1
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
2
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Kikuchi K, Miyauchi R, Yamaguchi T, Sugiura H, Nogami T, Inoue Y, Sato H, Sato H, Fujiwara N, Maeda S. An Experimental Study on the Addition of Bacteria to Residual Anticancer Drugs: Evaluation of the Effect on Bacterial Growth. Jpn J Infect Dis 2024; 77:61-67. [PMID: 37914291 DOI: 10.7883/yoken.jjid.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Using anticancer drugs as examples, we examined the possibility of reusing residual drugs. The use of residual drugs is not widespread owing to concerns regarding bacterial contamination. We combined anticancer drugs and bacteria to investigate their effects on bacterial growth. The anticancer drugs carboplatin, paclitaxel, etoposide, irinotecan, methotrexate, and 5-fluorouracil (5-FU) were mixed with Staphylococcus aureus, Enterococcus faecalis, Serratia marcescens, and Escherichia coli. After a certain period, the bacteria were counted. Irinotecan showed no antibacterial activity, whereas 5-FU exhibited high antibacterial activity against the tested bacteria. The 5-FU also showed a minimum inhibitory concentration value in the range of 8-80 μg/mL, depending on the bacterial species. 5-FU dose-dependently inhibited S. aureus growth at more than 0.8 µg/mL. Because protein synthesis systems are reportedly antibiotic targets, we used a cell-free protein synthesis system to confirm the mechanism of the antibacterial activity of the anticancer agent. 5-FU and methotrexate had direct inhibitory effects on protein synthesis. It has been suggested that even if residual drugs are contaminated with bacteria, there will be no microbial growth, or the microbes will be killed by the drug. With careful monitoring, 5-FU can potentially be used for antimicrobial purposes.
Collapse
Affiliation(s)
- Ken Kikuchi
- Department of Pharmacy, Public Interest Association of Medical Service for Workers, Kin-ikyo Chuo Hospital, Japan
| | - Rei Miyauchi
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Tomoya Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Hayato Sugiura
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Taishi Nogami
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Yuki Inoue
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Haruna Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Japan
| |
Collapse
|
4
|
Zhao S, Wang Z, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022; 61:e202204139. [DOI: 10.1002/anie.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Zhi‐Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Zihua Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xumei Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Qun Zhang
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Chunmei Jing
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
5
|
AIEgen-Peptide Bioprobes for the Imaging of Organelles. BIOSENSORS 2022; 12:bios12080667. [PMID: 36005064 PMCID: PMC9406086 DOI: 10.3390/bios12080667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023]
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research.
Collapse
|
6
|
Zhao S, Wang ZP, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zhi-Peng Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zihua Lin
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Guoxing Wei
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xumei Wen
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Siyu Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xiaohong Yang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Qun Zhang
- Chongqing Medical University Affiliated Children's Hospital Medicine Laboratory CHINA
| | - Chunmei Jing
- Chongqing Medical University Affiliated Children's Hospital Department of Clinical Laboratory CHINA
| | - Yuanwei Dai
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Jian Guo
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yun He
- Chongqing University School of Pharmaceutical Sciences Daxuecheng South Road 401331 Chongqing CHINA
| |
Collapse
|
7
|
Chrysouli MP, Banti CN, Kourkoumelis N, Moushi EE, Tasiopoulos AJ, Douvalis A, Papachristodoulou C, Hatzidimitriou AG, Bakas T, Hadjikakou SK. Ciprofloxacin conjugated to diphenyltin(IV): a novel formulation with enhanced antimicrobial activity. Dalton Trans 2021; 49:11522-11535. [PMID: 32656556 DOI: 10.1039/d0dt01665a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The metalloantibiotic of formula Ph2Sn(CIP)2 (CIPTIN) (HCIP = ciprofloxacin) was synthesized by reacting ciprofloxacin hydrochloride (HCIP·HCl) (an antibiotic in clinical use) with diphenyltin dichloride (Ph2SnCl2DPTD). The complex was characterized in the solid state by melting point, FT-IR, X-ray Powder Diffraction (XRPD) analysis, 119Sn Mössbauer spectroscopy, X-ray Fluorescence (XRF) spectroscopy, and Thermogravimetry/Differential Thermal Analysis (TG-DTA) and in solution by UV-Vis, 1H NMR spectroscopic techniques and Electrospray Ionisation Mass Spectrometry (ESI-MS). The crystal structure of CIPTIN and its processor HCIP was also determined by X-ray crystallography. The antibacterial activity of CIPTIN, HCIP·HCl, HCIP and DPTD was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Inhibition Zones (IZs). CIPTIN shows lower MIC values than those of HCIP·HCl (up to 4.2-fold), HCIP (up to 2.7-fold) or DPTD (>135-fold), towards the tested microbes. CIPTIN is classified into bactericidal agents according to MBC/MIC values. The developing IZs are 40.8 ± 1.5, 34.0 ± 0.8, 36.0 ± 1.1 and 42.7 ± 0.8 mm, respectively which classify the microbes P. aeruginosa, E. coli, S. aureus and S. epidermidis to susceptible ones to CIPTIN. These IZs are greater than the corresponding ones of HCIP·HCl by 1.1 to 1.5-fold against both the tested Gram negative and Gram positive bacteria. CIPTIN eradicates the biofilm of P. aeruginosa and S. aureus more efficiently than HCIP·HCl and HCIP. The in vitro toxicity and genotoxicity of CIPTIN were tested against human skin keratinocyte cells (HaCaT) (IC50 = 2.33 μM). CIPTIN exhibits 2 to 9-fold lower MIC values than its IC50 against HaCaT, while its genotoxic effect determined by micronucleus assay is equivalent to the corresponding ones of HCIP·HCl or HCIP.
Collapse
Affiliation(s)
- M P Chrysouli
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - C N Banti
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece
| | - E E Moushi
- Department of Life Sciences, The School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A J Tasiopoulos
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - A Douvalis
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - A G Hatzidimitriou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T Bakas
- Mössbauer Spectroscopy and Physics of Material Laboratory, Department of Physics, University of Ioannina, Ioannina, Greece
| | - S K Hadjikakou
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
8
|
Wawi MJ, Bijoux A, Inguimbert N, Mahler C, Wagner S, Marder TB, Ribou AC. Peptide Vectors Carry Pyrene to Cell Organelles Allowing Real-Time Quantification of Free Radicals in Mitochondria by Time-Resolved Fluorescence Microscopy. Chembiochem 2021; 22:1676-1685. [PMID: 33368947 DOI: 10.1002/cbic.202000845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Indexed: 11/09/2022]
Abstract
Real-time quantification of reactive nitrogen and oxygen species (ROS) in cells is of paramount importance as they are essential for cellular functions. Their excessive formation contributes to the dysfunction of cells and organisms, ultimately leading to cell death. As ROS are mostly produced in the mitochondria, we have synthesized a fluorescent probe able to reach this organelle to detect and quantify, in real time, the variation of ROS by time-resolved microfluorimetry. The new probes are based on the long fluorescence lifetime of pyrene butyric acid (PBA). Two PBA isomers, attached at their 1- or 2-positions to a peptide vector to target mitochondria, were compared and were shown to allow the measurement of free radical species and oxygen, but not non-radical species such as H2 O2 .
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stephan Wagner
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| |
Collapse
|
9
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Czupiel PP, Delplace V, Shoichet MS. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J Control Release 2019; 305:210-219. [PMID: 31071370 DOI: 10.1016/j.jconrel.2019.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Currently, there are limited treatment options for multi-drug resistant breast cancer. Lipid-modified cationic peptides have the potential to reach the mitochondria, which are attractive targets for the treatment of multi-drug resistant (MDR) breast cancer; yet, little is known about their mitochondrial targeting and anti-cancer activity. Interestingly, lipid-modified cationic peptides, typically used as gene transfection agents, exhibit similar structural features to mitochondrial targeted peptides. Using octahistidine-octaarginine (H8R8) as a model cationic peptide for cell penetration and endosomal escape, we explored the anti-cancer potential of lipid-modified cationic peptides as a function of amphiphilicity, biodegradability and lipid structure. We found that cationic peptides modified with a lipid that is at least 12 carbons in length exhibit potent anti-cancer activity in the low micromolar range in both EMT6/P and EMT6/AR-1 breast cancer cells. Comparing degradable and non-degradable linkers, as well as L- and D-amino acid sequences, we found that the anti-cancer activity is mostly independent of the biodegradation of the lipid-modified cationic peptides. Two candidates, stearyl-H8R8 (Str-H8R8) and vitamin E succinate-H8R8 (VES-H8R8) were cytotoxic to cancer cells by mitochondria depolarization. We observed increased reactive oxygen species (ROS) production, reduced cell bioenergetics and drug efflux, triggering apoptosis and G1 cell cycle arrest. Compared to Str-H8R8, VES-H8R8 showed enhanced cancer cell selectivity and drug efflux inhibition, thereby serving as a potential novel therapeutic agent. This study deepens our understanding of lipid-modified cationic peptides and uncovers their potential in multi-drug resistant breast cancer.
Collapse
Affiliation(s)
- Petro P Czupiel
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
11
|
Pirisinu M, Blasco P, Tian X, Sen Y, Bode AM, Liu K, Dong Z. Analysis of hydrophobic and hydrophilic moments of short penetrating peptides for enhancing mitochondrial localization: prediction and validation. FASEB J 2019; 33:7970-7984. [DOI: 10.1096/fj.201802748rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Pirisinu
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Pilar Blasco
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Xueli Tian
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
| | - Yang Sen
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
| | - Ann M. Bode
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
| | - Kangdong Liu
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
- The Affiliated Cancer HospitalZhengzhou University Zhengzhou China
- Collaborative Innovation CenterCancer Chemoprevention of Henan Zhengzhou China
| | - Zigang Dong
- The China-U.S. (Henan) Hormel Cancer Institute Zhengzhou China
- The Hormel InstituteUniversity of Minnesota Austin Minnesota USA
- Pathophysiology DepartmentThe School of Basic Medical SciencesZhengzhou University Zhengzhou China
- The Affiliated Cancer HospitalZhengzhou University Zhengzhou China
- Collaborative Innovation CenterCancer Chemoprevention of Henan Zhengzhou China
| |
Collapse
|
12
|
Milionis I, Banti CN, Sainis I, Raptopoulou CP, Psycharis V, Kourkoumelis N, Hadjikakou SK. Silver ciprofloxacin (CIPAG): a successful combination of chemically modified antibiotic in inorganic-organic hybrid. J Biol Inorg Chem 2018; 23:705-723. [PMID: 29654371 DOI: 10.1007/s00775-018-1561-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
The new silver(I) ionic, water soluble, compound {[Ag(CIPH)2]NO3∙0.75MeOH∙1.2H2O} (CIPAG) was obtained by reacting silver(I) nitrate with the antibiotic ciprofloxacin (CIPH). The complex was characterized by m.p., mid-FT-IR, 1H-NMR, UV-Vis spectroscopic techniques. The crystal structures of both CIPAG and the hexahydrated neutral free drug {[CIPH]∙6(H2O)} (2) were characterized by X-ray crystallography. Two neutral ligands are datively bonded to the metal ion through the piperidinic nitrogen atoms forming a cationic {[Ag(CIPH)2]+} counter part which is neutralized by a nitrate group. The antibacterial effect of CIPAG and the commercially available hydrochloric salt of the antibiotic ({[CIPH 2+ ]∙Cl - } (3)) were tested against the bacterial species Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis (St. epidermidis) and Staphylococcus aureus (St. aureus) by the mean of minimum inhibitory concentration, minimum bactericidal concentration and their inhibitory zone (IZ). The influence of CIPAG and 3 against the formation of biofilm of PAO1 or St. aureus was also evaluated by mean of biofilm elimination concentration. The IZ caused by CIPAG which has been loaded in poly-hydroxyethylmethacrylate, is determined. The genotoxicity of CIPAG and 3 is tested in vitro against normal human corneal epithelial cells (HCET cells), by the presence of micronucleus in HCET cells and in vivo by mean of Allium cepa test.
Collapse
Affiliation(s)
- I Milionis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - C N Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| | - I Sainis
- Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - C P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Attikis, Greece
| | - V Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Attikis, Greece
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece
| | - S K Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
13
|
Lipid-based DNA/siRNA transfection agents disrupt neuronal bioenergetics and mitophagy. Biochem J 2017; 474:3887-3902. [PMID: 29025974 DOI: 10.1042/bcj20170632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
A multitude of natural and artificial compounds have been recognized to modulate autophagy, providing direct or, through associated pathways, indirect entry points to activation and inhibition. While these pharmacological tools are extremely useful in the study of autophagy, their abundance also suggests the potential presence of unidentified autophagic modulators that may interfere with experimental designs if applied unknowingly. Here, we report unanticipated effects on autophagy and bioenergetics in neuronal progenitor cells (NPCs) incubated with the widely used lipid-based transfection reagent lipofectamine (LF), which induced mitochondria depolarization followed by disruption of electron transport. When NPCs were exposed to LF for 5 h followed by 24, 48, and 72 h in LF-free media, an immediate increase in mitochondrial ROS production and nitrotyrosine formation was observed. These events were accompanied by disrupted mitophagy (accumulation of dysfunctional and damaged mitochondria, and of LC3II and p62), in an mTOR- and AMPK-independent manner, and despite the increased mitochondrial PINK1 (PTEN-inducible kinase 1) localization. Evidence supported a role for a p53-mediated abrogation of parkin translocation and/or abrogation of membrane fusion between autophagosome and lysosomes. While most of the outcomes were LF-specific, only two were shared by OptiMEM exposure (with no serum and reduced glucose levels) albeit at lower extents. Taken together, our findings show that the use of transfection reagents requires critical evaluation with respect to consequences for overall cellular health, particularly in experiments designed to address autophagy-inducing effects and/or energy stress.
Collapse
|
14
|
Ahmed M, Kelley SO. Enhancing the Potency of Nalidixic Acid toward a Bacterial DNA Gyrase with Conjugated Peptides. ACS Chem Biol 2017; 12:2563-2569. [PMID: 28825963 DOI: 10.1021/acschembio.7b00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quinolones and fluoroquinolones are widely used antibacterial agents. Nalidixic acid (NA) is a first-generation quinolone-based antibiotic that has a narrow spectrum and poor pharmacokinetics. Here, we describe a family of peptide-nalidixic acid conjugates featuring different levels of hydrophobicity and molecular charge prepared by solid-phase peptide synthesis that exhibit intriguing improvements in potency. In comparison to NA, which has a low level of potency in S. aureus, the NA peptide conjugates with optimized hydrophobicities and molecular charges exhibited significantly improved antibacterial activity. The most potent NA conjugate-featuring a peptide containing cyclohexylalanine and arginine-exhibited efficient bacterial uptake and, notably, specific inhibition of S. aureus DNA gyrase. A systematic study of peptide-NA conjugates revealed that a fine balance of cationic charge and hydrophobicity in an appendage anchored to the core of the drug is required to overcome the intrinsic resistance of S. aureus DNA gyrase toward this quinolone-based drug.
Collapse
Affiliation(s)
- Marya Ahmed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, and Department of Biochemistry,
Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
16
|
Xia MC, Cai L, Zhang S, Zhang X. Cell-Penetrating Peptide Spirolactam Derivative as a Reversible Fluorescent pH Probe for Live Cell Imaging. Anal Chem 2017; 89:1238-1243. [PMID: 28194980 DOI: 10.1021/acs.analchem.6b03813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A colorless and nonfluorescent spirolactam derivative, RhB-R12K, was synthesized by amide condensation between the carboxyl group of rhodamine B (RhB) and the amino group of cell-penetrating peptide (CPP). The fluorescence intensity of RhB-R12K sharply increased as the pH value decreased from 8.0 to 4.9, demonstrating sensitive and reversible response to intracellular pH distribution. This CPP probe was completely water soluble, had low cytotoxicity, was membrane permeable, and was suitable for pH measurement in various organelles by choosing organelle-specific CPP sequences. Interestingly, CPPs acted not only as carriers but also as indispensable parts of fluorophores here. The presence of active groups on the peptides potentially allows for modification with additional dyes to construct multifunctional and ratiometric probes for cell imaging.
Collapse
Affiliation(s)
- Meng-Chan Xia
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, 100084, P.R. China
| | - Lesi Cai
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, 100084, P.R. China
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, 100084, P.R. China
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, 100084, P.R. China
| |
Collapse
|
17
|
|
18
|
Jean SR, Ahmed M, Lei EK, Wisnovsky SP, Kelley SO. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria. Acc Chem Res 2016; 49:1893-902. [PMID: 27529125 DOI: 10.1021/acs.accounts.6b00277] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of poorly understood mitochondrial DNA repair and replication pathways. In this work, a variety of novel proteins were identified that are essential for the maintenance of mitochondrial nucleic acids. Mitochondria-targeted peptides have also been used to increase the therapeutic window of antibacterial drugs with significant mammalian toxicity. Given the evolutionary similarity of mitochondria and bacteria, peptides are effective transporters that can target both of these entities. These antimicrobial peptides are highly effective even in difficult to target intracellular bacteria which reside within host cells. This peptide-based approach to targeting mitochondria has provided a variety of insights into the "druggability" of mitochondria and new biological processes that could be future drug targets. Nevertheless, the mitochondrial-targeting field is quite nascent and many exciting applications of organelle-specific conjugates remain to be explored. In this Account, we highlight the development and optimization of the mitochondria-penetrating peptides that our laboratory has developed, the unique applications of mitochondria-targeted bioactive cargo, and offer a perspective on important directions for the field.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Marya Ahmed
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Eric K. Lei
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Simon P. Wisnovsky
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
19
|
Kim S, Hyun S, Lee Y, Lee Y, Yu J. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability. Biomacromolecules 2016; 17:3007-15. [DOI: 10.1021/acs.biomac.6b00874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Seoyeon Kim
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Soonsil Hyun
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Yuri Lee
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehoon Yu
- Department of Chemistry & Education, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Reelfs O, Abbate V, Hider RC, Pourzand C. A Powerful Mitochondria-Targeted Iron Chelator Affords High Photoprotection against Solar Ultraviolet A Radiation. J Invest Dermatol 2016; 136:1692-1700. [PMID: 27109868 PMCID: PMC4946793 DOI: 10.1016/j.jid.2016.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/24/2023]
Abstract
Mitochondria are the principal destination for labile iron, making these organelles particularly susceptible to oxidative damage on exposure to ultraviolet A (UVA, 320–400 nm), the oxidizing component of sunlight. The labile iron-mediated oxidative damage caused by UVA to mitochondria leads to necrotic cell death via adenosine triphosphate depletion. Therefore, targeted removal of mitochondrial labile iron via highly specific tools from these organelles may be an effective approach to protect the skin cells against the harmful effects of UVA. In this work, we designed a mitochondria-targeted hexadentate (tricatechol-based) iron chelator linked to mitochondria-homing SS-like peptides. The photoprotective potential of this compound against UVA-induced oxidative damage and cell death was evaluated in cultured primary skin fibroblasts. Our results show that this compound provides unprecedented protection against UVA-induced mitochondrial damage, adenosine triphosphate depletion, and the ensuing necrotic cell death in skin fibroblasts, and this effect is fully related to its potent iron-chelating property in the organelle. This mitochondria-targeted iron chelator has therefore promising potential for skin photoprotection against the deleterious effects of the UVA component of sunlight.
Collapse
Affiliation(s)
- Olivier Reelfs
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Charareh Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| |
Collapse
|
21
|
Dinca A, Chien WM, Chin MT. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. Int J Mol Sci 2016; 17:263. [PMID: 26907261 PMCID: PMC4783992 DOI: 10.3390/ijms17020263] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.
Collapse
Affiliation(s)
- Ana Dinca
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
| | - Wei-Ming Chien
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| | - Michael T Chin
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Abbate V, Reelfs O, Kong X, Pourzand C, Hider RC. Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools. Chem Commun (Camb) 2016; 52:784-7. [PMID: 26567874 DOI: 10.1039/c5cc06170a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria-targeted peptides incorporating dual fluorescent and selective iron chelators have been designed as novel biosensors for the mitochondrial labile iron pool. The probes were demonstrated to specifically co-localize with mitochondria and their fluorescence emission was found to be sensitive to the presence of iron.
Collapse
Affiliation(s)
- Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Olivier Reelfs
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Xiaole Kong
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Charareh Pourzand
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
23
|
Pereira MP, Shi J, Kelley SO. Peptide Targeting of an Antibiotic Prodrug toward Phagosome-Entrapped Mycobacteria. ACS Infect Dis 2015; 1:586-92. [PMID: 27623056 DOI: 10.1021/acsinfecdis.5b00099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterial infections are difficult to treat due to the bacterium's slow growth, ability to reside in intracellular compartments within macrophages, and resistance mechanisms that limit the effectiveness of conventional antibiotics. Developing antibiotics that overcome these challenges is therefore critical to providing a pipeline of effective antimicrobial agents. Here, we describe the synthesis and testing of a unique peptide-drug conjugate that exhibits high levels of antimicrobial activity against M. smegmatis and M. tuberculosis as well as clearance of intracellular mycobacteria from cultured macrophages. Using an engineered peptide sequence, we deliver a potent DHFR inhibitor and target the intracellular phagosomes where mycobacteria reside and also incorporate a β-lactamase-cleavable cephalosporin linker to enhance the targeting of quiescent intracellular β-lactam-resistant mycobacteria. By using this type of prodrug approach to target intracellular mycobacterial infections, the emergence of antibacterial resistance mechanisms could be minimized.
Collapse
Affiliation(s)
- Mark P. Pereira
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julie Shi
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, and Department of Biochemistry, Faculty
of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
B12 -antimetabolites are compounds that counteract the physiological effects of vitamin B12 and related natural cobalamins. Presented here is a structure- and reactivity-based concept of the specific 'antivitamins B12 ': it refers to analogues of vitamin B12 that display high structural similarity to the vitamin and are 'locked chemically' to prevent their metabolic conversion into the crucial organometallic B12 -cofactors. Application of antivitamins B12 to healthy laboratory animals is, thus, expected to induce symptoms of B12 -deficiency. Antivitamins B12 may, hence, be helpful in elucidating still largely puzzling pathophysiological phenomena associated with B12 -deficiency, and also in recognizing physiological roles of B12 that probably still remain to be discovered.
Collapse
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck (Austria).
| |
Collapse
|
25
|
Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochem J 2015; 469:357-66. [PMID: 26008950 DOI: 10.1042/bj20150149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitochondrial labile iron (LI) plays a crucial role in oxidative injuries and pathologies. At present, there is no organelle-specific sensitive iron sensor which can reside exclusively in the mitochondria and reliably monitor levels of LI in this organelle. In the present study, we describe the development of novel fluorescent and highly specific mitochondria iron sensors, using the family of mitochondria-homing 'SS-peptides' (short cell-permeant signal peptides mimicking mitochondrial import sequence) as carriers of highly specific iron chelators for sensitive evaluation of the mitochondrial LI. Microscopic analysis of subcellular localization of a small library of fluorescently labelled SS-like peptides identified dansyl (DNS) as the lead fluorophore for the subsequent synthesis of chimaeric iron chelator-peptides of either catechol (compounds 10 and 11) or hydroxypyridinone (compounds 13 and 14) type. The iron-sensing ability of these chimaeric compounds was confirmed by fluorescent quenching and dequenching studies both in solution and in cells, with compound 13 exhibiting the highest sensitivity towards iron modulation. The intramolecular fluorophore-chelator distance and the iron affinity both influence probe sensitivity towards iron. These probes represent the first example of highly sensitive mitochondria-directed fluorescent iron chelators with potential to monitor mitochondrial LI levels.
Collapse
|
26
|
Zelder F, Sonnay M, Prieto L. Antivitamins for Medicinal Applications. Chembiochem 2015; 16:1264-78. [PMID: 26013037 DOI: 10.1002/cbic.201500072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Antivitamins represent a broad class of compounds that counteract the essential effects of vitamins. The symptoms triggered by such antinutritional factors resemble those of vitamin deficiencies, but can be successfully reversed by treating patients with the intact vitamin. Despite being undesirable for healthy organisms, the toxicities of these compounds present considerable interest for biological and medicinal purposes. Indeed, antivitamins played fundamental roles in the development of pioneering antibiotic and antiproliferative drugs, such as prontosil and aminopterin. Their development and optimisation were made possible by the study, throughout the 20th century, of the vitamins' and antivitamins' functions in metabolic processes. However, even with this thorough knowledge, commercialised antivitamin-based drugs are still nowadays limited to antagonists of vitamins B9 and K. The antivitamin field thus still needs to be explored more intensely, in view of the outstanding therapeutic success exhibited by several antivitamin-based medicines. Here we summarise historical achievements and discuss critically recent developments, opportunities and potential limitations of the antivitamin approach, with a special focus on antivitamins K, B9 and B12 .
Collapse
Affiliation(s)
- Felix Zelder
- Institute of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| | - Marjorie Sonnay
- Institute of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Lucas Prieto
- Institute of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| |
Collapse
|
27
|
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:315-29. [PMID: 25348382 PMCID: PMC4397104 DOI: 10.1002/wnan.1305] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Mitochondria, the so-called 'energy factory of cells' not only produce energy but also contribute immensely in cellular mortality management. Mitochondrial dysfunctions result in various diseases including but not limited to cancer, atherosclerosis, and neurodegenerative diseases. In the recent years, targeting mitochondria emerged as an attractive strategy to control mitochondrial dysfunction-related diseases. Despite the desire to direct therapeutics to the mitochondria, the actual task is more difficult due to the highly complex nature of the mitochondria. The potential benefits of integrating nanomaterials with properties such as biodegradability, magnetization, and fluorescence into a single object of nanoscale dimensions can lead to the development of hybrid nanomedical platforms for targeting therapeutics to the mitochondria. Only a handful of nanoparticles based on metal oxides, gold nanoparticles, dendrons, carbon nanotubes, and liposomes were recently engineered to target mitochondria. Most of these materials face tremendous challenges when administered in vivo due to their limited biocompatibility. Biodegradable polymeric nanoparticles emerged as eminent candidates for effective drug delivery. In this review, we highlight the current advancements in the development of biodegradable nanoparticle platforms as effective targeting tools for mitochondrial medicine.
Collapse
Affiliation(s)
- Rakesh K. Pathak
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| | - Nagesh Kolishetti
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
- PartiKula LLC, 7777 Davie Rd., Hollywood, FL 33024
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory Department of Chemistry University of Georgia, Athens, GA 30602
| |
Collapse
|
28
|
Issa NT, Peters OJ, Byers SW, Dakshanamurthy S. RepurposeVS: A Drug Repurposing-Focused Computational Method for Accurate Drug-Target Signature Predictions. Comb Chem High Throughput Screen 2015; 18:784-94. [PMID: 26234515 PMCID: PMC5848469 DOI: 10.2174/1386207318666150803130138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 11/22/2022]
Abstract
We describe here RepurposeVS for the reliable prediction of drug-target signatures using X-ray protein crystal structures. RepurposeVS is a virtual screening method that incorporates docking, drug-centric and protein-centric 2D/3D fingerprints with a rigorous mathematical normalization procedure to account for the variability in units and provide high-resolution contextual information for drug-target binding. Validity was confirmed by the following: (1) providing the greatest enrichment of known drug binders for multiple protein targets in virtual screening experiments, (2) determining that similarly shaped protein target pockets are predicted to bind drugs of similar 3D shapes when RepurposeVS is applied to 2,335 human protein targets, and (3) determining true biological associations in vitro for mebendazole (MBZ) across many predicted kinase targets for potential cancer repurposing. Since RepurposeVS is a drug repurposing-focused method, benchmarking was conducted on a set of 3,671 FDA approved and experimental drugs rather than the Database of Useful Decoys (DUDE) so as to streamline downstream repurposing experiments. We further apply RepurposeVS to explore the overall potential drug repurposing space for currently approved drugs. RepurposeVS is not computationally intensive and increases performance accuracy, thus serving as an efficient and powerful in silico tool to predict drug-target associations in drug repurposing.
Collapse
|
29
|
Lobana TS, Indoria S, Kaur H, Arora DS, Jassal AK, Jasinski JP. Synthesis and structures of 5-nitro-salicylaldehyde thiosemicarb-azonates of copper(ii): molecular spectroscopy, ESI-mass studies, antimicrobial activity and cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c4ra15006f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Salicylaldehyde thiosemicarbazonates of copper(ii) have shown significant growth inhibitory activity againstS. aureus, MRSA,K. pneumonia,S. flexneri,P. aeruginosaandC. albicansand are bactericidal in nature with low cytotoxicity.
Collapse
Affiliation(s)
- Tarlok S. Lobana
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Shikha Indoria
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Harpreet Kaur
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Daljit S. Arora
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | | | | |
Collapse
|
30
|
A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson’s disease. Nat Commun 2014; 5:5181. [DOI: 10.1038/ncomms6181] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022] Open
|
31
|
Synthesis, structures, spectroscopy and antimicrobial properties of complexes of copper(II) with salicylaldehyde N-substituted thiosemicarbazones and 2,2′-bipyridine or 1,10-phenanthroline. Eur J Med Chem 2014; 76:145-54. [DOI: 10.1016/j.ejmech.2014.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
32
|
Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 2014; 9:323-33. [PMID: 24410267 DOI: 10.1021/cb400821p] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mitochondria within human cells play a major role in a variety of critical processes involved in cell survival and death. An understanding of mitochondrial involvement in various human diseases has generated an appreciable amount of interest in exploring this organelle as a potential drug target. As a result, a number of strategies to probe and combat mitochondria-associated diseases have emerged. Access to mitochondria-specific delivery vectors has allowed the study of biological processes within this intracellular compartment with a heightened level of specificity. In this review, we summarize the features of existing delivery vectors developed for targeting probes and therapeutics to this highly impermeable organelle. We also discuss the major applications of mitochondrial targeting of bioactive molecules, which include the detection and treatment of oxidative damage, combating bacterial infections, and the development of new therapeutic approaches for cancer. Future directions include the assessment of the therapeutic benefit achieved by mitochondrial targeting for treatment of disease in vivo. In addition, the availability of mitochondria-specific chemical probes will allow the elucidation of the details of biological processes that occur within this cellular compartment.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - David V. Tulumello
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Simon P. Wisnovsky
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Eric K. Lei
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Mark P. Pereira
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Chen WH, Xu XD, Luo GF, Jia HZ, Lei Q, Cheng SX, Zhuo RX, Zhang XZ. Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci Rep 2013; 3:3468. [PMID: 24336626 PMCID: PMC3863817 DOI: 10.1038/srep03468] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/25/2013] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are vital organelles to eukaryotic cells. Damage to mitochondria will cause irreversible cell death or apoptosis. In this report, we aim at programmed cancer cell death via specific mitochondrial damage. Herein, a functionalized pro-apoptotic peptide demonstrates a dual-targeting capability using folic acid (FA) (targeting agent I) and triphenylphosphonium (TPP) cation (targeting agent II). FA is a cancer-targeting agent, which can increase the cellular uptake of the pro-apoptotic peptide via receptor-mediated endocytosis. And the TPP cation is the mitochondrial targeting agent, which specifically delivers the pro-apoptotic peptide to its particular subcellular mitochondria after internalized by cancer cells. Then the pro-apoptotic peptide accumulates in mitochondria and causes its serious damage. This dual-targeting strategy has the potential to effectively transport the pro-apoptotic peptide to targeted cancer cell mitochondria, inducing mitochondrial dysfunction and triggering the mitochondria-dependent apoptosis to efficiently eliminate cancer cells.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Ding Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
34
|
Kuriakose J, Hernandez-Gordillo V, Nepal M, Brezden A, Pozzi V, Seleem MN, Chmielewski J. Targeting Intracellular Pathogenic Bacteria with Unnatural Proline-Rich Peptides: Coupling Antibacterial Activity with Macrophage Penetration. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Kuriakose J, Hernandez-Gordillo V, Nepal M, Brezden A, Pozzi V, Seleem MN, Chmielewski J. Targeting Intracellular Pathogenic Bacteria with Unnatural Proline-Rich Peptides: Coupling Antibacterial Activity with Macrophage Penetration. Angew Chem Int Ed Engl 2013; 52:9664-7. [DOI: 10.1002/anie.201302693] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/12/2013] [Indexed: 11/11/2022]
|
36
|
Lei EK, Pereira MP, Kelley SO. Tuning the intracellular bacterial targeting of peptidic vectors. Angew Chem Int Ed Engl 2013; 52:9660-3. [PMID: 23893882 DOI: 10.1002/anie.201302265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/20/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Eric K Lei
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
37
|
Lei EK, Pereira MP, Kelley SO. Tuning the Intracellular Bacterial Targeting of Peptidic Vectors. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
McQuaker SJ, Quinlan CL, Caldwell ST, Brand MD, Hartley RC. A prototypical small-molecule modulator uncouples mitochondria in response to endogenous hydrogen peroxide production. Chembiochem 2013; 14:993-1000. [PMID: 23640856 PMCID: PMC3743171 DOI: 10.1002/cbic.201300115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 12/31/2022]
Abstract
A high membrane potential across the mitochondrial inner membrane leads to the production of the reactive oxygen species (ROS) implicated in aging and age-related diseases. A prototypical drug for the correction of this type of mitochondrial dysfunction is presented. MitoDNP-SUM accumulates in mitochondria in response to the membrane potential due to its mitochondria-targeting alkyltriphenylphosphonium (TPP) cation and is uncaged by endogenous hydrogen peroxide to release the mitochondrial uncoupler, 2,4-dinitrophenol (DNP). DNP is known to reduce the high membrane potential responsible for the production of ROS. The approach potentially represents a general method for the delivery of drugs to the mitochondrial matrix through mitochondria targeting and H(2)O(2)-induced uncaging.
Collapse
Affiliation(s)
- Stephen J McQuaker
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| | - Casey L Quinlan
- Buck Institute for Research on Aging8001 Redwood Boulevard, Novato, California 94945 (USA)
| | - Stuart T Caldwell
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| | - Martin D Brand
- Buck Institute for Research on Aging8001 Redwood Boulevard, Novato, California 94945 (USA)
| | - Richard C Hartley
- WestChem School of Chemistry, University of GlasgowGlasgow, G12 8QQ (UK) E-mail:
| |
Collapse
|
39
|
Marbella LE, Cho HS, Spence MM. Observing the translocation of a mitochondria-penetrating peptide with solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1674-82. [PMID: 23567916 DOI: 10.1016/j.bbamem.2013.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 12/18/2022]
Abstract
A new class of penetrating peptides that can target the mitochondria with high specificity was recently discovered. In this work, we developed a model inner mitochondrial membrane, equipped with a transmembrane gradient, suitable for solid-state NMR experiments. Using solid-state NMR, we observed a mitochondria-penetrating peptide interacting with the model inner mitochondrial membrane to gain insight into the mechanism of translocation. The paramagnetic relaxation effect due to Mn(2+) ions on (13)C magic angle spinning NMR was used to measure the insertion depth of the peptide and its distribution in each monolayer of the membrane. We found that at low peptide concentration the peptide binds to the outer leaflet and at high concentration, it crosses the hydrophobic bilayer core and is distributed in both leaflets. In both concentration regimes, the peptide binds at the C2 position on the lipid acyl chain. The mitochondria-penetrating peptide crossed to the inner leaflet of the model membranes without disrupting the lamellarity. These results provide evidence that supports the electroporation model of translocation. We estimated the energy associated with crossing the inner mitochondrial membrane. We found that the transmembrane potential provides sufficient energy for the peptide to cross the hydrophobic core, which is the most unfavorable step in translocation.
Collapse
Affiliation(s)
- Lauren E Marbella
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
40
|
Gooding M, Browne LP, Quinteiro FM, Selwood DL. siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des 2013; 80:787-809. [PMID: 22974319 DOI: 10.1111/cbdd.12052] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To deliver siRNA for therapeutic use, several hurdles must be addressed. Metabolic degradation must be blocked, and the RNAi cellular machinery is located in the cytoplasm, while double-stranded siRNA is large, highly charged and impermeable to cell membranes. To date, the solutions to the delivery issues have mostly involved different forms of lipid particle encapsulation. Cell-penetrating peptides and their mimics or analogues offer a different approach and this is an emerging field with the first in vivo examples now reported. Recent reports point to lipid receptors being involved in the cellular uptake of both types of transporter. This review examines the delivery of siRNA with a focus on cell-penetrating peptides and their small molecule and oligomeric mimics. The current status of siRNA delivery methods in clinical trials is examined. It now seems that the goal of delivering siRNA therapeutically is achievable but will they form part of a sustainable healthcare portfolio for the future.
Collapse
Affiliation(s)
- Matt Gooding
- The Wolfson Institute for Biomedical Research, UCL, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
41
|
Zhang P, Cheetham AG, Lock LL, Cui H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug Chem 2013; 24:604-13. [PMID: 23514455 DOI: 10.1021/bc300585h] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conjugation of anticancer drugs to hydrophilic peptides such as Tat is a widely adopted strategy to improve the drug's solubility, cellular uptake, and potency against cancerous cells. Here we report that attachment of an anticancer drug doxorubicin to the N- or C-terminal of the Tat peptide can have a significant impact on their cellular uptake and cytotoxicity against both drug-sensitive and drug-resistant cancer cells. We observed higher cellular uptake by both cell lines for C-terminal conjugate relative to the N-terminal analogue. Our results reveal that the C-terminal conjugate partially overcame the multidrug resistance of cervical cancer cells, while the N-terminal conjugate showed no significant improvement in cytotoxicity when compared with free doxorubicin. We also found that both N- and C-conjugates offer a mechanism to circumvent drug efflux associated with multidrug resistance.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
42
|
Wencewicz TA, Long TE, Möllmann U, Miller MJ. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug Chem 2013; 24:473-86. [PMID: 23350642 DOI: 10.1021/bc300610f] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a β-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 μM for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
43
|
Komor AC, Schneider CJ, Weidmann AG, Barton JK. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. J Am Chem Soc 2012; 134:19223-33. [PMID: 23137296 PMCID: PMC3740518 DOI: 10.1021/ja3090687] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA.
Collapse
Affiliation(s)
- Alexis C. Komor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Curtis J. Schneider
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Alyson G. Weidmann
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| |
Collapse
|
44
|
Bowerman CJ, Nilsson BL. Self-assembly of amphipathic β-sheet peptides: insights and applications. Biopolymers 2012; 98:169-84. [PMID: 22782560 DOI: 10.1002/bip.22058] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amphipathic peptides composed of alternating polar and nonpolar residues have a strong tendency to self-assemble into one-dimensional, amyloid-like fibril structures. Fibrils derived from peptides of general (XZXZ)(n) sequence in which X is hydrophobic and Z is hydrophilic adopt a putative β-sheet bilayer. The bilayer configuration allows burial of the hydrophobic X side chain groups in the core of the fibril and leaves the polar Z side chains exposed to solvent. This architectural arrangement provides fibrils that maintain high solubility in water and has facilitated the recent exploitation of self-assembled amphipathic peptide fibrils as functional biomaterials. This article is a critical review of the development and application of self-assembling amphipathic peptides with a focus on the fundamental insight these types of peptides provide into peptide self-assembly phenomena.
Collapse
Affiliation(s)
- Charles J Bowerman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
45
|
Smith RAJ, Hartley RC, Cochemé HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci 2012; 33:341-52. [PMID: 22521106 DOI: 10.1016/j.tips.2012.03.010] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 12/13/2022]
Abstract
Mitochondria are being recognized as key factors in many unexpected areas of biomedical science. In addition to their well-known roles in oxidative phosphorylation and metabolism, it is now clear that mitochondria are also central to cell death, neoplasia, cell differentiation, the innate immune system, oxygen and hypoxia sensing, and calcium metabolism. Disruption to these processes contributes to a range of human pathologies, making mitochondria a potentially important, but currently seemingly neglected, therapeutic target. Mitochondrial dysfunction is often associated with oxidative damage, calcium dyshomeostasis, defective ATP synthesis, or induction of the permeability transition pore. Consequently, therapies designed to prevent these types of damage are beneficial and can be used to treat many diverse and apparently unrelated indications. Here we outline the biological properties that make mitochondria important determinants of health and disease, and describe the pharmacological strategies being developed to address mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robin A J Smith
- Department of Chemistry, University of Otago, Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
46
|
Horton KL, Pereira MP, Stewart KM, Fonseca SB, Kelley SO. Tuning the Activity of Mitochondria-Penetrating Peptides for Delivery or Disruption. Chembiochem 2012; 13:476-85. [DOI: 10.1002/cbic.201100415] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 11/05/2022]
|
47
|
Kelley SO, Stewart KM, Mourtada R. Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations. Pharm Res 2011; 28:2808-19. [PMID: 21833796 DOI: 10.1007/s11095-011-0530-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/29/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE To create a new class of mitochondria-penetrating peptides (MPPs) that would facilitate drug delivery into the organelle through the inclusion of delocalized lipophilic cations (DLCs) in the peptide sequence. METHODS We synthesized two novel amino acids featuring DLCs and incorporated them into peptides. Systematic studies were conducted to compare peptides containing these residues to those with natural cationic amino acids. Diastereomers were compared to determine the most advantageous arrangement for these peptides. Peptide lipophilicity, cellular uptake and mitochondrial specificity were compared for a variety of peptides. RESULTS Synthetic DLC residues were found to increase mitochondrial localization of MPPs due to higher overall hydrophobicity. MPP stereochemistry was important for cellular uptake rather than subcellular localization. This study reaffirmed the importance of uniform overall charge distribution for mitochondrial specificity. CONCLUSIONS DLCs can be incorporated into synthetic peptides and facilitate mitochondrial drug delivery. Lipophilicity and charge distribution must be carefully balanced to ensure localization within mitochondria.
Collapse
Affiliation(s)
- Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto M5S 3M2, Canada.
| | | | | |
Collapse
|
48
|
Yang PY, Liu K, Zhang C, Chen GYJ, Shen Y, Ngai MH, Lear MJ, Yao SQ. Chemical Modification and Organelle-Specific Localization of Orlistat-Like Natural-Product-Based Probes. Chem Asian J 2011; 6:2762-75. [DOI: 10.1002/asia.201100306] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Indexed: 12/20/2022]
|
49
|
Multiple Triphenylphosphonium Cations as a Platform for the Delivery of a Pro-Apoptotic Peptide. Pharm Res 2011; 28:2780-9. [DOI: 10.1007/s11095-011-0494-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/24/2011] [Indexed: 02/07/2023]
|