1
|
Balhara R, Chatterjee R, Jindal G. Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp 2)-H bonds. Chem Soc Rev 2024. [PMID: 39392229 DOI: 10.1039/d4cs00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Constructing highly proficient C-X (X = O, N, S, etc.) and C-C bonds by leveraging TMs (transition metals) (Fe, Cu, Pd, Rh, Au, etc.) and enzymes to catalyze carbene insertion into X-H/C(sp2)-H is a highly versatile strategy. This is primarily achieved through the in situ generation of metal carbenes from the interaction of TMs with diazo compounds. Over the last few decades, significant advancements have been made, encompassing a wide array of X-H bond insertions using various TMs. These reactions typically favor a stepwise ionic pathway where the nucleophilic attack on the metal carbene leads to the generation of a metal ylide species. This intermediate marks a critical juncture in the reaction cascade, presenting multiple avenues for proton transfer to yield the X-H inserted product. The mechanism of C(sp2)-H insertion reactions closely resembles those of X-H insertion reactions and thus have been included here. A major development in carbene insertion reactions has been the use of engineered enzymes as catalysts. Since the seminal report of a non-natural "carbene transferase" by Arnold in 2013, "P411", several heme-based enzymes have been reported in the literature to catalyze various abiological carbene insertion reactions into C(sp2)-H, N-H and S-H bonds. These enzymes possess an extraordinary ability to regulate the orientation and conformations of reactive intermediates, facilitating stereoselective carbene transfers. However, the absence of a suitable stereochemical model has impeded the development of asymmetric reactions employing a lone chiral catalyst, including enzymes. There is a pressing need to investigate alternative mechanisms and models to enhance our comprehension of stereoselectivity in these processes, which will be crucial for advancing the fields of asymmetric synthesis and biocatalysis. The current review aims to provide details on the mechanistic aspects of the asymmetric X-H and C(sp2)-H insertion reactions catalyzed by Fe, Cu, Pd, Rh, Au, and enzymes, focusing on the detailed mechanism and stereochemical model. The review is divided into sections focusing on a specific X-H/C(sp2)-H bond type catalyzed by different TMs and enzymes.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Ritwika Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| |
Collapse
|
2
|
Sreekumar A, Nair AR, Raksha C, Gopika S, Padmanabhan S, Gopalakrishna Pai R, Sivan A. Dibenzo-Fused Heterocycles: A Decade Update on the Syntheses of Carbazole, Dibenzofuran, and Dibenzothiophene. CHEM REC 2024; 24:e202400078. [PMID: 39240002 DOI: 10.1002/tcr.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Indexed: 09/07/2024]
Abstract
Polycyclic heterocycles are the most common and critical structural motifs found in a variety of natural products, medicines, fertilizers, and advanced materials. Because of their widespread use in biologically active compounds and material chemistry, functionalised dibenzo heterocyclic compounds, especially dibenzofuran, dibenzothiophene, and carbazole derivatives, garnered much attention over time. Scientists are especially interested in elucidating more efficient techniques for developing these industrially essential compounds. Dibenzo-fused heterocycles can rapidly be synthesised using highly efficient transition metal-catalysed strategies as well as by economic metal-free reaction conditions. This review includes a detailed overview of the most recent significant synthetic techniques, both metal-catalysed and metal-free, to produce these industrially significant and medicinally important dibenzo-fused heterocycles.
Collapse
Affiliation(s)
- Anjana Sreekumar
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - Ajil R Nair
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - C Raksha
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - S Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - S Padmanabhan
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - R Gopalakrishna Pai
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - Akhil Sivan
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| |
Collapse
|
3
|
Tantillo DJ. Quantum Chemical Interrogation of Reactions Promoted by Dirhodium Tetracarboxylate Catalysts─Mechanism, Selectivity, and Nonstatistical Dynamic Effects. Acc Chem Res 2024; 57:1931-1940. [PMID: 38920276 DOI: 10.1021/acs.accounts.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
ConspectusRh2L4 catalysts have risen in popularity in the world of organic synthesis, being used to accomplish a variety of reactions, including C-H insertion and cyclopropanation, and often doing so with high levels of stereocontrol. While the mechanisms and origins of selectivity for such reactions have been examined with computational quantum chemistry for decades, only recently have detailed pictures of the dynamic behavior of reacting Rh2L4-complexed molecules become accessible. Our computational studies on Rh2L4 catalyzed reactions are described here, with a focus on C-H insertion reactions of Rh2L4-carbenes. Several issues complicate the modeling of these reactions, each providing an opportunity for greater understanding and each revealing issues that should be incorporated into future rational design efforts. First, the fundamental mechanism of C-H insertion is discussed. While early quantum chemical studies pointed to transition structures with 3-center [C-H-C] substructures and asynchronous hydride transfer/C-C bond formation, recent examples of reactions with particularly flat potential energy surfaces and even discrete zwitterionic intermediates have been found. These reactions are associated with systems bearing π-donating groups at the site of hydride transfer, allowing for an intermediate with a carbocation substructure at that site to be selectively stabilized. Second, the possible importance of solvent coordination at the Rh atom distal to the carbene is discussed. While effects on reactivity and selectivity were found to be small, they turn out not to be negligible in some cases. Third, it is shown that, in contrast to many other transition metal promoted reactions, many Rh2L4 catalyzed reactions likely involve dissociation of the Rh2L4 catalyst before key chemical steps leading to products. When to expect dissociation is associated with specific features of substrates and the product-forming reactions in question. Often, dissociation precedes transition structures for pericyclic reactions that involve electrons that would otherwise bind to Rh2L4. Finally, the importance of nonstatistical dynamic effects, characterized through ab initio molecular dynamics studies, in some Rh2L4 catalyzed reactions is discussed. These are reactions where transition structures are shown to be followed by flat regions, very shallow minima, and/or pathways that bifurcate, all allowing for trajectories from a single transition state to form multiple different products. The likelihood of encountering such a situation is shown to be associated again with the likelihood of formation of zwitterionic structures along reaction paths, but ones for which pathways to multiple products are expected to be associated with very low or no barriers. The connection between these features and reduced yields of desired products are highlighted, as are the means by which some Rh2L4 catalysts modulate dynamic behavior to produce particular products in high yield.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California─Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Harariya MS, Gogoi R, Goswami A, Sharma AK, Jindal G. Is Enol Always the Culprit? The Curious Case of High Enantioselectivity in a Chiral Rh(II) Complex Catalyzed Carbene Insertion Reaction. Chemistry 2023; 29:e202301910. [PMID: 37665257 DOI: 10.1002/chem.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
The mechanism of Rh2 (S-NTTL)4 catalyzed carbene insertion into C(3)-H of indole is investigated using DFT methods. Since the commonly accepted enol mechanism cannot account for enantioinduction, a concerted oxocarbenium pathway was proposed in an earlier work using a model catalyst. However, after considering the full catalytic system, this study finds that akin to other reactions, here, too, the enol pathway is of lower energy, which now naturally raises a conundrum regarding the mode of chiral induction. Herein, a new water promoted mechanistic pathway involving a metal-associated enol intermediate hydrogen bonding and stereochemical model are proposed to solve this puzzle. It is shown how the catalyst bowl-shaped structure along with substrate-catalyst binding is crucial for achieving high levels of enantioselectivity. A stereodetermining water-assisted proton transfer is proposed and confirmed through deuterium-labeling experiments. The water molecules are held together by H-bonding interactions with the carboxylate ligands that is reminiscent of enzyme catalysis. Although several previous studies have aimed at understanding the mechanism of metal catalyzed carbene insertion reactions, the origin of high stereoinduction especially with chiral metal complexes remains unclear, and till date there is no transition state model that can explain the high enantioselectivity with such chiral Rh complexes. The metal-associated enol pathway is currently underrepresented in catalytic cycles and may play a crucial role in catalyst design. Since the enol pathway is commonly adopted in other metal-catalyzed X-H insertion reactions involving a diazoester, the presented results are not specific to the current reaction. Therefore, this study could provide the direction for achieving high levels of enantioselectivity which is otherwise difficult to achieve with a single metal catalyst.
Collapse
Affiliation(s)
- Mahesh S Harariya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Romin Gogoi
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anubhav Goswami
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 1643007, Tarragona, 560012, Spain
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
5
|
Peng Q, Huang M, Xu G, Zhu Y, Shao Y, Tang S, Zhang X, Sun J. Asymmetric N-Alkylation of 1H-Indoles via Carbene Insertion Reaction. Angew Chem Int Ed Engl 2023; 62:e202313091. [PMID: 37819054 DOI: 10.1002/anie.202313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.
Collapse
Affiliation(s)
- Quanxin Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
6
|
Saeedifard F, Naeem Y, Boni YT, Chang YC, Zhang J, Zhang Y, Kippelen B, Barlow S, Davies HML, Marder SR. Dirhodium C-H Functionalization of Hole-Transport Materials. J Org Chem 2023; 88:4309-4316. [PMID: 36921217 PMCID: PMC10088024 DOI: 10.1021/acs.joc.2c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Hole-transport materials (HTMs) based on triarylamine derivatives play important roles in organic electronics applications including organic light-emitting diodes and perovskite solar cells. For some applications, triarylamine derivatives bearing appropriate binding groups have been used to functionalize surfaces, while others have been incorporated as side chains into polymers to manipulate the processibility of HTMs for device applications. However, only a few approaches have been used to incorporate a single surface-binding group or polymerizable group into triarylamine materials. Here, we report that Rh-carbenoid chemistry can be used to insert carboxylic esters and norbornene functional groups into sp2 C-H bonds of a simple triarylamine and a 4,4'-bis(diarylamino)biphenyl, respectively. The norbenene-functionalized monomer was polymerized by ring-opening metathesis; the electrochemical, optical, and charge-transport properties of these materials were similar to those of related materials synthesized by conventional means. This method potentially offers straightforward access to a diverse range of HTMs with different functional groups.
Collapse
Affiliation(s)
- Farzaneh Saeedifard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Yasir Naeem
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yannick T Boni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yi-Chien Chang
- School of Electrical and Computer Engineering, Center for Organic Photonics and Electronics (COPE), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Junxiang Zhang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Yadong Zhang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Bernard Kippelen
- School of Electrical and Computer Engineering, Center for Organic Photonics and Electronics (COPE), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephen Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
7
|
Abstract
A highly regiospecific vinylogous carbene insertion protocol for direct asymmetric C-H functionalization of indoles with arylvinyldiazoacetates has been developed. Under the catalysis of simple Rh(I)/chiral diene complexes, the reaction occurs solely at the vinylogous position of the vinylcarbenoid with exceptional E selectivity and enantiocontrol. It provides an efficient way to obtain an interesting class of chiral indole scaffolds bearing an α,β-unsaturated ester unit and a gem-diaryl carbon stereocenter in good yields (≤99%) with excellent enantioselectivities (≤96%) at room temperature.
Collapse
Affiliation(s)
- Dong-Xing Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Bettencourt CJ, Krainz T, Chow S, Parr BT, Tracy WF, Bernhardt PV, Davies HML, Williams CM. Unearthing the Subtleties of Rhodium(II)-Catalyzed Carbenoid Cycloadditions to Furans with an N-Sulfonyl-1,2,3-triazole Probe. Org Lett 2022; 24:9290-9295. [PMID: 36512372 DOI: 10.1021/acs.orglett.2c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor N-sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.
Collapse
Affiliation(s)
- Christian J Bettencourt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tanja Krainz
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brendan T Parr
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - William F Tracy
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Garlets ZJ, Boni YT, Sharland JC, Kirby PR, Fu J, Bacsa J, Davies HML. Design, Synthesis, and Evaluation of Extended C4-Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catal 2022; 12:10841-10848. [PMID: 37274599 PMCID: PMC10237630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The synthesis and evaluation of six C4-symmetric bowl-shaped dirhodium tetracarboxylate catalysts are described. These elaborate high symmetry catalysts are readily generated by means of the self-assembly of four C1-symmetric ligands around the dirhodium core. These catalysts are capable of highly site-selective, diastereoselective and enantioselective C-H functionalization reactions by means of donor/acceptor carbene-induced C-H insertions.
Collapse
Affiliation(s)
- Zachary J Garlets
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Yannick T Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Jack C Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Parker R Kirby
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Jiantao Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322
| |
Collapse
|
10
|
Garlets ZJ, Boni YT, Sharland JC, Kirby RP, Fu J, Bacsa J, Davies HML. Design, Synthesis, and Evaluation of Extended C 4–Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zachary J. Garlets
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yannick T. Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Randall P. Kirby
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jiantao Fu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Chen BH, Du YD, Shu W. Organophotocatalytic Regioselective C-H Alkylation of Electron-Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200773. [PMID: 35286774 DOI: 10.1002/anie.202200773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/27/2022]
Abstract
Direct alkylation of the C-H bond arenes in a selective manner is a long-standing challenge. Herein, a metal-free photocatalytic regioselective C-H alkylation method for electron-rich arenes with both activated and unactivated alkenes was developed. The reaction tolerates a wide range of aromatic rings with diverse substitution patterns, as well as terminal and internal alkenes, providing a general and straightforward metal-free method for C-C bond formation from inert C-H bonds. Moreover, alkynes are also compatible to give the C-H vinylation of electron-rich arenes.
Collapse
Affiliation(s)
- Bi-Hong Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yi-Dan Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
12
|
Balhara R, Jindal G. Does an Enol Pathway Preclude High Stereoselectivity in Iron-Catalyzed Indole C-H Functionalization via Carbene Insertion? J Org Chem 2022; 87:7919-7933. [PMID: 35652604 DOI: 10.1021/acs.joc.2c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-H functionalization of indoles via Fe carbenoids presents an attractive strategy to obtain biologically important structural motifs. However, obtaining good stereoselectivity with Fe has been a significant challenge. It is unclear whether the low selectivity is due to a radical pathway or an ionic mechanism involving metal-free species. We therefore present a density functional theory (DFT) study of indole alkylation with diazoacetates catalyzed by Fe(ClO4)TMEDA/spirobisoxazoline and myoglobin. We explore three mechanistic pathways: nucleophilic, radical, and oxocarbenium routes. The nucleophilic pathway is the most feasible with the formation of an enol species that tautomerizes to furnish the alkylated indole. While this mechanism is routinely proposed, the stereochemical model has been conspicuously absent until now. We show that the conventionally invoked enol pathway is not responsible for the low enantiomeric excess. The enol intermediate can stay coordinated to the catalyst via different binding sites placing the enol in proximity to the chiral environment and affecting the stereoselective proton transfer. Both the binding strength and the chiral environment are crucial for obtaining high selectivity. Our study provides the much needed insights for the modest-low selectivities of Fe systems and could help in expediting the discovery of an efficient catalytic system. These mechanistic underpinnings could also be applicable to other metal (Rh, Pd, Cu, etc.)-catalyzed X-H insertion reactions.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
13
|
Xu M, Cao W, Xu X, Ji S. Visible‐Light‐Promoted Radical Cyclization and N−N Bond Cleavage Relay of N‐Aminopyridinium Ylides for Access to 2,3‐Difunctionalized Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Innovation Center for Chemical Science Soochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute Suzhou 215144 People's Republic of China
| |
Collapse
|
14
|
Chen CY, Zhao JH, Xiong LX, Wang F, Yang G, Ma C. Borane-catalyzed arylation of aryldiazoacetates with N, N-dialkylanilines. Org Biomol Chem 2022; 20:4101-4104. [PMID: 35537202 DOI: 10.1039/d2ob00447j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective arylation of donor-acceptor diazo compounds with aniline derivatives catalyzed by Lewis acidic boranes is developed. This simple reaction protocol provides an efficient method for the synthesis of diarylacetates under metal-free conditions.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Jing-Hao Zhao
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Li-Xue Xiong
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
15
|
Cheng X, Wang L, Liu Y, Wan X, Xiang Z, Li R, Wan X. Molecular Iodine‐Catalysed Reductive Alkylation of Indoles: Late‐Stage Diversification for Bioactive Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xionglve Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Lili Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Yide Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiao Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Zixin Xiang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Ruyi Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiaobing Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Renai road 215123 Suzhou CHINA
| |
Collapse
|
16
|
Ito T, Ueda J, Harada S, Nemoto T. Development of Selective Molecular Transformations Based on Unique Chemical Properties of Silver Catalyst: A Theoretical Analysis and Experimental Verification. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
17
|
Chen B, Du Y, Shu W. Organophotocatalytic Regioselective C−H Alkylation of Electron‐Rich Arenes Using Activated and Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bi‐Hong Chen
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yi‐Dan Du
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
18
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
19
|
Chen ZL, Empel C, Wang K, Wu PP, Cai BG, Li L, Koenigs RM, Xuan J. Enabling Cyclopropanation Reactions of Imidazole Heterocycles via Chemoselective Photochemical Carbene Transfer Reactions of NHC-Boranes. Org Lett 2022; 24:2232-2237. [PMID: 35274531 DOI: 10.1021/acs.orglett.2c00609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein we report a site-selective cyclopropanation of N-heterocyclic carbene (NHC)-borane complexes via photochemical carbene transfer reactions. By subtle changes to the reaction conditions, this approach can be further extended toward the difunctionalization of NHC-boranes via cyclopropanation and the B-H insertion reaction. Further investigations in photochemical continuous-flow applications and synthetic transformations proved the utility of the method. Theoretical calculations and control experiments were performed to explain the observed selectivity.
Collapse
Affiliation(s)
- Ze-Le Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Kun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Pan-Pan Wu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
20
|
Su J, Li Q, Shao Y, Sun J. Catalytic Transformations of 2-Pyridones by Rhodium-Mediated Carbene Transfer. Org Lett 2022; 24:1637-1641. [PMID: 35191701 DOI: 10.1021/acs.orglett.2c00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An enantioselective cyclopropanation reaction of N-substituted 2-pyridones with diazo compounds has been realized by using a chiral rhodium complex as the catalyst, and the corresponding chiral cyclopropanes could be formed in good yields with high enantioselectivities. Moreover, using acceptor-acceptor dimethyl 2-diazomalonate as the carbene precursor, a novel 1,4-rearrangement of a Boc group from N to C has also been discovered under rhodium catalysis.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
21
|
Leveille AN, Echemendía R, Mattson AE, Burtoloso ACB. Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Org Lett 2021; 23:9446-9450. [PMID: 34854689 DOI: 10.1021/acs.orglett.1c03627] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of organocatalytic enantioselective C-H insertion reactions of indoles and sulfoxonium ylides is reported. Under the influence of phosphoric acid catalysis, levels of enantiocontrol in the range of 20-93% ee and moderate yields (up to 50%) were achieved for 29 examples in formal C-H insertion reactions of free indoles and α-carbonyl sulfoxonium ylides. No nitrogen protection on the indole is necessary.
Collapse
Affiliation(s)
- Alexandria N Leveille
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Anita E Mattson
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
22
|
Construction of C−C Axial Chirality via Asymmetric Carbene Insertion into Arene C−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Li Z, Chen Y, Wang C, Xu G, Shao Y, Zhang X, Tang S, Sun J. Construction of C-C Axial Chirality via Asymmetric Carbene Insertion into Arene C-H Bonds. Angew Chem Int Ed Engl 2021; 60:25714-25718. [PMID: 34597448 DOI: 10.1002/anie.202110430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Indexed: 01/16/2023]
Abstract
By using diazonaphthoquinones and anilines as key reagents and through a point-to-axis chiral transfer strategy, the atroposelective synthesis via asymmetric C(sp2 )-H bond insertion reaction of arenes has been realized under rhodium catalysis, providing the resulting biaryl atropisomers in moderate to excellent yields with good enantiomeric ratios (up to 99:1). Further elaboration indicates this type of axially biaryl scaffold may have promising potentials in developing novel chiral ligands.
Collapse
Affiliation(s)
- Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Chen
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
24
|
Bhat A, Tucker N, Lin JB, Grover H. Stereoselective copper-catalyzed heteroarene C-H functionalization/Michael-type annulation cascade with α-diazocarbonyls. Chem Commun (Camb) 2021; 57:10556-10559. [PMID: 34557880 DOI: 10.1039/d1cc04590c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A stereoselective, copper-catalyzed, arene C(sp2)-H functionalization/Michael-type annulation reaction involving α-diazocarbonyl compounds has been developed. The method features low catalyst loadings, high yields, and excellent regio and stereoselectivity, in the synthesis of various heteroaromatic frameworks by employing indoles as the arene partner.
Collapse
Affiliation(s)
- Aabid Bhat
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada.
| | - Nathan Tucker
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada.
| | - Jian-Bin Lin
- C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada
| | - Huck Grover
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada.
| |
Collapse
|
25
|
Chowdhury R, Mendoza A. N-Hydroxyphthalimidyl diazoacetate (NHPI-DA): a modular methylene linchpin for the C-H alkylation of indoles. Chem Commun (Camb) 2021; 57:4532-4535. [PMID: 33956022 PMCID: PMC8101283 DOI: 10.1039/d1cc01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Despite the extensive studies on the reactions between conventional diazocompounds and indoles, these are still limited by the independent synthesis of the carbene precursors, the specific catalysts, and the required multi-step manipulation of the products. In this work, we explore redox-active carbenes in the expedited and divergent synthesis of functionalized indoles. NHPI-DA displays unusual efficiency and selectivity to yield insertion products that can be swiftly elaborated into boron and carbon substituents that are particularly problematic in carbene-mediated reactions.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
26
|
Wang Y, Cao X, Ji J, Cui X, Pi C, Zhao L, Wu Y. Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Kong L, Han X, Chen H, Sun H, Lan Y, Li X. Rhodium(II)-Catalyzed Regioselective Remote C–H Alkylation of Protic Indoles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xi Han
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
28
|
Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Boylan A, Nguyen TS, Lundy BJ, Li JY, Vallakati R, Sundstrom S, May JA. Rate Dependence on Inductive and Resonance Effects for the Organocatalyzed Enantioselective Conjugate Addition of Alkenyl and Alkynyl Boronic Acids to β-Indolyl Enones and β-Pyrrolyl Enones. Molecules 2021; 26:1615. [PMID: 33799473 PMCID: PMC8000498 DOI: 10.3390/molecules26061615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone β-position. For the former, the closer the heteroatom is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.
Collapse
Affiliation(s)
- Amy Boylan
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| | - Thien S. Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Brian J. Lundy
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baker Hughes, 17021 Aldine Westfield Rd, Houston, TX 77073, USA
| | - Jian-Yuan Li
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ravikrishna Vallakati
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Vallark Pharma Pvt. Ltd., Genome Valley, Turkapally, Hyderabad 500078, India
| | - Sasha Sundstrom
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Department of Chemistry and Biochemistry, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798, USA
| | - Jeremy A. May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| |
Collapse
|
30
|
Jana S, Empel C, Nguyen TV, Koenigs RM. Multi C-H Functionalization Reactions of Carbazole Heterocycles via Gold-Catalyzed Carbene Transfer Reactions. Chemistry 2021; 27:2628-2632. [PMID: 33278310 PMCID: PMC7898811 DOI: 10.1002/chem.202004724] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Indexed: 01/29/2023]
Abstract
Herein we describe a multiple C-H functionalization reaction of carbazole heterocycles with diazoalkanes. We show that gold catalysts play a distinct role in enabling a multiple C-H functionalization reaction to introduce up to six carbene fragments onto molecules containing multiple carbazole units or to link multiple carbazole units into a single molecule. A one-pot stepwise approach enables the introduction of two different carbene fragments to allow orthogonal deprotection and straightforward derivatization.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| | | | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
- School of ChemistryUniversity of New South Wales2052SydneyAustralia
| |
Collapse
|
31
|
Zhu DX, Xia H, Liu JG, Chung LW, Xu MH. Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C–H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst. J Am Chem Soc 2021; 143:2608-2619. [DOI: 10.1021/jacs.0c13191] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dong-Xing Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-chongzhi Road, Shanghai 201203, China
| | - Hui Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Jian-Guo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-chongzhi Road, Shanghai 201203, China
| |
Collapse
|
32
|
|
33
|
He X, Zhu L, Heng D, Liu F, Liu S, Zhong K, Shan C, Bai R, Lan Y. Mechanistic insights into the rhodium–copper cascade catalyzed dual C–H annulation of indoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01332c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) calculations have been performed to provide mechanistic insight into the Rh/Cu co-catalyzed multicomponent annulation of indoles, diazo compounds, and α,β-unsaturated esters.
Collapse
Affiliation(s)
- Xiaoqian He
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Dan Heng
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Chunhui Shan
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| | - Yu Lan
- School of Chemistry and Chemical Engineering
- Chongqing Key Laboratory of Theoretical and Computational Chemistry
- Chongqing University
- Chongqing 400030
- China
| |
Collapse
|
34
|
Bera SS, Bahukhandi SB, Empel C, Koenigs RM. Catalyst-controlled site-selective N-H and C3-arylation of carbazole via carbene transfer reactions. Chem Commun (Camb) 2021; 57:6193-6196. [PMID: 34048520 DOI: 10.1039/d1cc01863a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A site-selective direct arylation reaction of carbazole and other N-heterocycles with diazo-naphthalen-2(1H)-ones has been developed. While Au(i)-NHC catalysts lead to selective C3-arylation, palladium acetate allows for selective N-H arylation, displaying complete site-selectivity each. To show the applicability of these arylation reactions, one-pot, two-fold diarylation reactions of carbazole were demonstrated.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| | | | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, Aachen D-52074, Germany.
| |
Collapse
|
35
|
Liu J, Xu G, Tang S, Chen Q, Sun J. Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of N-Aromatic Zwitterions. Org Lett 2020; 22:9376-9380. [DOI: 10.1021/acs.orglett.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
36
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
37
|
Patil MD, Kale BS, Liu R. Gold‐Catalyzed Oxidative Cross‐Coupling Reactions among Two Distinct Arenes and One Gold Carbene with Phosphoric Acids as Cocatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Manoj D. Patil
- Frontier Research Center for Matter Science and Technology, Department of Chemistry National Tsing-Hua University Hsinchu Taiwan, ROC
| | - Balaji S. Kale
- Frontier Research Center for Matter Science and Technology, Department of Chemistry National Tsing-Hua University Hsinchu Taiwan, ROC
| | - Rai‐Shung Liu
- Frontier Research Center for Matter Science and Technology, Department of Chemistry National Tsing-Hua University Hsinchu Taiwan, ROC
| |
Collapse
|
38
|
Martínez-Castro E, Suárez-Pantiga S, Mendoza A. Scalable Synthesis of Esp and Rhodium(II) Carboxylates from Acetylacetone and RhCl 3· xH 2O. Org Process Res Dev 2020; 24:1207-1212. [PMID: 32587455 PMCID: PMC7309316 DOI: 10.1021/acs.oprd.0c00164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/28/2022]
Abstract
![]()
Rhodium(II)
carboxylates are privileged catalysts for the most
challenging carbene-, nitrene-, and oxo-transfer reactions. In this
work, we address the strategic challenges of current organic and inorganic
synthesis methods to access these rhodium(II) complexes through an
oxidative rearrangement strategy and a reductive ligation reaction.
These studies illustrate the multiple benefits of oxidative rearrangement
in the process-scale synthesis of congested carboxylates over nitrile
anion alkylation reactions, and the impressive effect of inorganic
additives in the reductive ligation of rhodium(III) salts.
Collapse
Affiliation(s)
- Elisa Martínez-Castro
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Samuel Suárez-Pantiga
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
39
|
Holmberg-Douglas N, Onuska NPR, Nicewicz DA. Regioselective Arene C-H Alkylation Enabled by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:7425-7429. [PMID: 32068943 PMCID: PMC7213045 DOI: 10.1002/anie.202000684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/13/2023]
Abstract
Expanding the toolbox of C-H functionalization reactions applicable to the late-stage modification of complex molecules is of interest in medicinal chemistry, wherein the preparation of structural variants of known pharmacophores is a key strategy for drug development. One manifold for the functionalization of aromatic molecules utilizes diazo compounds and a transition-metal catalyst to generate a metallocarbene species, which is capable of direct insertion into an aromatic C-H bond. However, these high-energy intermediates can often require directing groups or a large excess of substrate to achieve efficient and selective reactivity. Herein, we report that arene cation radicals generated by organic photoredox catalysis engage in formal C-H functionalization reactions with diazoacetate derivatives, furnishing sp2 -sp3 coupled products with moderate-to-good regioselectivity. In contrast to previous methods utilizing metallocarbene intermediates, this transformation does not proceed via a carbene intermediate, nor does it require the presence of a transition-metal catalyst.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Nicholas P R Onuska
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| |
Collapse
|
40
|
Holmberg‐Douglas N, Onuska NPR, Nicewicz DA. Regioselective Arene C−H Alkylation Enabled by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Natalie Holmberg‐Douglas
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Nicholas P. R. Onuska
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - David A. Nicewicz
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
41
|
Li F, Zhang JZ, Xia F. How CuCl and CuCl 2 Insert into C-N Bonds of Diazo Compounds: An Electronic Structure and Mechanistic Study. J Phys Chem A 2020; 124:2029-2035. [PMID: 32083869 DOI: 10.1021/acs.jpca.9b11991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transition-metal Cu catalysts CuCl and CuCl2 have been widely employed to catalyze a series of chemical reactions with diazo compounds because of their high efficiency and selectivity. However, how to yield the active Cu carbene species from the Cu catalysts and diazo compounds still remains unclear. In this work, we performed a comprehensive theoretical investigation on the electronic structures of CuCl and CuCl2 in solution. The results indicate that the most stable structures for CuCl and CuCl2 are dimer and monomer, respectively. The C-N bond insertion of aryldiazoacetate by CuCl yields a stable bimetallic carbene species, which differs from the monometallic carbene generated from CuCl2.
Collapse
Affiliation(s)
- Fengyu Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, East China Normal University, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at New York University Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
42
|
Khan I, Sharma A, Kamboj P, Maity B, Tyagi V. Base‐Mediated Reductive Coupling of Indole‐3‐tosylhydrazone with Thiols/Boronic Acids: Facile Synthesis of 3‐(phenylthio)methyl/benzyl Indole Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.201903863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Imran Khan
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Aanchal Sharma
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Priya Kamboj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Banibrata Maity
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology, Patiala- 147004 Punjab India
| |
Collapse
|
43
|
Bhat AH, Alavi S, Grover HK. Tandem Carbenoid C-H Functionalization/Conia-ene Cyclization of N-Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Org Lett 2020; 22:224-229. [PMID: 31854993 DOI: 10.1021/acs.orglett.9b04210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The decomposition of diazodicarbonyl compounds in the presence of various metal catalysts has become a reliable method for the functionalization of indoles via carbenoid intermediates. Exploiting the nucleophilic reactivity of the in situ generated malonic ester product formed, we herein report a tandem C-H functionalization/Conia-ene cyclization of N-alkyne tethered indoles. This double functionalization of diazodicarbonyls generates a range of pyrrolo[1,2-a]-, pyrido[1,2-a]-, and azepino[1,2-a]indole products with good synthetic efficiency.
Collapse
Affiliation(s)
- Aabid H Bhat
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| | - Sima Alavi
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| | - Huck K Grover
- Department of Chemistry , Memorial University of Newfoundland , St. John's , Newfoundland A1B 3X7 , Canada
| |
Collapse
|
44
|
Ma B, Tang Z, Zhang J, Liu L. Copper-catalysed ortho-selective C–H bond functionalization of phenols and naphthols with α-aryl-α-diazoesters. Chem Commun (Camb) 2020; 56:9485-9488. [DOI: 10.1039/d0cc04495d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented CuCl2-catalysed chemo- and ortho-selective C–H bond functionalization of phenols and naphthols with diazoesters has been developed.
Collapse
Affiliation(s)
- Ben Ma
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| | - Lu Liu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
45
|
Ge Y, Le A, Marquino GJ, Nguyen PQ, Trujillo K, Schimelfenig M, Noble A. Tools for Prescreening the Most Active Sites on Ir and Rh Clusters toward C-H Bond Cleavage of Ethane: NBO Charges and Wiberg Bond Indexes. ACS OMEGA 2019; 4:18809-18819. [PMID: 31737843 PMCID: PMC6854828 DOI: 10.1021/acsomega.9b02813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
B3LYP calculations were carried out to study the insertion of iridium (Ir) and rhodium (Rh) clusters into a C-H bond of ethane, which is often the rate-limiting step of the catalytic cycle of oxidative dehydrogenation of ethane. Our previous research on Ir catalysis correlates the diffusivity of the lowest unoccupied molecular orbital of the Ir clusters and the relative activities of the various catalytic sites. The drawback of this research is that the molecular orbital visualization is qualitative rather than quantitative. Therefore, in this study on C-H bond activation by the Ir and Rh clusters, we conducted analyses of natural bond orbital (NBO) charges and Wiberg bond indexes (WBIs), both of which are not only quantitative but also independent of the basis sets. We found strong correlation between the NBO charges, the WBIs, and the relative activities of the various catalytic sites on the Ir and Rh clusters. Analyses of the NBO charges and the WBIs provide a fast and reliable means of prescreening the most active sites on the Ir and Rh clusters and potentially on other similar transition-metal clusters that activate the C-H bonds of ethane and other light alkanes.
Collapse
|
46
|
Zeng Q, Dong K, Pei C, Dong S, Hu W, Qiu L, Xu X. Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene C(sp2)–H Insertion and the Buchner Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kuiyong Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shanliang Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
47
|
Wang Z, Xu G, Tang S, Shao Y, Sun J. Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Org Lett 2019; 21:8488-8491. [DOI: 10.1021/acs.orglett.9b03323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
48
|
Harada S, Sakai C, Tanikawa K, Nemoto T. Gold-catalyzed chemoselective formal (3+2)-Annulation reaction between β-naphthols and methyl aryldiazoacetate. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Brandenberg OF, Chen K, Arnold FH. Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds. J Am Chem Soc 2019; 141:8989-8995. [DOI: 10.1021/jacs.9b02931] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Oliver F. Brandenberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
50
|
Zhang J, Wu M, Fan J, Xu Q, Xie M. Selective C–H acylation of indoles with α-oxocarboxylic acids at the C4 position by palladium catalysis. Chem Commun (Camb) 2019; 55:8102-8105. [DOI: 10.1039/c9cc03893k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The first catalytic C–H acylation of indoles at the C4 position with α-oxocarboxylic acids by palladium catalysis is described.
Collapse
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
- China
| | - Manyi Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
- China
| | - Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
- China
| | - Qiaoqiao Xu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
- China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
- China
| |
Collapse
|