding dihydroxyacetone phosphate and acetyl-CoA, two key central metabolites. We further propose that LsrF, despite strong structural homology to aldolases, acts as a thiolase, an activity previously undescribed for this family of enzymes. With this work, we have fully characterized the biological pathway for AI-2 processing in E. coli, a pathway that can be used to quench AI-2 and control quorum-sensing-regulated bacterial behaviors.
Collapse
|
39
|
Lowery CA, Matamouros S, Niessen S, Zhu J, Scolnick J, Lively JM, Cravatt BF, Miller SI, Kaufmann GF, Janda KD. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level. ACTA ACUST UNITED AC 2014; 20:903-11. [PMID: 23890008 DOI: 10.1016/j.chembiol.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/08/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation.
Collapse
Affiliation(s)
- Colin A Lowery
- The Skaggs Institute for Chemical Biology, Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Adams BL, Carter KK, Guo M, Wu HC, Tsao CY, Sintim HO, Valdes JJ, Bentley WE. Evolved Quorum sensing regulator, LsrR, for altered switching functions. ACS Synth Biol 2014; 3:210-9. [PMID: 24111753 DOI: 10.1021/sb400068z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to carry out innovative complex, multistep synthetic biology functions, members of a cell population often must communicate with one another to coordinate processes in a programmed manner. It therefore follows that native microbial communication systems are a conspicuous target for developing engineered populations and networks. Quorum sensing (QS) is a highly conserved mechanism of bacterial cell-cell communication and QS-based synthetic signal transduction pathways represent a new generation of biotechnology toolbox members. Specifically, the E. coli QS master regulator, LsrR, is uniquely positioned to actuate gene expression in response to a QS signal. In order to expand the use of LsrR in synthetic biology, two novel LsrR switches were generated through directed evolution: an "enhanced" repression and derepression eLsrR and a reversed repression/derepression function "activator" aLsrR. Protein modeling and docking studies are presented to gain insight into the QS signal binding to these two evolved proteins and their newly acquired functionality. We demonstrated the use of the aLsrR switch using a coculture system in which a QS signal, produced by one bacterial strain, is used to inhibit gene expression via aLsrR in a different strain. These first ever AI-2 controlled synthetic switches allow gene expression from the lsr promoter to be tuned simultaneously in two distinct cell populations. This work expands the tools available to create engineered microbial populations capable of carrying out complex functions necessary for the development of advanced synthetic products.
Collapse
Affiliation(s)
- Bryn L. Adams
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | | | | | | | | | | - James J. Valdes
- U.S.
Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 United States
| | | |
Collapse
|
41
|
Abstract
Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Collapse
|
42
|
Ha JH, Eo Y, Grishaev A, Guo M, Smith JAI, Sintim HO, Kim EH, Cheong HK, Bentley WE, Ryu KS. Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. J Am Chem Soc 2013; 135:15526-35. [PMID: 24047255 DOI: 10.1021/ja407068v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) is a cell-to-cell communication system responsible for a variety of bacterial phenotypes including virulence and biofilm formation. QS is mediated by small molecules, autoinducers (AIs), including AI-2 that is secreted by both Gram-positive and -negative microbes. LsrR is a key transcriptional regulator that governs the varied downstream processes by perceiving AI-2 signal, but its activation via autoinducer-binding remains poorly understood. Here, we provide detailed regulatory mechanism of LsrR from the crystal structures in complexes with the native signal (phospho-AI-2, D5P) and two quorum quenching antagonists (ribose-5-phosphate, R5P; phospho-isobutyl-AI-2, D8P). Interestingly, the bound D5P and D8P molecules are not the diketone forms but rather hydrated, and the hydrated moiety forms important H-bonds with the carboxylate of D243. The D5P-binding flipped out F124 of the binding pocket, and resulted in the disruption of the dimeric interface-1 by unfolding the α7 segment. However, the same movement of F124 by the D8P'-binding did not cause the unfolding of the α7 segment. Although the LsrR-binding affinity of R5P (Kd, ∼1 mM) is much lower than that of D5P and D8P (∼2.0 and ∼0.5 μM), the α-anomeric R5P molecule fits into the binding pocket without any structural perturbation, and thus stabilizes the LsrR tetramer. The binding of D5P, not D8P and R5P, disrupted the tetrameric structure and thus is able to activate LsrR. The detailed structural and mechanistic insights from this study could be useful for facilitating design of new antivirulence and antibiofilm agents based on LsrR.
Collapse
Affiliation(s)
- Jung-Hye Ha
- Division of Magnetic Resonance Research, Korea Basic Science Institute , Yangcheong-Ri 804-1, Ochang-Eup, Cheongwon-Gun, Chungcheongbuk-Do 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci 2013; 14:17694-728. [PMID: 23994835 PMCID: PMC3794749 DOI: 10.3390/ijms140917694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules.
Collapse
|
44
|
Zhu J, Hixon MS, Globisch D, Kaufmann GF, Janda KD. Mechanistic insights into the LsrK kinase required for autoinducer-2 quorum sensing activation. J Am Chem Soc 2013; 135:7827-30. [PMID: 23672516 PMCID: PMC3736694 DOI: 10.1021/ja4024989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In enteric bacteria, the kinase LsrK catalyzes the phosphorylation of the C5-hydroxyl group in the linear form of 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). This phosphorylation is required for AI-2 sequestration in the cytoplasm and subsequent derepression of AI-2-related genes necessary for quorum development. While LsrK is a critical enzyme within the DPD quorum sensing relay system, kinetic details of this kinase have yet to be reported. A continuous UV-vis spectrophotometric assay was developed that allowed steady-state kinetic analysis of LsrK to be undertaken with the substrates ATP and DPD. The data was most consistent with a rapid equilibrium ordered mechanism with ATP binding first: kcat (7.4 ± 0.6 s(-1)), Km,ATP (150 ± 30 μM) and Km(app),DPD (1.0 ± 0.2 mM). The assay also allowed a DPD substrate profile to be conducted, which provided an unexpected biochemical disconnect between the previous agonist/antagonist cell-based reporter assay and the LsrK assay presented herein. Together these findings raise the importance of LsrK and lay the foundation not only for further understanding of this enzyme and its critical biological role but also for the rational design of regulatory molecules targeting AI-2 quorum sensing in pathogenic bacteria.
Collapse
Affiliation(s)
- Jie Zhu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Mark S. Hixon
- Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121
| | - Daniel Globisch
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | | | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology and the Worm Institute for Research and Medicine (WIRM), the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
45
|
AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 2012; 97:2627-38. [DOI: 10.1007/s00253-012-4404-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 01/27/2023]
|
46
|
Tsuchikama K, Zhu J, Lowery CA, Kaufmann GF, Janda KD. C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. J Am Chem Soc 2012; 134:13562-4. [PMID: 22866957 DOI: 10.1021/ja305532y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria have developed cell-to-cell communication mechanisms, termed quorum sensing (QS), that regulate bacterial gene expression in a cell population-dependent manner. Autoinducer-2 (AI-2), a class of QS signaling molecules derived from (4S)-4,5-dihydroxy-2,3-pentanedione (DPD), has been identified in both Gram-negative and Gram-positive bacteria. Despite considerable interest in the AI-2 QS system, the biomolecular communication used by distinct bacterial species still remains shrouded. Herein, we report the synthesis and evaluation of a new class of DPD analogues, C4-alkoxy-5-hydroxy-2,3-pentanediones, termed C4-alkoxy-HPDs. Remarkably, two of the analogues were more potent QS agonists than the natural ligand, DPD, in Vibrio harveyi. The findings presented extend insights into ligand-receptor recognition/signaling in the AI-2 mediated QS system.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Department of Chemistry, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2012; 37:156-81. [PMID: 22712853 DOI: 10.1111/j.1574-6976.2012.00345.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Success in nature depends upon an ability to perceive and adapt to the surrounding environment. Bacteria are not an exception; they recognize and constantly adjust to changing situations by sensing environmental and self-produced signals, altering gene expression accordingly. Autoinducer-2 (AI-2) is a signal molecule produced by LuxS, an enzyme found in many bacterial species and thus proposed to enable interspecies communication. Two classes of AI-2 receptors and many layers and interactions involved in downstream signalling have been identified so far. Although AI-2 has been implicated in the regulation of numerous niche-specific behaviours across the bacterial kingdom, interpretation of these results is complicated by the dual role of LuxS in signalling and the activated methyl cycle, a crucial central metabolic pathway. In this article, we present a comprehensive review of the discovery and early characterization of AI-2, current developments in signal detection, transduction and regulation, and the major studies investigating the phenotypes regulated by this molecule. The development of novel tools should help to resolve many of the remaining questions in the field; we highlight how these advances might be exploited in AI-2 quorum quenching, treatment of diseases, and the manipulation of beneficial behaviours caused by polyspecies communities.
Collapse
|
48
|
Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 2012; 7:1023-30. [PMID: 22433054 DOI: 10.1021/cb200524y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been intensive efforts to find small molecule antagonists for bacterial quorum sensing (QS) mediated by the "universal" QS autoinducer, AI-2. Previous work has shown that linear and branched acyl analogues of AI-2 can selectively modulate AI-2 signaling in bacteria. Additionally, LsrK-dependent phosphorylated analogues have been implicated as the active inhibitory form against AI-2 signaling. We used these observations to synthesize an expanded and diverse array of AI-2 analogues, which included aromatic as well as cyclic C-1-alkyl analogues. Species-specific analogues that disrupted AI-2 signaling in Escherichia coli and Salmonella typhimurium were identified. Similarly, analogues that disrupted QS behaviors in Pseudomonas aeruginosa were found. Moreover, we observed a strong correlation between LsrK-dependent phosphorylation of these acyl analogues and their ability to suppress QS. Significantly, we demonstrate that these analogues can selectively antagonize QS in single bacterial strains in a physiologically relevant polymicrobial culture.
Collapse
Affiliation(s)
- Sonja Gamby
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Varnika Roy
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Min Guo
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jacqueline A. I. Smith
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jingxin Wang
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Jessica E. Stewart
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Xiao Wang
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - William E. Bentley
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, ‡Graduate Program in
Molecular and Cell Biology, §Institute for Bioscience and Biotechnology Research, and ∥Fischell Department
of Bioengineering, University of Maryland, College Park,
Maryland 20742, United States
| |
Collapse
|
49
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
50
|
A pro-drug approach for selective modulation of AI-2-mediated bacterial cell-to-cell communication. SENSORS 2012; 12:3762-72. [PMID: 22737036 PMCID: PMC3376627 DOI: 10.3390/s120303762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/26/2012] [Accepted: 03/15/2012] [Indexed: 01/08/2023]
Abstract
The universal quorum sensing autoinducer, AI-2, is utilized by several bacteria. Analogs of AI-2 have the potential to modulate bacterial behavior. Selectively quenching the communication of a few bacteria, in the presence of several others in an ecosystem, using analogs of AI-2 is non-trivial due to the ubiquity of AI-2 processing receptors in many bacteria that co-exist. Herein, we demonstrate that when an AI-2 analog, isobutyl DPD (which has been previously shown to be a quorum sensing, QS, quencher in both Escherichia coli and Salmonella typhimurium) is modified with ester groups, which get hydrolyzed once inside the bacterial cells, only QS in E. coli, but not in S. typhimurium, is inhibited. The origin of this differential QS inhibition could be due to differences in analog permeation of the bacterial membranes or ester hydrolysis rates. Such differences could be utilized to selectively target QS in specific bacteria amongst a consortium of other species that also use AI-2 signaling.
Collapse
|