1
|
Syntrivanis LD, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024:e202412622. [PMID: 39295476 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH, Zurich, Basel, Switzerland
| |
Collapse
|
2
|
Aggarwal M, Banerjee R, Hickey N, Mukherjee PS. Stimuli-Mediated Structural Interchange Between Pd 6 and Pd 12 Architectures: Selective Recognition of E-Stilbene by the Pd 6 Architecture and its Photoprotection. Angew Chem Int Ed Engl 2024:e202411513. [PMID: 39160692 DOI: 10.1002/anie.202411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
The dynamic behaviour of metal-ligand bonding cultivates stimuli-mediated structural transformations in self-assembled molecular architectures. The propensity of synthetically designed self-assembled systems to interchange between higher-order architectures is increased multi-fold when the building blocks have higher conformational degrees of freedom. Herein, we report a new ligand, (2,7-bis(di(pyridin-4-yl)amino)-9H-fluoren-9-one) (L), which, upon self-assembly with a cis-[(ethylene-1,2-diamine)Pd(NO3)2] acceptor (M), resulted in the formation of a M6L3 trifacial barrel (C1) in water. Interestingly, during crystallization, a rare M12L6 triangular orthobicupola architecture (C2) was generated along with C1. C2 could also be generated in solution via the application of several stimuli. C1 in aqueous media could stabilize one trans-stilbene (tS) or cis-stilbene (cS) molecule in its cavity, with a selectivity for the former from their mixture. Moreover, C1 acted as an effective host to prevent the otherwise facile photoisomerization of tS to cS inside its hydrophobic cavity under UV irradiation. Conversely, the visible-light-induced reverse isomerization of encapsulated cS to encapsulated tS could be achieved readily due to the better stabilization of tS within the cavity of C1 and its transparency to visible light. A multi-functional system was therefore designed, which at the same time is stimuli-responsive, shows isomer selectivity, and photo-protects trans-stilbene.
Collapse
Affiliation(s)
- Medha Aggarwal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
DiNardi RG, Rasheed S, Capomolla SS, Chak MH, Middleton IA, Macreadie LK, Violi JP, Donald WA, Lusby PJ, Beves JE. Photoswitchable Catalysis by a Self-Assembled Molecular Cage. J Am Chem Soc 2024; 146:21196-21202. [PMID: 39051845 PMCID: PMC11311219 DOI: 10.1021/jacs.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
A heteroleptic [Pd2L2L'2]4+ coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched OFF and ON at will.
Collapse
Affiliation(s)
- Ray G. DiNardi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Samina Rasheed
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Man Him Chak
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isis A. Middleton
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Jake P. Violi
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Jonathon E. Beves
- School
of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Boaler P, Piskorz TK, Bickerton LE, Wang J, Duarte F, Lloyd-Jones GC, Lusby PJ. Origins of High-Activity Cage-Catalyzed Michael Addition. J Am Chem Soc 2024; 146:19317-19326. [PMID: 38976816 PMCID: PMC11258793 DOI: 10.1021/jacs.4c05160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024]
Abstract
Cage catalysis continues to create significant interest, yet catalyst function remains poorly understood. Herein, we report mechanistic insights into coordination-cage-catalyzed Michael addition using kinetic and computational methods. The study has been enabled by the detection of identifiable catalyst intermediates, which allow the evolution of different cage species to be monitored and modeled alongside reactants and products. The investigations show that the overall acceleration results from two distinct effects. First, the cage reaction shows a thousand-fold increase in the rate constant for the turnover-limiting C-C bond-forming step compared to a reference state. Computational modeling and experimental analysis of activation parameters indicate that this stems from a significant reduction in entropy, suggesting substrate coencapsulation. Second, the cage markedly acidifies the bound pronucleophile, shifting this equilibrium by up to 6 orders of magnitude. The combination of these two factors results in accelerations up to 109 relative to bulk-phase reference reactions. We also show that the catalyst can fundamentally alter the reaction mechanism, leading to intermediates and products that are not observable outside of the cage. Collectively, the results show that cage catalysis can proceed with very high activity and unique selectivity by harnessing a series of individually weak noncovalent interactions.
Collapse
Affiliation(s)
- Patrick
J. Boaler
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Laura E. Bickerton
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Jianzhu Wang
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Guy C. Lloyd-Jones
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, U.K.
| |
Collapse
|
5
|
Andrews KG, Piskorz TK, Horton PN, Coles SJ. Enzyme-like Acyl Transfer Catalysis in a Bifunctional Organic Cage. J Am Chem Soc 2024; 146:17887-17897. [PMID: 38914009 PMCID: PMC11228979 DOI: 10.1021/jacs.4c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Amide-based organic cage cavities are, in principle, ideal enzyme active site mimics. Yet, cage-promoted organocatalysis has remained elusive, in large part due to synthetic accessibility of robust and functional scaffolds. Herein, we report the acyl transfer catalysis properties of robust, hexaamide cages in organic solvent. Cage structural variation reveals that esterification catalysis with an acyl anhydride acyl carrier occurs only in bifunctional cages featuring internal pyridine motifs and two crucial antipodal carboxylic acid groups. 1H NMR data and X-ray crystallography show that the acyl carrier is rapidly activated inside the cavity as a covalent mixed-anhydride intermediate with an internal hydrogen bond. Michaelis-Menten (saturation) kinetics suggest weak binding (KM = 0.16 M) of the alcohol pronucleophile close to the internal anhydride. Finally, activation and delivery of the alcohol to the internal anhydride by the second carboxylic acid group forms ester product and releases the cage catalyst. Eyring analysis indicates a strong enthalpic stabilization of the transition state (5.5 kcal/mol) corresponding to a rate acceleration of 104 over background acylation, and an ordered, associative rate-determining attack by the alcohol, supported by DFT calculations. We conclude that internal bifunctional organocatalysis specific to the cage structural design is responsible for the enhancement over the background reaction. These results pave the way for organic-phase enzyme mimicry in self-assembled cavities with the potential for cavity elaboration to enact selective acylations.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham DH1 3LE, U.K
| | - Tomasz K Piskorz
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Peter N Horton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|
6
|
Dorrat JC, Taylor CGP, Young RJ, Solea AB, Turner DR, Dennison GH, Ward MD, Tuck KL. A Study on Auto-Catalysis and Product Inhibition: A Nucleophilic Aromatic Substitution Reaction Catalysed within the Cavity of an Octanuclear Coordination Cage. Chemistry 2024; 30:e202400501. [PMID: 38433109 DOI: 10.1002/chem.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
The ability of an octanuclear cubic coordination cage to catalyse a nucleophilic aromatic substitution reaction on a cavity-bound guest was studied with 2,4-dinitrofluorobenzene (DNFB) as the guest/substrate. It was found that DNFB undergoes a catalysed reaction with hydroxide ions within the cavity of the cubic cage (in aqueous buffer solution, pH 8.6). The rate enhancement of kcat/kuncat was determined to be 22, with cavity binding of the guest being required for catalysis to occur. The product, 2,4-dinitrophenolate (DNP), remained bound within the cavity due to electrostatic stabilisation and exerts two apparently contradictory effects: it initially auto-catalyses the reaction when present at low concentrations, but at higher concentrations inhibits catalysis when a pair of DNP guests block the cavity. When encapsulated, the UV/Vis absorption spectrum of DNP is red-shifted when compared to the spectrum of free DNP in aqueous solution. Further investigations using other aromatic guests determined that a similar red-shift on cavity binding also occurred for 4-nitrophenolate (4NP) at pH 8.6. The red-shift was used to determine the stoichiometry of guest binding of DNP and 4NP within the cage cavity, which was confirmed by structural analysis with X-ray crystallography; and was also used to perform catalytic kinetic studies in the solution-state.
Collapse
Affiliation(s)
- Jack C Dorrat
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia
| | | | - Rosemary J Young
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia
| | - Atena B Solea
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - David R Turner
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia
| | - Genevieve H Dennison
- CBRN Defence, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
- Electro Optics Sensing and Electromagnetic Warfare, Sensors and Effectors Division, Defence Science and Technology Group, Edinburgh, SA, 5111, Australia
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Kellie L Tuck
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
7
|
Montà-González G, Ortiz-Gómez E, López-Lima R, Fiorini G, Martínez-Máñez R, Martí-Centelles V. Water-Soluble Molecular Cages for Biological Applications. Molecules 2024; 29:1621. [PMID: 38611902 PMCID: PMC11013847 DOI: 10.3390/molecules29071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host-guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages' anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Eduardo Ortiz-Gómez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Rocío López-Lima
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Guillermo Fiorini
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Avenida Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
8
|
Teng Y, Yu X, Shang D, Wang Z, Rao W. Brønsted Acid-Catalyzed Dehydrative Nazarov-type Cyclization of CF 3-Substituted 3-Indolylallyl Alcohols: Divergent Synthesis of 1-Trifluoromethylated Cyclopenta[ b]indoles. J Org Chem 2024. [PMID: 38175524 DOI: 10.1021/acs.joc.3c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An expedient and efficient synthetic method for the divergent synthesis of 1-trifluoromethylated cyclopenta[b]indoles that relies on Brønsted acid-catalyzed dehydrative Nazarov-type cyclization of CF3-substituted 3-indolylallyl alcohols is described. Two classes of 1-trifluoromethylated cyclopenta[b]indoles can be easily accessed simply by changing the NH-protecting group of indoles. With arylsulfonyl protected 3-indolylallyl alcohols as starting materials, the reaction provided the arylsulfonyl protected 1-trifluoromethylated cyclopenta[b]indoles in good to excellent yields, whereas pivaloyl (Piv) protected substrates led to the formation of NH-free 1-trifluoromethylated cyclolopenta[b]indoles with another alkenyl isomer. This protocol features tunable chemoselectivity, operational simplicity, excellent functional group compatibility, and mild metal-free conditions.
Collapse
Affiliation(s)
- Yuling Teng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeliang Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forsest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
da Camara B, Woods CZ, Sharma K, Wu HT, Farooqi NS, Chen C, Julian RR, Vander Griend DA, Hooley RJ. Catalytic Inhibition of Base-Mediated Reactivity by a Self-Assembled Metal-Ligand Host. Chemistry 2023; 29:e202302499. [PMID: 37584901 DOI: 10.1002/chem.202302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
Spacious M4 L6 tetrahedra can act as catalytic inhibitors for base-mediated reactions. Upon adding only 5 % of a self-assembled Fe4 L6 cage complex, the conversion of the conjugate addition between ethylcyanoacetate and β-nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4 L6 cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4 L6 hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2 L3 helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets.
Collapse
Affiliation(s)
- Bryce da Camara
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Connor Z Woods
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Komal Sharma
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Hoi-Ting Wu
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Naira S Farooqi
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Changwei Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Ryan R Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | | | - Richard J Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
11
|
Piskorz TK, Martí-Centelles V, Spicer RL, Duarte F, Lusby PJ. Picking the lock of coordination cage catalysis. Chem Sci 2023; 14:11300-11331. [PMID: 37886081 PMCID: PMC10599471 DOI: 10.1039/d3sc02586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/28/2023] Open
Abstract
The design principles of metallo-organic assembly reactions have facilitated access to hundreds of coordination cages of varying size and shape. Many of these assemblies possess a well-defined cavity capable of hosting a guest, pictorially mimicking the action of a substrate binding to the active site of an enzyme. While there are now a growing collection of coordination cages that show highly proficient catalysis, exhibiting both excellent activity and efficient turnover, this number is still small compared to the vast library of metal-organic structures that are known. In this review, we will attempt to unpick and discuss the key features that make an effective coordination cage catalyst, linking structure to activity (and selectivity) using lessons learnt from both experimental and computational analysis of the most notable exemplars. We will also provide an outlook for this area, reasoning why coordination cages have the potential to become the gold-standard in (synthetic) non-covalent catalysis.
Collapse
Affiliation(s)
- Tomasz K Piskorz
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València Camino de Vera, s/n 46022 Valencia Spain
| | - Rebecca L Spicer
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh Scotland EH9 3FJ UK
| |
Collapse
|
12
|
Banerjee R, Bhattacharyya S, Mukherjee PS. Synthesis of an Adaptable Molecular Barrel and Guest Mediated Stabilization of Its Metastable Higher Homologue. JACS AU 2023; 3:1998-2006. [PMID: 37502154 PMCID: PMC10369414 DOI: 10.1021/jacsau.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023]
Abstract
Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.
Collapse
|
13
|
Feng L, Teng Y, Yu X, Wang Z, Rao W. Brønsted Acid-Catalyzed Dehydrative Nazarov-Type Cyclization/C2-N1 Cleavage Cascade of Perfluoroalkylated 3-Indolyl(2-benzothienyl)methanols. Org Lett 2023. [PMID: 37384549 DOI: 10.1021/acs.orglett.3c01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A novel and unprecedented p-toluenesulfonic acid-catalyzed dehydrative Nazarov-type cyclization/C2-N1 bond cleavage cascade reaction of perfluoroalkylated 3-indolyl(2-benzothienyl)methanols has been developed. This reaction provides an efficient and practical protocol for the construction of highly functionalized benzothiophene-fused cyclopentenones with exclusive stereoselectivity. In addition, this cascade transformation also delineates a rare example of the involvement of the selective C2-N1 bond cleavage of indoles.
Collapse
Affiliation(s)
- Li Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuling Teng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeliang Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Nguyen TN, Nguyen AN, Tran NM, Park IH, Yoo H. Hierarchical packing of racemic metallosupramolecular cages with Ni(II)-based triple-stranded helicate building blocks. IUCRJ 2023; 10:321-328. [PMID: 36995774 PMCID: PMC10161775 DOI: 10.1107/s2052252523002385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Three novel hierarchical Ni-based metallosupramolecular cages were constructed from nickel ions, pyridine dicarboxylates and isophthalate derivative ligands (the substituents on C5 of isophthalate are methyl, tert-butyl and bromo groups). In every cage, two multinuclear nickel clusters, assembled from four nickel atoms and three pyridine dicarboxylate ligands, are interlinked by three isophthalate-derivative ligands to form a nickel-based triple-stranded helicate (TSH), which then becomes the supramolecular building block for the fabrication of a metallocage. Six homochiral TSH supramolecular building blocks, either left (M)-handed or right (P)-handed, are connected by four linking nickel atoms to generate M6 and P6 discrete racemic cage molecules (M6 - cage with six M-TSHs; P6 - cage with six P-TSHs). The crystal packing of the racemic cages was characterized by single-crystal X-ray diffraction. An additional cobalt-based molecular cage with 5-methylisophthalate bridging ligands was synthesized for host-guest interaction studies. The methyl groups in Co- and Ni-TSH can act as guest units to be accommodated in the cone-shaped metal clusters (host) of an adjacent cage.
Collapse
Affiliation(s)
- Thanh Nhan Nguyen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Anh Ngoc Nguyen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
16
|
Schell K, Li H, Lauterbach L, Taizoumbe KA, Dickschat JS, Hauer B. Alternative Active Site Confinement in Squalene–Hopene Cyclase Enforces Substrate Preorganization for Cyclization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Mao XR, Wang Q, Zhuo SP, Xu LP. Reactivity and Selectivity of the Diels-Alder Reaction of Anthracene in [Pd 6L 4] 12+ Supramolecular Cages: A Computational Study. Inorg Chem 2023; 62:4330-4340. [PMID: 36863004 DOI: 10.1021/acs.inorgchem.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [Pd6L4]12+ supramolecular cages. Our calculations are consistent with experiments. The origins of the catalytic efficiency of the bowl-shaped cage 1 have been elucidated to be the host-guest stabilization of the transition states and the favorable entropy effect. The reasons for the switch of the regioselectivity from 9,10-addition to 1,4-addition within the octahedral cage 2 were attributed to the confinement effect and the noncovalent interactions. This work would shed light on the understanding of [Pd6L4]12+ metallocage-catalyzed reactions and provide a detailed mechanistic profile otherwise difficult to obtain from experiments. The findings of this study could also aid to the improvement and development of more efficient and selective supramolecular catalysis.
Collapse
Affiliation(s)
- Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
18
|
Spatola E, Frateloreto F, Del Giudice D, Olivo G, Di Stefano S. Cyclization Reactions in Confined Space. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
20
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
21
|
Mozaceanu C, Solea AB, Taylor CGP, Sudittapong B, Ward MD. Disentangling contributions to guest binding inside a coordination cage host: analysis of a set of isomeric guests with differing polarities. Dalton Trans 2022; 51:15263-15272. [PMID: 36129351 PMCID: PMC9578013 DOI: 10.1039/d2dt02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of a set of three isomeric guests (1,2-, 1,3- and 1,4-dicyanobenzene, abbreviated DCB) inside an octanuclear cubic coordination cage host H (bearing different external substitutents according to solvent used) has been studied in water/dmso (98 : 2) and CD2Cl2. These guests have essentially identical molecular surfaces, volumes and external functional groups to interact with the cage interior surface; but they differ in polarity with dipole moments of ca. 7, 4 and 0 Debye respectively. In CD2Cl2 guest binding is weak but we observe a clear correlation of binding free energy with guest polarity, with 1,4-DCB showing no detectable binding by NMR spectroscopy but 1,2-DCB having −ΔG = 9 kJ mol−1. In water (containing 2% dmso to solubilise the guests) we see the same trend but all binding free energies are much higher due to an additional hydrophobic contribution to binding, with −ΔG varying from 16 kJ mol−1 for 1,4-DCB to 22 kJ mol−1 for 1,4-DCB: again we see an increase associated with guest polarity but the increase in −ΔG per Debye of dipole moment is around half what we observe in CD2Cl2 which we ascribe to the fact the more polar guests will be better solvated in the aqueous solvent. A van't Hoff analysis by variable-temperature NMR showed that the improvement in guest binding in water/dmso is entropy-driven, which suggests that the key factor is not direct electrostatic interactions between a polar guest and the cage surface, but the variation in guest desolvation across the series, with the more polar (and hence more highly solvated) guests having a greater favourable entropy change on desolvation. The three dicyanobenzene isomers have obvious similarities but differ in their dipole moment: effects on binding in a coordination cage host in different solvents are discussed.![]()
Collapse
Affiliation(s)
| | - Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Burin Sudittapong
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
22
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Solea AB, Sudittapong B, Taylor CGP, Ward MD. Inside or outside the box? Effect of substrate location on coordination-cage based catalysis. Dalton Trans 2022; 51:11277-11285. [PMID: 35791857 PMCID: PMC9344580 DOI: 10.1039/d2dt01713j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 01/15/2023]
Abstract
In this work we compare and contrast the hydrolysis of two different aromatic esters using an octanuclear cubic Co8 coordination cage host as the catalyst. Diacetyl fluorescein (DAF) is too large to bind inside the cage cavity, but in aqueous solution it interacts with the exterior surface of the cage via a hydrophobic interaction with K = 1.5(2) × 104 M-1. This is sufficient to bring it into close proximity to the layer of hydroxide ions which also surrounds the 16+ cage surface even at modest pH values, accelerating the hydrolysis of DAF to fluorescein with kcat/kuncat (the rate acceleration for that fraction of DAF in contact with the cage surface in the equilibrium) ≈50. This is far smaller than many known examples of catalysis inside a cage cavity, but at the exterior surface it is potentially general with no cavity-imposed size/shape limitations for guest binding. In contrast 4-nitrophenyl acetate (4NPA) binds inside the cage cavity with K = 3.5(3) × 103 M-1 and as such is surrounded in solution by the hydroxide ions which accumulate around the cage surface. However its hydrolysis is actually inhibited: either because of a geometrically unfavourable geometry of the bound substrate which makes it inaccessible to surface-bound hydroxide, or because the necessary volume expansion/geometry change associated with formation of a tetrahedral intermediate cannot be accommodated inside the cavity. Any 4NPA that is free in solution as part of the equilibrium undergoes catalysed hydrolysis at the cage exterior surface in the same way as DAF, but the effect is limited by the low affinity of 4NPA for the exterior surface. We conclude that exterior-surface catalysis can be effective and potentially general; and that cavity-binding of guests can result in negative, rather than positive, catalysis.
Collapse
Affiliation(s)
- Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Burin Sudittapong
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
24
|
Phenylthiol-BODIPY-based supramolecular metallacycles for synergistic tumor chemo-photodynamic therapy. Proc Natl Acad Sci U S A 2022; 119:e2203994119. [PMID: 35858319 PMCID: PMC9303851 DOI: 10.1073/pnas.2203994119] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (1O2) generation ability of BODIPY, 2 was successfully incorporated into nanoparticles and applied in chemo-photodynamic tumor therapy against malignant human glioma U87 cells, showing excellent synergistic therapeutic efficacy. A half-maximal inhibitory concentration of 0.35 μM was measured for 2 against U87 cancer cells in vitro. In vivo experiments indicated that 2 displayed precise tumor targeting ability and good biocompatibility, along with strong antitumor effects. This work provides a promising approach for treating solid tumors by synergistic chemo-photodynamic therapy of supramolecular coordination complexes.
Collapse
|
25
|
Pezzotti S, Sebastiani F, van Dam EP, Ramos S, Conti Nibali V, Schwaab G, Havenith M. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain. Angew Chem Int Ed Engl 2022; 61:e202203893. [PMID: 35500074 PMCID: PMC9401576 DOI: 10.1002/anie.202203893] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Hydration free energies are dictated by a subtle balance of hydrophobic and hydrophilic interactions. We present here a spectroscopic approach, which gives direct access to the two main contributions: Using THz-spectroscopy to probe the frequency range of the intermolecular stretch (150-200 cm-1 ) and the hindered rotations (450-600 cm-1 ), the local contributions due to cavity formation and hydrophilic interactions can be traced back. We show that via THz calorimetry these fingerprints can be correlated 1 : 1 with the group specific solvation entropy and enthalpy. This allows to deduce separately the hydrophobic (i.e. cavity formation) and hydrophilic contributions to thermodynamics, as shown for hydrated alcohols as a case study. Accompanying molecular dynamics simulations quantitatively support our experimental results. In the future our approach will allow to dissect hydration contributions in inhomogeneous mixtures and under non-equilibrium conditions.
Collapse
Affiliation(s)
- Simone Pezzotti
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Federico Sebastiani
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Current affiliation: Department of Chemistry “U. Schiff”University of FlorenceI-50019Sesto FiorentinoFIItaly
| | - Eliane P. van Dam
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Sashary Ramos
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Valeria Conti Nibali
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Current affiliation: Dipartimento di Scienze Matematiche e InformaticheScienze Fisiche e Scienze della Terra (MIFT)Università di Messina98166MessinaItaly
| | - Gerhard Schwaab
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
| | - Martina Havenith
- Department of Physical Chemistry IIRuhr University BochumBochumGermany
- Department of PhysicsTechnische Universität Dortmund44227DortmundGermany
| |
Collapse
|
26
|
Nguyen QNN, Xia KT, Zhang Y, Chen N, Morimoto M, Pei X, Ha Y, Guo J, Yang W, Wang LP, Bergman RG, Raymond KN, Toste FD, Tantillo DJ. Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. J Am Chem Soc 2022; 144:11413-11424. [PMID: 35699585 DOI: 10.1021/jacs.2c04179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.
Collapse
Affiliation(s)
- Quynh Nhu N Nguyen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Kay T Xia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yue Zhang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Mariko Morimoto
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
27
|
Pezzotti S, Sebastiani F, Dam EP, Ramos S, Conti Nibali V, Schwaab G, Havenith M. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simone Pezzotti
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Federico Sebastiani
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Current affiliation: Department of Chemistry “U. Schiff” University of Florence I-50019 Sesto Fiorentino FI Italy
| | - Eliane P. Dam
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Sashary Ramos
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Valeria Conti Nibali
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Current affiliation: Dipartimento di Scienze Matematiche e Informatiche Scienze Fisiche e Scienze della Terra (MIFT) Università di Messina 98166 Messina Italy
| | - Gerhard Schwaab
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
| | - Martina Havenith
- Department of Physical Chemistry II Ruhr University Bochum Bochum Germany
- Department of Physics Technische Universität Dortmund 44227 Dortmund Germany
| |
Collapse
|
28
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
29
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
30
|
Ngai C, Wu HT, da Camara B, Williams CG, Mueller LJ, Julian RR, Hooley RJ. Moderated Basicity of Endohedral Amine Groups in an Octa-Cationic Self-Assembled Cage. Angew Chem Int Ed Engl 2022; 61:e202117011. [PMID: 35030288 PMCID: PMC8885886 DOI: 10.1002/anie.202117011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/13/2022]
Abstract
A self-assembled FeII4 L6 cage was synthesized with 12 internal amines in the cavity. The cage forms as the dodeca-ammonium salt, despite the cage carrying an overall 8+ charge at the metal centers, extracting protons from displaced water in the reaction. Despite this, the basicity of the internal amines is lower than their counterparts in free solution. The 12 amines have a sliding scale of basicity, with a ≈6 pKa unit difference between the first and last protons to be removed. This moderation of side-chain basicity in an active site is a hallmark of enzymatic catalysis.
Collapse
Affiliation(s)
- Courtney Ngai
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Hoi-Ting Wu
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Bryce da Camara
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Christopher G Williams
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Leonard J Mueller
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| | - Richard J Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
31
|
Tehrani FN, Assaf KI, Hein R, Jensen CME, Nugent TC, Nau WM. Supramolecular Catalysis of a Catalysis-Resistant Diels–Alder Reaction: Almost Theoretical Acceleration of Cyclopentadiene Dimerization inside Cucurbit[7]uril. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Foad N. Tehrani
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan
| | - Robert Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Casper M. E. Jensen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Thomas C. Nugent
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
32
|
Ngai C, Wu H, Camara B, Williams CG, Mueller LJ, Julian RR, Hooley RJ. Moderated Basicity of Endohedral Amine Groups in an Octa‐Cationic Self‐Assembled Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Courtney Ngai
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Hoi‐Ting Wu
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Bryce Camara
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Christopher G. Williams
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Leonard J. Mueller
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Ryan R. Julian
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| | - Richard J. Hooley
- Department of Chemistry and the UCR Center for Catalysis University of California—Riverside Riverside CA, 92521 USA
| |
Collapse
|
33
|
Harden I, Neese F, Bistoni G. An induced-fit model for asymmetric organocatalytic reactions: a case study of the activation of olefins via chiral Brønsted acid catalysts. Chem Sci 2022; 13:8848-8859. [PMID: 35975151 PMCID: PMC9350588 DOI: 10.1039/d2sc02274e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022] Open
Abstract
We elucidate the stereo-controlling factors of the asymmetric intramolecular hydroalkoxylation of terminal olefins catalyzed by bulky Brønsted acids [Science2018, 359 (6383), 1501–1505] using high-level electronic structure methods.
Collapse
Affiliation(s)
- Ingolf Harden
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8, 06123 Perugia, Italy
| |
Collapse
|
34
|
Pantalon Juraj N, Tandarić T, Tadić V, Perić B, Moreth D, Schatzschneider U, Brozovic A, Vianello R, Kirin SI. Tuning the coordination properties of chiral pseudopeptide bis(2-picolyl)amine and iminodiacetamide ligands in Zn( ii) and Cu( ii) complexes. Dalton Trans 2022; 51:17008-17021. [DOI: 10.1039/d2dt02895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modifications of the chiral side chains of bpa and imda ligands lead to different metal ion coordination and hydrogen bonding ability.
Collapse
Affiliation(s)
| | | | | | | | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
We report DNA-scaffolded synergistic catalysis, a concept that combines the diverse reaction scope of synergistic catalysis with the ability of DNA to precisely preorganize abiotic groups and undergo stimuli-triggered conformational changes. As an initial demonstration of this concept, we focus on Cu-TEMPO-catalyzed aerobic alcohol oxidation, using DNA as a scaffold to hold a copper cocatalyst and an organic radical cocatalyst (TEMPO) in proximity. The DNA-scaffolded catalyst maintained a high turnover number upon dilution and exhibited 190-fold improvement in catalyst turnover number relative to the unscaffolded cocatalysts. By incorporating the cocatalysts into a DNA hairpin-containing scaffold, we demonstrate that the rate of the synergistic catalytic reaction can be controlled through a reversible DNA conformational change that alters the distance between the cocatalysts. This work demonstrates the compatibility of synergistic catalytic reactions with DNA scaffolding, opening future avenues in reaction discovery, sensing, responsive materials, and chemical biology.
Collapse
Affiliation(s)
- Edward B. Pimentel
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, 53515, USA
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| |
Collapse
|
36
|
Chakraborty M, Mahesh G, Nakel OR, Chavda G, Anusha S, Sudhakar G. A Facile Approach to Access Multi‐Substituted Indenes via Nazarov Cyclisation of Aryl, Vinyl, and Alkyl/Aryl Carbinols. ChemistrySelect 2021. [DOI: 10.1002/slct.202103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mithun Chakraborty
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| | - Gaddam Mahesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| | - Omkar R. Nakel
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| | - Gautamee Chavda
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| | - Susarla Anusha
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| | - Gangarajula Sudhakar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India
| |
Collapse
|
37
|
Zigon N, Duplan V, Wada N, Fujita M. Crystalline Sponge Method: X‐ray Structure Analysis of Small Molecules by Post‐Orientation within Porous Crystals—Principle and Proof‐of‐Concept Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Zigon
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Vincent Duplan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Naoki Wada
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
38
|
Norjmaa G, Maréchal J, Ujaque G. Origin of the Rate Acceleration in the C-C Reductive Elimination from Pt(IV)-complex in a [Ga 4 L 6 ] 12- Supramolecular Metallocage. Chemistry 2021; 27:15973-15980. [PMID: 34545974 PMCID: PMC9293218 DOI: 10.1002/chem.202102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/29/2022]
Abstract
The reductive elimination on [(Me3 P)2 Pt(MeOH)(CH3 )3 ]+ , 2P, complex performed in MeOH solution and inside a [Ga4 L6 ]12- metallocage are computationally analysed by mean of QM and MD simulations and compared with the mechanism of gold parent systems previously reported [Et3 PAu(MeOH)(CH3 )2 ]+ , 2Au. The comparative analysis between the encapsulated Au(III) and Pt(IV)-counterparts shows that there are no additional solvent MeOH molecules inside the cavity of the metallocage for both systems. The Gibbs energy barriers for the 2P reductive elimination calculated at DFT level are in good agreement with the experimental values for both environments. The effect of microsolvation and encapsulation on the rate acceleration are evaluated and shows that the latter is far more relevant, conversely to 2Au. Energy decomposition analysis indicates that the encapsulation is the main responsible for most of the energy barrier reduction. Microsolvation and encapsulation effects are not equally contributing for both metal systems and consequently, the reasons of the rate acceleration are not the same for both metallic systems despite the similarity between them.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| |
Collapse
|
39
|
Feng X, Zhao F, Qian R, Guo M, Yang J, Yang R, Meng D. Supramolecular Catalyst Functions in Catalytic Amount: Cucurbit[7]uril Accelerates Click Reaction in Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuepu Feng
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Fen Zhao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Rui Qian
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Mengbi Guo
- Industrial Crop Research Institute Yunnan Academy of Agricultural Sciences Kunming 650205 P. R. China
| | - Jing Yang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - Rui Yang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 P. R. China
| | - DongLing Meng
- Technology Centre China Tobacco Guangxi Industrial Co., Ltd Nanning 53001 P. R. China
| |
Collapse
|
40
|
Mouarrawis V, Bobylev EO, Bruin B, Reek JNH. Controlling the Activity of a Caged Cobalt‐Porphyrin‐Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eduard O. Bobylev
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
41
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
42
|
Zigon N, Duplan V, Wada N, Fujita M. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals-Principle and Proof-of-Concept Studies. Angew Chem Int Ed Engl 2021; 60:25204-25222. [PMID: 34109717 DOI: 10.1002/anie.202106265] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/05/2023]
Abstract
This Review discusses, along with the historical background, the principles as well as proof-of-concept studies of the crystalline sponge (CS) method, a new single-crystal X-ray diffraction (SCXRD) method for the analysis of the structures of small molecules without sample crystallization. The method uses single-crystalline porous coordination networks (crystalline sponges) that can absorb small guest molecules within their pores. The absorbed guest molecules are ordered in the pores through molecular recognition and become observable by conventional SCXRD analysis. The complex {[(ZnI2 )3 (tpt)2 ]⋅x(solvent)}n (tpt=tris(4-pyridyl)-1,3,5-triazine) was first proposed as a crystalline sponge and has been most generally used. Crystalline sponges developed later are also discussed here. The principle of the CS method can be described as "post-crystallization" of the absorbed guest, whose ordering is templated by the pre-latticed cavities. The method has been widely applied to synthetic chemistry as well as natural product studies, for which proof-of-concept examples will be shown here.
Collapse
Affiliation(s)
- Nicolas Zigon
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Vincent Duplan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoki Wada
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
43
|
Peresypkina E, Grill K, Hiltl B, Virovets AV, Kremer W, Hilgert J, Tremel W, Scheer M. Die Dreikomponenten‐Selbstorganisation ändert ihre Richtung: Ein Sprung von einfachen Polymeren zu 3D‐Netzwerken sphärischer Wirt/Gast‐Aggregate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eugenia Peresypkina
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Kevin Grill
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Barbara Hiltl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Alexander V. Virovets
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Werner Kremer
- Institut für Biophysik und Physikalische Biochemie Universität Regensburg 93040 Regensburg Deutschland
| | - Jan Hilgert
- Institut für Anorganische Chemie und Analytische Chemie Universität Mainz 55128 Mainz Deutschland
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie Universität Mainz 55128 Mainz Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| |
Collapse
|
44
|
Pullen S, Tessarolo J, Clever GH. Increasing structural and functional complexity in self-assembled coordination cages. Chem Sci 2021; 12:7269-7293. [PMID: 34163819 PMCID: PMC8171321 DOI: 10.1039/d1sc01226f] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host-guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.
Collapse
Affiliation(s)
- Sonja Pullen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
45
|
Peresypkina E, Grill K, Hiltl B, Virovets AV, Kremer W, Hilgert J, Tremel W, Scheer M. Three-Component Self-Assembly Changes its Course: A Leap from Simple Polymers to 3D Networks of Spherical Host-Guest Assemblies. Angew Chem Int Ed Engl 2021; 60:12132-12142. [PMID: 33686782 PMCID: PMC8252601 DOI: 10.1002/anie.202103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/20/2022]
Abstract
One‐pot self‐assembly reactions of the polyphosphorus complex [Cp*Fe(η5‐P5)] (A), a coinage metal salt AgSbF6, and flexible aliphatic dinitriles NC(CH2)xCN (x=1–10) yield 1D, 2D, and 3D coordination polymers. The seven‐membered backbone of the dinitrile was experimentally found as the borderline for the self‐assembly system furnishing products of different kinds. At x<7, various rather simple polymers are exclusively formed possessing either 0D or 1D Ag/A structural motifs connected by dinitrile spacers, while at x≥7, the self‐assembly switches to unprecedented extraordinary 3D networks of nano‐sized host–guest assemblies (SbF6)@[(A)9Ag11]11+ (x=7) or (A)@[(A)12Ag12]12+ (x=8–10) linked by dinitriles. The polycationic nodes represent the first superspheres based on A and silver and are host–guest able. All products are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The assemblies [(A)12Ag12]12+ were visualized by transmission electron microscopy.
Collapse
Affiliation(s)
- Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Kevin Grill
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Barbara Hiltl
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Jan Hilgert
- Institute of Inorganic Chemistry and Analytical Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
46
|
Molecular Cage Promoted Aerobic Oxidation or Photo-Induced Rearrangement of Spiroepoxy Naphthalenone. Catalysts 2021. [DOI: 10.3390/catal11040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a Pd4L2-type molecular cage (1) and catalyzed reactions of spiroepoxy naphthalenone (2) in water, where selective formation of 2-(hydroxymethyl)naphthalene-1,4-dione (3) via aerobic oxidation, or 1-hydroxy-2-naphthaldehyde (4) via photo-induced rearrangement under N2 have been accomplished. Encapsulation of four molecules of guest 2 within cage 1, i.e., (2)4⊂1, has been confirmed by NMR, and a final host-guest complex of 3⊂1 has also been determined by single crystal X-Ray diffraction study. While the photo-induced ring-opening isomerization from 2 to 4 are known, appearance of charge-transfer absorption on the host-guest complex of (2)4⊂1 allows low-power blue LEDs irradiation to promote this process.
Collapse
|
47
|
Paul A, Shipman MA, Onabule DY, Sproules S, Symes MD. Selective aldehyde reductions in neutral water catalysed by encapsulation in a supramolecular cage. Chem Sci 2021; 12:5082-5090. [PMID: 34163748 PMCID: PMC8179549 DOI: 10.1039/d1sc00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022] Open
Abstract
The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.
Collapse
Affiliation(s)
- Avishek Paul
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Michael A Shipman
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Dolapo Y Onabule
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
48
|
|
49
|
Morimoto M, Cao W, Bergman RG, Raymond KN, Toste FD. Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine-Borane Cofactor. J Am Chem Soc 2021; 143:2108-2114. [PMID: 33471541 DOI: 10.1021/jacs.0c12479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supramolecular catalysts emulate the mechanism of enzymes to achieve large rate accelerations and precise selectivity under mild and aqueous conditions. While significant strides have been made in the supramolecular host-promoted synthesis of small molecules, applications of this reactivity to chemoselective and site-selective modification of complex biomolecules remain virtually unexplored. We report here a supramolecular system where coencapsulation of pyridine-borane with a variety of molecules including enones, ketones, aldehydes, oximes, hydrazones, and imines effects efficient reductions under basic aqueous conditions. Upon subjecting unprotected lysine to the host-mediated reductive amination conditions, we observed excellent ε-selectivity, indicating that differential guest binding within the same molecule is possible without sacrificing reactivity. Inspired by the post-translational modification of complex biomolecules by enzymatic systems, we then applied this supramolecular reaction to the site-selective labeling of a single lysine residue in an 11-amino acid peptide chain and human insulin.
Collapse
Affiliation(s)
- Mariko Morimoto
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wendy Cao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Escobar L, Ballester P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chem Rev 2021; 121:2445-2514. [PMID: 33472000 DOI: 10.1021/acs.chemrev.0c00522] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular recognition in water using macrocyclic synthetic receptors constitutes a vibrant and timely research area of supramolecular chemistry. Pioneering examples on the topic date back to the 1980s. The investigated model systems and the results derived from them are key for furthering our understanding of the remarkable properties exhibited by proteins: high binding affinity, superior binding selectivity, and extreme catalytic performance. Dissecting the different effects contributing to the proteins' properties is severely limited owing to its complex nature. Molecular recognition in water is also involved in other appreciated areas such as self-assembly, drug discovery, and supramolecular catalysis. The development of all these research areas entails a deep understanding of the molecular recognition events occurring in aqueous media. In this review, we cover the past three decades of molecular recognition studies of neutral and charged, polar and nonpolar organic substrates and ions using selected artificial receptors soluble in water. We briefly discuss the intermolecular forces involved in the reversible binding of the substrates, as well as the hydrophobic and Hofmeister effects operating in aqueous solution. We examine, from an interdisciplinary perspective, the design and development of effective water-soluble synthetic receptors based on cyclic, oligo-cyclic, and concave-shaped architectures. We also include selected examples of self-assembled water-soluble synthetic receptors. The catalytic performance of some of the presented receptors is also described. The latter process also deals with molecular recognition and energetic stabilization, but instead of binding ground-state species, the targets become elusive counterparts: transition states and other high-energy intermediates.
Collapse
Affiliation(s)
- Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|