1
|
Shen ZK, Li K, Li ZJ, Yuan YJ, Guan J, Zou Z, Yu ZT. Mechanistic insights into multimetal synergistic and electronic effects in a hexanuclear iron catalyst with a [Fe 3(μ 3-O)(μ 2-OH)] 2 core for enhanced water oxidation. Dalton Trans 2024. [PMID: 39415721 DOI: 10.1039/d4dt02749c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Multinuclear molecular catalysts mimicking natural photosynthesis have been shown to facilitate water oxidation; however, such catalysts typically operate in organic solutions, require high overpotentials and have unclear catalytic mechanisms. Herein, a bio-inspired hexanuclear iron(III) complex I, Fe6(μ3-O)2(μ2-OH)2(bipyalk)2(OAc)8 (H2bipyalk = 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol); OAc = acetate) with desirable water solubility and stability was designed and used for water oxidation. Our results showed that I has high efficiency for water oxidation via the water nucleophilic attack (WNA) pathway with an overpotential of only ca. 290 mV in a phosphate buffer of pH 2. Importantly, key high-oxidation-state metal-oxo intermediates formed during water oxidation were identified by in situ spectroelectrochemistry and oxygen atom transfer reactions. Theoretical calculations further supported the above identification. Reversible proton transfer and charge redistribution during water oxidation enhanced the electron and proton transfer ability and improved the reactivity of I. Here, we have shown the multimetal synergistic and electronic effects of catalysts in water oxidation reactions, which may contribute to the understanding and design of more advanced molecular catalysts.
Collapse
Affiliation(s)
- Zhi-Kai Shen
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Kang Li
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China.
| | - Zi-Jian Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jie Guan
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China.
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
2
|
Xia B, Du J, Li M, Duan J, Chen S. Pseudo-Jahn-Teller Effect Breaks the pH Dependence in Two-Electron Oxygen Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401641. [PMID: 39032092 DOI: 10.1002/adma.202401641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Indexed: 07/22/2024]
Abstract
The hydrogenation of small molecules (like O2 and CO2) often exhibits strong activity dependence on pHs because of discrepant proton donor environments. However, some catalysts can show seldom dependence on two-electron oxygen electroreduction, a sustainable route of O2 hydrogenation to hydrogen peroxide (H2O2). In this work, a pH-resistant oxygen electroreduction system arising from the pseudo-Jahn-Teller effect is demonstrated. Thorough operando Raman spectra, local environment analyses and density function theory simulations, the lattice distortion of TiOxFy that introduces the pseudo-Jahn-Teller effect contributing to regulating local pHs at electrode-electrolyte interfaces and the absorption/desorption of key *OOH intermediate is revealed. Consequently, as comparison to 78.6% activity attenuation for common catalyst, the TiOxFy displays minor activity decay (3.2%) in the pH range of 1-13 with remarkable Faradaic efficiencies (93.4-96.4%) and H2O2 yield rates (595-614 mg cm-2 h-1) in the current densities of 100-1000 mA cm-2. Further techno-economics analyses display the H2O2 production cost dependent on pHs, giving the lowest H2O2 price of $0.37 kg-1. The present finding is expected to provide an additional dimension to pseudo-Jahn-Teller effect that leverages systems beyond traditional conception.
Collapse
Affiliation(s)
- Baokai Xia
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiale Du
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Li
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Qi J, Chen Q, Chen M, Zhang W, Shen X, Li J, Shangguan E, Cao R. Promoting Oxygen Evolution Electrocatalysis by Coordination Engineering in Cobalt Phosphate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403310. [PMID: 38773872 DOI: 10.1002/smll.202403310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
Understanding the structure-activity correlation is an important prerequisite for the rational design of high-efficiency electrocatalysts at the atomic level. However, the effect of coordination environment on electrocatalytic oxygen evolution reaction (OER) remains enigmatic. In this work, the regulation of proton transfer involved in water oxidation by coordination engineering based on Co3(PO4)2 and CoHPO4 is reported. The HPO4 2- anion has intermediate pKa value between Co(II)-H2O and Co(III)-H2O to be served as an appealing proton-coupled electron transfer (PCET) induction group. From theoretical calculations, the pH-dependent OER properties, deuterium kinetic isotope effects, operando electrochemical impedance spectroscopy (EIS) and Raman studies, the CoHPO4 catalyst beneficially reduces the energy barrier of proton hopping and modulates the formation energy of high-valent Co species, thereby enhancing OER activity. This work demonstrates a promising strategy that involves tuning the local coordination environment to optimize PCET steps and electrocatalytic activities for electrochemical applications. In addition, the designed system offers a motif to understand the structure-efficiency relationship from those amino-acid residue with proton buffer ability in natural photosynthesis.
Collapse
Affiliation(s)
- Jing Qi
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qizhen Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Mingxing Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinxin Shen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
5
|
Doughty T, Zingl A, Wünschek M, Pichler CM, Watkins MB, Roy S. Structural Reconstruction of a Cobalt- and Ferrocene-Based Metal-Organic Framework during the Electrochemical Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40814-40824. [PMID: 39041926 PMCID: PMC11310903 DOI: 10.1021/acsami.4c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER) due to their unique modular structures that present a hybrid between molecular and heterogeneous catalysts, featuring well-defined active sites. However, many fundamental questions remain open regarding the electrochemical stability of MOFs, structural reconstruction of coordination sites, and the role of in situ-formed species. Here, we report the structural transformation of a surface-grown MOF containing cobalt nodes and 1,1'-ferrocenedicarboxylic acid linkers (denoted as CoFc-MOF) during the OER in alkaline electrolyte. Ex situ and in situ investigations of CoFc-MOF film suggest that the MOF acts as a precatalyst and undergoes a two-step restructuring process under operating conditions to generate a metal oxyhydroxide phase. The MOF-derived metal oxyhydroxide catalyst, supported on nickel foam electrodes, displays high activity toward the OER with an overpotential of 190 mV at a current density of 10 mA cm-2. While this study demonstrates the necessity of investigating structural evolution of MOFs during electrocatalysis, it also shows the potential of using MOFs as precursors in catalyst design.
Collapse
Affiliation(s)
- Thomas Doughty
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| | - Andrea Zingl
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Maximilian Wünschek
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Christian M. Pichler
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
- Centre
of Electrochemical and Surface Technology, Viktor Kaplan Straße 2, Wiener Neustadt 2700, Austria
| | - Matthew B. Watkins
- School
of Mathematics and Physics, University of
Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Souvik Roy
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| |
Collapse
|
6
|
Bao T, Ke H, Li W, Cai L, Huang Y. Highly Efficient Peroxymonosulfate Electroactivation on Co(OH) 2 Nanoarray Electrode for Pefloxacin Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1312. [PMID: 39120417 PMCID: PMC11314119 DOI: 10.3390/nano14151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The activation of PMS to produce active species is an attractive technique for antibiotic degradation but is restricted to the low reaction kinetics and high costs. In this work, a cobalt-based catalyst was prepared by in situ electrodeposition to enhance the electrically activated PMS process for the degradation of antibiotics. Almost 100% of pefloxacin (PFX) was removed within 10 min by employing Co(OH)2 as the catalyst in the electrically activated peroxymonosulfate (PMS) process, and the reaction kinetic constant reached 0.52 min-1. The redox processes of Co2+ and Co3+ in Co(OH)2 catalysts were considered to be the main pathways for PMS activation, in which 1O2 was the main active species. Furthermore, this strategy could also achieve excellent degradation efficiency for other organic pollutants. This study provides an effective and low-cost strategy with no secondary pollution for pollutant degradation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Huang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; (T.B.); (H.K.); (W.L.); (L.C.)
| |
Collapse
|
7
|
Alaufey R, Keith JA, Tang M. A Co-Doping Materials Design Strategy for Selective Ozone Electrocatalysts. J Phys Chem Lett 2024; 15:7351-7356. [PMID: 38990156 PMCID: PMC11261613 DOI: 10.1021/acs.jpclett.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
Catalysts for electrochemical ozone production (EOP) face inherent selectivity challenges stemming from thermodynamic constraints. This work establishes a design strategy for minimizing these limitations and inducing EOP activity in tin oxide, which is an intrinsically EOP-inactive material. We propose that selective ozone production using tin oxide catalysts can be broadly achieved by co-doping with two elements: first, n-type dopants to enhance electrical conductivity, and second, transition metal dopants that leach and homogeneously generate essential hydroperoxyl radical intermediates. Synthesizing tantalum, antimony, and tungsten n-type dopants with nickel, cobalt, and iron as transition metal dopants confirms that properly co-doping tin oxide yields EOP-active catalysts. This study offers a robust framework for advancing EOP catalyst design and serves as a case study for the application of fundamental co-catalysis and solid-state physics principles to induce catalytic activity in inert materials.
Collapse
Affiliation(s)
- Rayan Alaufey
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - John A. Keith
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Maureen Tang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Ram R, Xia L, Benzidi H, Guha A, Golovanova V, Garzón Manjón A, Llorens Rauret D, Sanz Berman P, Dimitropoulos M, Mundet B, Pastor E, Celorrio V, Mesa CA, Das AM, Pinilla-Sánchez A, Giménez S, Arbiol J, López N, García de Arquer FP. Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 2024; 384:1373-1380. [PMID: 38900890 DOI: 10.1126/science.adk9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.
Collapse
Affiliation(s)
- Ranit Ram
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lu Xia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Hind Benzidi
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Anku Guha
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Viktoria Golovanova
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Alba Garzón Manjón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - David Llorens Rauret
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Pol Sanz Berman
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Marinos Dimitropoulos
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Bernat Mundet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ernest Pastor
- CNRS, Université de Rennes, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France
- CNRS, Université de Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Veronica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Aparna M Das
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Adrián Pinilla-Sánchez
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- ICIQ-CERCA - Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
9
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Li B, Oldham LI, Tian L, Zhou G, Selim S, Steier L, Durrant JR. Electrochemical versus Photoelectrochemical Water Oxidation Kinetics on Bismuth Vanadate (Photo)anodes. J Am Chem Soc 2024; 146:12324-12328. [PMID: 38661382 PMCID: PMC11082883 DOI: 10.1021/jacs.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO4) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes. We further demonstrate that our combined optical absorption/current density analyses enable an operando quantification of the BiVO4 photovoltage as a function of light intensity.
Collapse
Affiliation(s)
- Biwen Li
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Louise I. Oldham
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Lei Tian
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Guanda Zhou
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Shababa Selim
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Ludmilla Steier
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
11
|
Alaufey R, Zhao L, Lindsay A, Siboonruang T, Wu Q, Keith JA, Wood E, Tang M. Interplay between Catalyst Corrosion and Homogeneous Reactive Oxygen Species in Electrochemical Ozone Production. ACS Catal 2024; 14:6868-6880. [PMID: 38933735 PMCID: PMC11197020 DOI: 10.1021/acscatal.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024]
Abstract
Electrochemical ozone production (EOP), a six-electron water oxidation reaction, offers promising avenues for creating value-added oxidants and disinfectants. However, progress in this field is slowed by a dearth of understanding of fundamental reaction mechanisms. In this work, we combine experimental electrochemistry, spectroscopic detection of reactive oxygen species (ROS), oxygen-anion chemical ionization mass spectrometry, and computational quantum chemistry calculations to determine a plausible reaction mechanism on nickel- and antimony-doped tin oxide (Ni/Sb-SnO2, NATO), one of the most selective EOP catalysts. Antimony doping is shown to increase the conductivity of the catalyst, leading to improved electrochemical performance. Spectroscopic analysis and electrochemical experiments combined with quantum chemistry predictions reveal that hydrogen peroxide (H2O2) is a critical reaction intermediate. We propose that leached Ni4+ cations catalyze hydrogen peroxide into solution phase hydroperoxyl radicals (•OOH); these radicals are subsequently oxidized to ozone. Isotopic product analysis shows that ozone is generated catalytically from water and corrosively from the catalyst oxide lattice without regeneration of lattice oxygens. Further quantum chemistry calculations and thermodynamic analysis suggest that the electrochemical corrosion of tin oxide itself might generate hydrogen peroxide, which is then catalyzed to ozone. The proposed pathways explain both the roles of dopants in NATO and its lack of stability. Our study interrogates the possibility that instability and electrochemical activity are intrinsically linked through the formation of ROS. In doing so, we provide the first mechanism for EOP that is consistent with computational and experimental results and highlight the central challenge of instability as a target for future research efforts.
Collapse
Affiliation(s)
- Rayan Alaufey
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Lingyan Zhao
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Andrew Lindsay
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tana Siboonruang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Qin Wu
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - John A. Keith
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Ezra Wood
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Maureen Tang
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Jiang X, Xie Y, Dong F, Liu D. Robust (hydrogen) phosphate sensing based on reversible redox of cobalt(II) hydroxide. Talanta 2024; 271:125682. [PMID: 38320388 DOI: 10.1016/j.talanta.2024.125682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Response mechanism of the electrode is elucidated in terms of (hydrogen) phosphate accelerating oxidation of CoII to CoIII for the first time. Cyclic voltammetric techniques in conjunction with XRD, XPS and Raman characterizations have demonstrated unambiguously the response of cobalt (II) hydroxide electrode involves a phosphate and hydrogen ion dependent charge transfer process. Phosphate ions induce Co(OH)2 transformed into CoOOH within interlayer adsorption and restored the initial state after reduction. Meanwhile, the in common structural between Co(OH)2 and CoOOH prevents extensive structural convertibility upon cycling, result in the advantage of reversibility in phase transformation. Demonstrated sustainable technique offered the determination of phosphate with robust reproducibility (1000 cycles), long storage stability (6 months) and selectivity (potential interference: Cl-, NO3-, SO42- and HCO3-), achieving a detection limit of 5 × 10-8 M over a wide linear range up to 1.28 mM. Presented work provided insights into the unique selectivity towards phosphate in cobalt based sensors, which may inspire the rational design of Co(OH)2-based electrodes with superior electrochemical performance or extended applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Yuqun Xie
- School of Bioengineering and Food Science, Hubei University of Technology, 28, Nanli Road, Hong-shan District, Wuchang, Wuhan, 430068, China.
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Defu Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Singh C, Meyerstein D, Shamish Z, Shamir D, Burg A. Unique activity of a Keggin POM for efficient heterogeneous electrocatalytic OER. iScience 2024; 27:109551. [PMID: 38595799 PMCID: PMC11001645 DOI: 10.1016/j.isci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Polyoxometalates (POMs) have been well studied and explored in electro/photochemical water oxidation catalysis for over a decade. The high solubility of POMs in water has limited its use in homogeneous conditions. Over the last decade, different approaches have been used for the heterogenization of POMs to exploit their catalytic properties. This study focused on a Keggin POM, K6[CoW12O40], which was entrapped in a sol-gel matrix for heterogeneous electrochemical water oxidation. Its entrapment in the sol-gel matrix enables it to catalyze the oxygen evolution reaction at acidic pH, pH 2.0. Heterogenization of POMs using the sol-gel method aids in POM's recyclability and structural stability under electrochemical conditions. The prepared sol-gel electrode is robust and stable. It achieved electrochemical water oxidation at a current density of 2 mA/cm2 at a low overpotential of 300 mV with a high turnover frequency (TOF) of 1.76 [mol O2 (mol Co)-1s-1]. A plausible mechanism of the electrocatalytic process is presented.
Collapse
Affiliation(s)
- Chandani Singh
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Zorik Shamish
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Dror Shamir
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
14
|
Andersen HL, Granados-Miralles C, Jensen KMØ, Saura-Múzquiz M, Christensen M. The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth. ACS NANO 2024; 18:9852-9870. [PMID: 38526912 PMCID: PMC11008356 DOI: 10.1021/acsnano.3c08772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The nucleation, crystallization, and growth mechanisms of MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanocrystallites prepared from coprecipitated transition metal (TM) hydroxide precursors treated at sub-, near-, and supercritical hydrothermal conditions have been studied by in situ X-ray total scattering (TS) with pair distribution function (PDF) analysis, and in situ synchrotron powder X-ray diffraction (PXRD) with Rietveld analysis. The in situ TS experiments were carried out on 0.6 M TM hydroxide precursors prepared from aqueous metal chloride solutions using 24.5% NH4OH as the precipitating base. The PDF analysis reveals equivalent nucleation processes for the four spinel ferrite compounds under the studied hydrothermal conditions, where the TMs form edge-sharing octahedrally coordinated hydroxide units (monomers/dimers and in some cases trimers) in the aqueous precursor, which upon hydrothermal treatment nucleate through linking by tetrahedrally coordinated TMs. The in situ PXRD experiments were carried out on 1.2 M TM hydroxide precursors prepared from aqueous metal nitrate solutions using 16 M NaOH as the precipitating base. The crystallization and growth of the nanocrystallites were found to progress via different processes depending on the specific TMs and synthesis temperatures. The PXRD data show that MnFe2O4 and CoFe2O4 nanocrystallites rapidly grow (typically <1 min) to equilibrium sizes of 20-25 nm and 10-12 nm, respectively, regardless of applied temperature in the 170-420 °C range, indicating limited possibility of targeted size control. However, varying the reaction time (0-30 min) and temperature (150-400 °C) allows different sizes to be obtained for NiFe2O4 (3-30 nm) and ZnFe2O4 (3-12 nm) nanocrystallites. The mechanisms controlling the crystallization and growth (nucleation, growth by diffusion, Ostwald ripening, etc.) were examined by qualitative analysis of the evolution in refined scale factor (proportional to extent of crystallization) and mean crystallite volume (proportional to extent of growth). Interestingly, lower kinetic barriers are observed for the formation of the mixed spinels (MnFe2O4 and CoFe2O4) compared to the inverse (NiFe2O4) and normal (ZnFe2O4) spinel structured compounds, suggesting that the energy barrier for formation may be lowered when the TMs have no site preference.
Collapse
Affiliation(s)
- Henrik L. Andersen
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | | | - Kirsten M. Ø. Jensen
- Department
of Chemistry and Nanoscience Center, University
of Copenhagen, København Ø, 2100, Denmark
| | - Matilde Saura-Múzquiz
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | - Mogens Christensen
- Department
of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
15
|
Gan Y, Ye Y, Dai X, Yin X, Cao Y, Cai R, Feng B, Wang Q, Wu Y, Zhang X. Nickel molybdate/cobalt iron carbonate hydroxide heterojunction with oxygen vacancy enables interfacial synergism to trigger oxygen evolution reaction. J Colloid Interface Sci 2024; 658:343-353. [PMID: 38113543 DOI: 10.1016/j.jcis.2023.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The development of electrocatalysts with excellent performance toward oxygen evolution reaction (OER) for the production of hydrogen is of great significance to alleviate energy crisis and environmental pollution. Herein, the heterostructure (NMO/FCHC-0.4) was fabricated by the coupling growth of NiMoO4 (NMO) and cobalt iron carbonate hydroxide (FCHC) on nickel foam as an electrocatalyst for OER. The interfacial synergy on NMO/FCHC-0.4 heterojunction can promote the interfacial electron redistribution, affect the center position of d band, optimize the adsorption of intermediate, and improve the conductivity. Beyond, oxygen defect sites are conducive to the adsorption of intermediates, and increase the number of active sites. Real-time OER kinetic simulation revealed that the interfacial synergism and molybdate could reduce the adsorption of hydroxide, promote the deprotonation step of M-OH, and facilitate the formation of M-OOH (M represents the metal active site). As a result, NMO/FCHC-0.4 displays excellent OER electrocatalytic performance with an overpotential of 250/280 mV at the current density 100/200 mA cm-2 and robust stability at 100 mA cm-2 for 100 h. This work provides deep insights into the roles of interfacial electronic modulation and oxygen vacancy to design high-efficiency electrocatalysts for OER.
Collapse
Affiliation(s)
- Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China.
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Yindan Wu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| | - Xin Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing 102249, China
| |
Collapse
|
16
|
Anferov SW, Boyn JN, Mazziotti DA, Anderson JS. Selective Cobalt-Mediated Formation of Hydrogen Peroxide from Water under Mild Conditions via Ligand Redox Non-Innocence. J Am Chem Soc 2024; 146:5855-5863. [PMID: 38375752 DOI: 10.1021/jacs.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Despite the broad importance of hydrogen peroxide (H2O2) in oxidative transformations, there are comparatively few viable routes for its production. The majority of commercial H2O2 is currently produced by the stepwise reduction of dioxygen (O2) via the anthraquinone process, but direct electrochemical formation from water (H2O) would have several advantages─namely, avoiding flammable gases or stepwise separations. However, the selective oxidation of H2O to form H2O2 over the thermodynamically favored product of O2 is a difficult synthetic challenge. Here, we present a molecular H2O oxidation system with excellent selectivity for H2O2 that functions both stoichiometrically and catalytically. We observe high efficiency for electrocatalytic H2O2 production at low overpotential with no O2 observed under any conditions. Mechanistic studies with both calculations and kinetic analyses from isolated intermediates suggest that H2O2 formation occurs in a bimolecular fashion via a dinuclear H2O2-bridged intermediate with an important role for a redox non-innocent ligand. This system showcases the ability of metal-ligand cooperativity and strategic design of the secondary coordination sphere to promote kinetically and thermodynamically challenging selectivity in oxidative catalysis.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
17
|
Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. CHEM REC 2024; 24:e202300216. [PMID: 37651034 DOI: 10.1002/tcr.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
Collapse
Affiliation(s)
- Protity Saha
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
- present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216, Bnagladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
18
|
Saini A, Das C, Rai S, Guha A, Dolui D, Majumder P, Dutta A. A homogeneous cobalt complex mediated electro and photocatalytic O 2/H 2O interconversion in neutral water. iScience 2023; 26:108189. [PMID: 37920669 PMCID: PMC10618691 DOI: 10.1016/j.isci.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-μ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.
Collapse
Affiliation(s)
- Abhishek Saini
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aritra Guha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Piyali Majumder
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Xu X, Liu H, Li D, Wang Q, Zhu X, Liu D, Chen X. Lattice tensile strain cobalt phosphate with modulated hydroxide adsorption and structure transformation towards improved oxygen evolution reaction. J Colloid Interface Sci 2023; 650:498-505. [PMID: 37421752 DOI: 10.1016/j.jcis.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The adsorption energy of oxygen-containing intermediates for the oxygen evolution reaction (OER) electrocatalysts plays a key role on their electrocatalytic performances. Rational optimization and regulation of the binding energy of intermediates can effectively improve the catalytic activities. Herein, the binding strength of Co phosphate to *OH was weakened by generating lattice tensile strain via Mn replacement, which modulated the electronic structure and optimized the reactive intermediates adsorption with active sites. The tensile-strained lattice structure and stretched interatomic distance were confirmed by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectra measurements. The as-obtained Mn-doped Co phosphate exhibits excellent OER activity with an overpotential of 335 mV at 10 mA cm-2, which is much higher than pristine Co phosphate. In-situ Raman spectra and methanol oxidation reaction experiments demonstrated that Mn-doped Co phosphate with lattice tensile strain shows optimized *OH adsorption strength, and is favorable to structure reconstruction and form highly active Co oxyhydroxide intermediate during OER process. Our work provides insight into the effects of the lattice strain on the OER activity from the standpoint of intermediate adsorption and structure transformation.
Collapse
Affiliation(s)
- Xinyue Xu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China
| | - He Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China
| | - Dongdong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China
| | - Qicheng Wang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| | - Dongming Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China.
| | - Xiang Chen
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
21
|
Yu Y, Wang T, Zhang Y, You J, Hu F, Zhang H. Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202300109. [PMID: 37489551 DOI: 10.1002/tcr.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Hydrogen has enormous commercial potential as a secondary energy source because of its high calorific value, clean combustion byproducts, and multiple production methods. Electrocatalytic water splitting is a viable alternative to the conventional methane steam reforming technique, as it operates under mild conditions, produces high-quality hydrogen, and has a sustainable production process that requires less energy. Electrocatalysts composed of precious metals like Pt, Au, Ru, and Ag are commonly used in the investigation of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Nevertheless, their limited availability and expensive cost restrict practical use. In contrast, electrocatalysts that do not contain precious metals are readily available, cost-effective, environmentally friendly, and possess electrocatalytic performance equal to that of noble metals. However, considerable research effort must be devoted to create cost-effective and high-performing catalysts. This article provides a comprehensive examination of the reaction mechanism involved in electrocatalytic water splitting in both acidic and basic environments. Additionally, recent breakthroughs in catalysts for both the hydrogen evolution and oxygen evolution reactions are also discussed. The structure-activity relationship of the catalyst was deep-going discussed, together with the prospects of current obstacles and potential for electrocatalytic water splitting, aiming at provide valuable perspectives for the advancement of economical and efficient electrocatalysts on an industrial scale.
Collapse
Affiliation(s)
- Yongren Yu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Tiantian Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Yue Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Fang Hu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
22
|
Xiao M, Wu Q, Ku R, Zhou L, Long C, Liang J, Mavrič A, Li L, Zhu J, Valant M, Li J, Zeng Z, Cui C. Self-adaptive amorphous CoO xCl y electrocatalyst for sustainable chlorine evolution in acidic brine. Nat Commun 2023; 14:5356. [PMID: 37660140 PMCID: PMC10475099 DOI: 10.1038/s41467-023-41070-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Electrochemical chlorine evolution reaction is of central importance in the chlor-alkali industry, but the chlorine evolution anode is largely limited by water oxidation side reaction and corrosion-induced performance decay in strong acids. Here we present an amorphous CoOxCly catalyst that has been deposited in situ in an acidic saline electrolyte containing Co2+ and Cl- ions to adapt to the given electrochemical condition and exhibits ~100% chlorine evolution selectivity with an overpotential of ~0.1 V at 10 mA cm-2 and high stability over 500 h. In situ spectroscopic studies and theoretical calculations reveal that the electrochemical introduction of Cl- prevents the Co sites from charging to a higher oxidation state thus suppressing the O-O bond formation for oxygen evolution. Consequently, the chlorine evolution selectivity has been enhanced on the Cl-constrained Co-O* sites via the Volmer-Heyrovsky pathway. This study provides fundamental insights into how the reactant Cl- itself can work as a promoter toward enhancing chlorine evolution in acidic brine.
Collapse
Affiliation(s)
- Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ruiqi Ku
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Liujiang Zhou
- School of Physics, University Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junwu Liang
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, Guangxi, 537000, China.
- Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Andraž Mavrič
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jing Zhu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Matjaz Valant
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
23
|
Cha DC, Singh TI, Maibam A, Kim TH, Nam DH, Babarao R, Lee S. Metal-Organic Framework-Derived Mesoporous B-Doped CoO/Co@N-Doped Carbon Hybrid 3D Heterostructured Interfaces with Modulated Cobalt Oxidation States for Alkaline Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301405. [PMID: 37165605 DOI: 10.1002/smll.202301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal-organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2 ]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm-2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2 )(-)) generates a current density of 10 mA cm-2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.
Collapse
Affiliation(s)
- Dun Chan Cha
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Thangjam Ibomcha Singh
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Physics, Manipur University, Canchipur, Manipur, 795003, India
| | - Ashakiran Maibam
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, Uttar Pradesh, 201002, India
| | - Tae Hyeong Kim
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Dong Hwan Nam
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Ravichandar Babarao
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Manufacturing, CSIRO, Normanby Road, Clayton, Victoria, 3168, Australia
| | - Seunghyun Lee
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| |
Collapse
|
24
|
Kießling J, Rosenfeldt S, Schenk AS. Size-controlled liquid phase synthesis of colloidally stable Co 3O 4 nanoparticles. NANOSCALE ADVANCES 2023; 5:3942-3954. [PMID: 37496621 PMCID: PMC10367999 DOI: 10.1039/d3na00032j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Spinel cobalt(ii,iii) oxide (Co3O4) represents a p-type semiconductor exhibiting promising functional properties in view of applications in a broad range of technological fields including magnetic materials and gas sensors as well as sustainable energy conversion systems based on photo- and electrocatalytic water splitting. Due to their high specific surface area, nanoparticle-based structures appear particularly promising for such applications. However, precise control over the diameter and the particle size distribution is required to achieve reproducible size-dependent properties. We herein introduce a synthetic strategy based on the decomposition of hydroxide precursors for the size-controlled preparation of purified Co3O4 nanoparticles with narrow size distributions adjustable in the range between 3-13 nm. The particles exhibit excellent colloidal stability. Their dispersibility in diverse organic solvents further facilitates processing (i.e. ligand exchange) and opens exciting perspectives for controlled self-assembly of the largely isometric primary particles into mesoscale structures. In view of potential applications, functional properties including absorption characteristics and electrocatalytic activity were probed by UV-Vis spectroscopy and cyclic voltammetry, respectively. In these experiments, low amounts of dispersed Co3O4 particles demonstrate strong light absorbance across the entire visible range and immobilized nanoparticles exhibit a comparably low overpotential towards the oxygen evolution reaction in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Johannes Kießling
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Sabine Rosenfeldt
- Physical Chemistry I, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Anna S Schenk
- Physical Chemistry IV, University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
25
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
26
|
Chong L, Gao G, Wen J, Li H, Xu H, Green Z, Sugar JD, Kropf AJ, Xu W, Lin XM, Xu H, Wang LW, Liu DJ. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 2023; 380:609-616. [PMID: 37167381 DOI: 10.1126/science.ade1499] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Discovery of earth-abundant electrocatalysts to replace iridium for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolyzer (PEMWE) represents a critical step in reducing the cost for green hydrogen production. We report a nanofibrous cobalt spinel catalyst codoped with lanthanum (La) and manganese (Mn) prepared from a zeolitic imidazolate framework embedded in electrospun polymer fiber. The catalyst demonstrated a low overpotential of 353 millivolts at 10 milliamperes per square centimeter and a low degradation for OER over 360 hours in acidic electrolyte. A PEMWE containing this catalyst at the anode demonstrated a current density of 2000 milliamperes per square centimeter at 2.47 volts (Nafion 115 membrane) or 4000 milliamperes per square centimeter at 3.00 volts (Nafion 212 membrane) and low degradation in an accelerated stress test.
Collapse
Affiliation(s)
- Lina Chong
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Guoping Gao
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haixia Li
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Haiping Xu
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | | | | | - A Jeremy Kropf
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hui Xu
- Giner Inc., Auburndale, MA 02466, USA
| | - Lin-Wang Wang
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Di-Jia Liu
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Melville J, Licini AJ, Surendranath Y. Electrolytic Synthesis of White Phosphorus Is Promoted in Oxide-Deficient Molten Salts. ACS CENTRAL SCIENCE 2023; 9:373-380. [PMID: 36968533 PMCID: PMC10037495 DOI: 10.1021/acscentsci.2c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 06/18/2023]
Abstract
Elemental white phosphorus (P4) is a key feedstock for the entire phosphorus-derived chemicals industry, spanning everything from herbicides to food additives. The electrochemical reduction of phosphate salts could enable the sustainable production of P4; however, such electrosynthesis requires the cleavage of strong, inert P-O bonds. By analogy to the promotion of bond activation in aqueous electrolytes with high proton activity (Brønsted-Lowry acidity), we show that low oxide anion activity (Lux-Flood acidity) enhances P-O bond activation in molten salt electrolytes. We develop electroanalytical tools to quantify the oxide dependence of phosphate reduction, and find that Lux acidic phosphoryl anhydride linkages enable selective, high-efficiency electrosynthesis of P4 at a yield of 95% Faradaic efficiency. These fundamental studies provide a foundation that may enable the development of low-carbon alternatives to legacy carbothermal synthesis of P4.
Collapse
|
28
|
Shen K, Kumari S, Huang YC, Jang J, Sautet P, Morales-Guio CG. Electrochemical Oxidation of Methane to Methanol on Electrodeposited Transition Metal Oxides. J Am Chem Soc 2023; 145:6927-6943. [PMID: 36942998 DOI: 10.1021/jacs.3c00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Electrochemical partial oxidation of methane to methanol is a promising approach to the transformation of stranded methane resources into a high-value, easy-to-transport fuel or chemical. Transition metal oxides are potential electrocatalysts for this transformation. However, a comprehensive and systematic study of the dependence of methane activation rates and methanol selectivity on catalyst morphology and experimental operating parameters has not been realized. Here, we describe an electrochemical method for the deposition of a family of thin-film transition metal (oxy)hydroxides as catalysts for the partial oxidation of methane. CoOx, NiOx, MnOx, and CuOx are discovered to be active for the partial oxidation of methane to methanol. Taking CoOx as a prototypical methane partial oxidation electrocatalyst, we systematically study the dependence of activity and methanol selectivity on catalyst film thickness, overpotential, temperature, and electrochemical cell hydrodynamics. Optimal conditions of low catalyst film thickness, intermediate overpotentials, intermediate temperatures, and fast methanol transport are identified to favor methanol selectivity. Through a combination of control experiments and DFT calculations, we show that the oxidized form of the as-deposited (oxy)hydroxide catalyst films are active for the thermal oxidation of methane to methanol even without the application of bias potential, demonstrating that high valence transition metal oxides are intrinsically active for the activation and oxidation of methane to methanol at ambient temperatures. Calculations uncover that electrocatalytic oxidation enables reaching an optimum potential window in which methane activation forming methanol and methanol desorption are both thermodynamically favorable, methanol desorption being favored by competitive adsorption with hydroxide anion.
Collapse
Affiliation(s)
- Kangze Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yu-Chao Huang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Joonbaek Jang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Chemistry and Biochemistry Department, University of California, Los Angeles, California 90095, United States
- NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Jayabharathi J, Karthikeyan B, Vishnu B, Sriram S. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Phys Chem Chem Phys 2023; 25:8992-9019. [PMID: 36928479 DOI: 10.1039/d2cp05522h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Water electrolysis plays an interesting role toward hydrogen generation for overcoming global environmental crisis and solving the energy storage problem. However, there is still a deficiency of efficient electrocatalysts to overcome sluggish kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Great efforts have been employed to produce potential catalysts with low overpotential, rapid kinetics, and excellent stability for HER and OER. At present, hydrogen economy is driven by electrocatalysts with excellent characteristics; thus, systematic design strategy has become the driving force to exploit earth-abundant transition metal-based electrocatalysts toward H2 economy. In this review, the recent progress on newer materials including metals, alloys, and transition metal oxides (manganese oxides, cobalt oxides, nickel oxides, PBA-derived metal oxides, and metal complexes) as photocatalysts/electrocatalysts has been overviewed together with some methodologies for efficient water splitting. Metal-organic framework (MOF)-based electrocatalysts have been highly exploited owing to their interesting functionalities. The photovoltaic-electrocatalytic (PV-EC) process focused on harvesting high solar-to-hydrogen efficiency (STH) among various solar energy conversion as well as storage systems. Electrocatalysts/photocatalysts with high efficiency have become an urgent need for overall water splitting. Also, cutting-edge achievements in the fabrication of electrocatalysts along with theoretical consideration have been discussed.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Balakrishnan Karthikeyan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Bakthavachalam Vishnu
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Sundarraj Sriram
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| |
Collapse
|
30
|
Kang W, Wei R, Yin H, Li D, Chen Z, Huang Q, Zhang P, Jing H, Wang X, Li C. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co 3O 4 Catalyst for Water Oxidation. J Am Chem Soc 2023; 145:3470-3477. [PMID: 36724407 DOI: 10.1021/jacs.2c11508] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multi-redox mechanism involving multi-sites has great implications to dictate the catalytic water oxidation. Understanding the sequential dynamics of multi-steps in oxygen evolution reaction (OER) cycles on working catalysts is a highly important but challenging issue. Here, using quasi-operando transient absorption (TA) spectroscopy and a typical photosensitization strategy, we succeeded in resolving the sequential oxidation kinetics involving multi-active sites for water oxidation in OER catalytic cycle, with Co3O4 nanoparticles as model catalysts. When OER initiates from fast oxidation of surface Co2+ ions, both surface Co2+ and Co3+ ions are active sites of the multi-cobalt centers for water oxidation. In the sequential kinetics (Co2+ → Co3+ → Co4+), the key characteristic is fast oxidation and slow consumption for all the cobalt species. Due to this characteristic, the Co4+ intermediate distribution plays a determining role in OER activity and results in the slow overall OER kinetics. These insights shed light on the kinetic understanding of water oxidation on heterogeneous catalysts with multi-sites.
Collapse
Affiliation(s)
- Wanchao Kang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Huanwang Jing
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Su R, Li N, Liu Z, Song X, Liu W, Gao B, Zhou W, Yue Q, Li Q. Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co 3O 4-Activated Chlorite Process: Insight into the Proton Enhancement Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1882-1893. [PMID: 36607701 DOI: 10.1021/acs.est.2c04903] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Xiaoyang Song
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, P. R. China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong250100, P. R. China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| |
Collapse
|
32
|
Wang Z, Tan Y, Duan X, Xie Y, Jin H, Liu X, Ma L, Gu Q, Wei H. Pretreatment of membrane dye wastewater by CoFe-LDH-activated peroxymonosulfate: Performance, degradation pathway, and mechanism. CHEMOSPHERE 2023; 313:137346. [PMID: 36442676 DOI: 10.1016/j.chemosphere.2022.137346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
When a membrane is used to treat dye wastewater, dye molecules are continually concentrated at the membrane surface over time, resulting in a dramatic decrease in membrane flux. Aside from routine membrane cleaning, the pretreatment of dye wastewater to degrade organic pollutants into tiny molecules is a facile solution to the problem. In this study, the use of layered double hydroxide (LDH) to activate peroxymonosulfate (PMS) for efficient degradation of organic pollutant has been thoroughly investigated. We utilized a simple two-drop co-precipitation process to prepare CoFe-LDH. The transition metal components in CoFe-LDH effectively activate PMS to create oxidative free radicals, and the layered structure of LDH increases the number of active sites, and thereby considerably enhancing the reaction rate. It was found that the reaction process produced non-free and free radicals, including singlet oxygen (1O2), sulfate radicals (SO4•-), and hydroxyl radicals (•OH), with 1O2 being the dominant reactive species. Under the optimal conditions (pH 6.7, PMS dosage 0.2 g/L, catalyst loading 0.1 g/L), the degradation of Acid Red 27 dye in the CoFe-LDH/PMS system reached 96.7% within 15 min at an initial concentration of 200 mg/L. The CoFe-LDH/PMS system also exhibited strong resistance to inorganic ions and pH during the degradation of organic pollutants. This study presents a novel strategy for the synergistic treatment of dye wastewater with free and non-free radicals produced by LDH-activated PMS in a natural environment.
Collapse
Affiliation(s)
- Ziwei Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Yannan Tan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haibo Jin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| | - Qiangyang Gu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
33
|
Teitsworth TS, Hill DJ, Litvin SR, Ritchie ET, Park JS, Custer JP, Taggart AD, Bottum SR, Morley SE, Kim S, McBride JR, Atkin JM, Cahoon JF. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023; 614:270-274. [PMID: 36755170 DOI: 10.1038/s41586-022-05549-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2022] [Indexed: 02/10/2023]
Abstract
Photoelectrochemical (PEC) water splitting to produce hydrogen fuel was first reported 50 years ago1, yet artificial photosynthesis has not become a widespread technology. Although planar Si solar cells have become a ubiquitous electrical energy source economically competitive with fossil fuels, analogous PEC devices have not been realized, and standard Si p-type/n-type (p-n) junctions cannot be used for water splitting because the bandgap precludes the generation of the needed photovoltage. An alternative paradigm, the particle suspension reactor (PSR), forgoes the rigid design in favour of individual PEC particles suspended in solution, a potentially low-cost option compared with planar systems2,3. Here we report Si-based PSRs by synthesizing high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to catalytically split water. By encoding a p-type-intrinsic-n-type (p-i-n) superlattice within single SiNWs, tunable photovoltages exceeding 10 V were observed under 1 sun illumination. Spatioselective photoelectrodeposition of oxygen and hydrogen evolution co-catalysts enabled water splitting at infrared wavelengths up to approximately 1,050 nm, with the efficiency and spectral dependence of hydrogen generation dictated by the photonic characteristics of the sub-wavelength-diameter SiNWs. Although initial energy conversion efficiencies are low, multijunction SiNWs bring the photonic advantages of a tunable, mesoscale geometry and the material advantages of Si-including the small bandgap and economies of scale-to the PSR design, providing a new approach for water-splitting reactors.
Collapse
Affiliation(s)
- Taylor S Teitsworth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Hill
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samantha R Litvin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Earl T Ritchie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin-Sung Park
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James P Custer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron D Taggart
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E Morley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seokhyoung Kim
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joanna M Atkin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Luan C, Corva M, Hagemann U, Wang H, Heidelmann M, Tschulik K, Li T. Atomic-Scale Insights into Morphological, Structural, and Compositional Evolution of CoOOH during Oxygen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c03903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chenglong Luan
- Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Manuel Corva
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Hongcai Wang
- Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Kristina Tschulik
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Tong Li
- Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
35
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
36
|
Gan Y, Ye Y, Dai X, Yin X, Cao Y, Cai R, Zhang X. Self-sacrificial reconstruction of MoO 42- intercalated NiFe LDH/Co 2P heterostructures enabling interfacial synergies and oxygen vacancies for triggering oxygen evolution reaction. J Colloid Interface Sci 2023; 629:896-907. [PMID: 36206678 DOI: 10.1016/j.jcis.2022.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Exploring high-efficiency electrocatalysts for oxygen evolution reaction (OER) is one of the most important concerns to produce hydrogen in water electrolysis. Herein, the FNM/Co2P-0.4 heterostructure was designed as an electrocatalyst for the OER process by the combination of MoO42- intercalating NiFe LDH and Co2P on nickel foam (NF). The surface reconstruction and MoO42- leaching can induce the conversion of Co2P and NiFe LDH on FNM/Co2P-0.4 to generate Co/NiOOH with more oxygen vacancies. Beyond, CoOOH and NiOOH can also synergize to reduce the energy barrier of OER, optimize conductivity, and improve stability. The surface reconstruction and the formation of OOH⁎ were further unveiled by in-situ UV-vis absorption spectra and Fourier-transformed alternative current voltammetry (FTACV). The integration of interfacial synergies and oxygen vacancies can facilitate the adsorption/desorption of intermediates, regulate the d-band center, and expose more active sites. And as a result, FNM/Co2P-0.4 shows a significant low overpotential (240 mV) at 50 mA cm-2, a small Tafel (74 mV dec-1), low activation energy (Ea) and remarkable durability. This work provides a new pathway to improve the OER performance by using interfacial synergies and rich oxygen vacancies derived from the self-sacrificial reconstruction of heterostructured electrocatalysts.
Collapse
Affiliation(s)
- Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
37
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
38
|
Hu C, Sun D, Liu J, Zhang Q, Li X, Fu H, Liu M, Xu J, Jiang G, Lu Y. Enhanced Electrocatalytic Water Oxidation of Ultrathin Porous Co 3O 4 Nanosheets by Physically Mixing with Au Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4419. [PMID: 36558272 PMCID: PMC9785958 DOI: 10.3390/nano12244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Ultrathin porous Co3O4 nanosheets are synthesized successfully, the thickness of which is about three unit-cell dimensions. The enhanced oxygen evolution reaction (OER) performance and electronic interaction between Co3O4 and Au is firstly reported in Co3O4 ultrathin porous nanosheets by physically mixing with Au nanoparticles. With the loading of the Au nanoparticles, the current density of ultrathin porous Co3O4 nanosheets is enhanced from 9.97 to 14.76 mA cm-2 at an overpotential of 0.5 V, and the overpotential required for 10 mA cm-2 decreases from 0.51 to 0.46 V, smaller than that of commercial IrO2 (0.54 V). Furthermore, a smaller Tafel slope and excellent durability are also obtained. Raman spectra, XPS measurement, and X-ray absorption near edge structure spectra (XANES) show that the enhanced OER ascribed to a higher Co2+/Co3+ ratio and quicker charge transfer due to the electronic interaction between Au and ultrathin Co3O4 nanosheets with low-coordinated surface, and Co2+ ions are beneficial for the formation of CoOOH active sites.
Collapse
Affiliation(s)
- Changhe Hu
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dejuan Sun
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Liu
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qi Zhang
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiao Li
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huhui Fu
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - M. Liu
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiayue Xu
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Guojian Jiang
- School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yalin Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China
| |
Collapse
|
39
|
Khosravi M, Mohammadi MR. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. PHOTOSYNTHESIS RESEARCH 2022; 154:329-352. [PMID: 36195743 DOI: 10.1007/s11120-022-00965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
There has been a growing interest in water oxidation in recent two decades. Along with that, remarkable discovery of formation of a mysterious catalyst layer upon application of an anodic potential of 1.13 V vs. standard hydrogen electrode (SHE) to an inert indium tin oxide electrode immersed in phosphate buffer containing Co(II) ions by Nocera et.al, has greatly attracted researchers interest. These researches have oriented in two directions; one focuses on obtaining better understanding of the reported mysterious catalyst layer, further modification, and improved performance, and the second approach is about designing coordination complexes of cobalt and investigating their properties toward the application in water splitting. Although there have been critical debates on true catalysts that are responsible for water oxidation in homogeneous systems of coordination complexes of cobalt, and the case is not totally closed, in this short review, our focus will be mainly on recent major progress and developments in the design and the application of cobalt oxide-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water oxidation reaction, which have been reported since pioneering report of Nocera in 2008 (Kanan Matthew and Nocera Daniel in Science 321:1072-1075, 2008).
Collapse
Affiliation(s)
- Mehdi Khosravi
- Department of Physics, University of Sistan and Baluchestan, Zahedan, 98167-45845, Iran
| | | |
Collapse
|
40
|
Hausmann JN, Mebs S, Dau H, Driess M, Menezes PW. Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long-Range Order, Buffer-Binding, Morphology, Mass Transport, and Operation Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207494. [PMID: 36189873 DOI: 10.1002/adma.202207494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short-range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2 O)2 [B2 P2 O8 (OH)2 ]·H2 O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long-range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass-transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near-neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm-2 at 65 °C for 1 month without degrading performance.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Center Berlin for Materials and Energy, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
41
|
Sathiyan K, Mondal T, Mukherjee P, Patra SG, Pitussi I, Kornweitz H, Bar-Ziv R, Zidki T. Enhancing the catalytic OER performance of MoS 2via Fe and Co doping. NANOSCALE 2022; 14:16148-16155. [PMID: 36263883 DOI: 10.1039/d2nr03816a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Enhancing the sluggish kinetics of the electrochemical oxygen evolution reaction (OER) is crucial for many clean-energy production technologies. Although much progress has been made in recent years, developing active, stable, and cost-effective OER electrocatalysts is still challenging. The layered MoS2, based on Earth-abundant elements, is widely explored as a promising hydrogen evolution electrocatalyst but exhibits poor OER activity. Here, we report a facile strategy to improve the sluggish OER of MoS2 through co-doping MoS2 nanosheets with Fe and Co atoms. The synergistic effect obtained by adjusting the Co/Fe ratio in the Fe-Co doped MoS2 induces electronic and structural modifications and a richer active surface area morphology resulting in a relatively low OER overpotential of 380 mV (at 10 mA cm-2). The electronic modulation upon doping was further supported by DFT calculations that show favorable interaction with the OER intermediate species, thus reducing the energy barrier for the OER. This work paves the way for future strategies for tailoring the electronic properties of transition-metal dichalcogenides (TMDCs) to activate the structure for the sluggish OER with the assistance of non-noble-metal materials.
Collapse
Affiliation(s)
- Krishnamoorthy Sathiyan
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Totan Mondal
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Poulami Mukherjee
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Shanti Gopal Patra
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Itay Pitussi
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Haya Kornweitz
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| | - Ronen Bar-Ziv
- Department of Chemistry, Nuclear Research Center-Negev, Beer-Sheva, 84190 Israel.
| | - Tomer Zidki
- Department of Chemical Sciences, and the Centers for Radical Reactions and Materials Research, Ariel University, Ariel, 4077625 Israel.
| |
Collapse
|
42
|
Controllable synthesis of urea-assisted Co3O4 nanostructures as an effective catalyst for urea electrooxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
45
|
Sun KZ, Wen CF, Qu X, Liu PF, Yang HG. 1D@2D Hierarchical Structures of Co(OH) x Nanosheets on NiMoO x Nanorods Can Mediate Alkaline Hydrogen Evolution with Industry-Level Current Density and Stability. SMALL METHODS 2022; 6:e2200484. [PMID: 36047656 DOI: 10.1002/smtd.202200484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Developing efficient electrocatalysts at ampere-scale current densities is of paramount importance to advance industrial applications of alkaline water electrolysis. Herein, a hierarchical nanostructured electrocatalyst with two-dimensional Co(OH)x nanosheets grown on one-dimensional NiMoOx nanorods over three-dimensional porous Ni foam substrate is designed. The resulting catalyst delivers ultrahigh hydrogen evolution reaction (HER) activity in the alkaline solution, which only requires overpotentials of 185 and 332 mV to achieve the current densities of -500 and -1000 mA cm-2 in 1.0 m KOH, respectively, and shows robust stability at -1000 mA cm-2 for 11 days. The unique 1D @ 2D hierarchical structures with abundant hetero-interfaces can not only expose sufficient active sites but also boost alkaline HER kinetics with fast water dissociation ability. This present work may pave a new insight to design efficient electrocatalysts with hierarchical structures for alkaline HER with industry-level current density and stability.
Collapse
Affiliation(s)
- Kai Zhi Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xue Qu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
46
|
Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Frei H. Time-Resolved Vibrational and Electronic Spectroscopy for Understanding How Charges Drive Metal Oxide Catalysts for Water Oxidation. J Phys Chem Lett 2022; 13:7953-7964. [PMID: 35981106 DOI: 10.1021/acs.jpclett.2c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporally resolved spectroscopy is a powerful approach for gaining detailed mechanistic understanding of water oxidation at robust Earth-abundant metal oxide catalysts for guiding efficiency improvement of solar fuel conversion systems. Beyond detecting and structurally identifying surface intermediates by vibrational and accompanying optical spectroscopy, knowledge of how charges, sequentially delivered to the metal oxide surface, drive the four-electron water oxidation cycle is critical for enhancing catalytic efficiency. Key issues addressed in this Perspective are the experimental requirements for establishing the kinetic relevancy of observed surface species and the discovery of the rate-boosting role of encounters of two or more one-electron surface hole charges, often in the form of randomly hopping metal oxo or oxyl moieties, for accessing very low-barrier O-O bond-forming pathways. Recent spectroscopic breakthroughs of metal oxide photo- and electrocatalysts inspire future research poised to take advantage of new highly sensitive spectroscopic tools and of methods for fast catalysis triggering.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Capilli G, Chen Y, Szkopek T, Cerruti M. Selective Catalytic Electro-Oxidation of Water with Cobalt Oxide in Ion Impermeable Reduced Graphene Oxide Porous Electrodes. ACS NANO 2022; 16:12488-12499. [PMID: 35921169 DOI: 10.1021/acsnano.2c03877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct electrolysis of seawater is greatly inhibited by the oxidation of Cl- to free chlorine, an undesirable, corrosive byproduct. To suppress the parasitic interference of Cl- and any other ion, we developed a freestanding, electrically conducting, 3D macroporous reduced graphene oxide (rGO) scaffold with cobalt oxide particles selectively deposited on the internal walls of its closed pores (with an average diameter of ∼180 μm). The pore walls act as membranes composed of stacked rGO flakes; the nanochannels between rGO layers (size <1 nm) are permeable to water and gases while preventing the diffusion of dissolved ions such as Cl-. Due to this, the catalytic particles are selectively accessible to water molecules but not to ions, allowing electrolysis to occur without chlorine evolution. The electrodes developed exhibit a stable generation of O2 from simulated seawater at pH 14, reaching a specific current density of up to 25 A g-1 during continuous electrolysis with 89-98% Faradaic efficiency, while chlorine generation is below 6 ppm h-1, the sensitivity limit of the detection method employed. The strategy here proposed can be generalized to build electrodes that are inherently selective thanks to their architecture, with catalytically active particles loaded into closed pores with selective ion transport properties.
Collapse
Affiliation(s)
- Gabriele Capilli
- Department of Materials Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Yiwen Chen
- Department of Materials Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Thomas Szkopek
- Department of Electrical and Computer Engineering, McGill University, Montreal, Québec H3A 0E9, Canada
| | - Marta Cerruti
- Department of Materials Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
49
|
Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
El-Jemni MA, Abdel-Samad HS, AlKordi MH, Hassan HH. Normalization of the EOR catalytic efficiency measurements based on RRDE study for simply fabricated cost-effective Co/graphite electrode for DAEFCs. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|