1
|
Wei C, Lv W, Ding Y, Wang C, Sun C, Feng X, Zhang T, Li J, Li Q, Li S. Investigation of co-flow step emulsification (CFSE) microfluidic device and its applications in digital polymerase chain reaction (ddPCR). J Colloid Interface Sci 2025; 678:1132-1142. [PMID: 39255752 DOI: 10.1016/j.jcis.2024.08.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances. EXPERIMENTS By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production. FINDINGS With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/μL to 20,000 copies/μL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.
Collapse
Affiliation(s)
- Chunyang Wei
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Lv
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250399, China
| | - Yanjing Ding
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chen Wang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengduo Sun
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xinhang Feng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianqi Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Qinghua Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.
| |
Collapse
|
2
|
Fan R, Wu J, Duan S, Jin L, Zhang H, Zhang C, Zheng A. Droplet-based microfluidics for drug delivery applications. Int J Pharm 2024; 663:124551. [PMID: 39106935 DOI: 10.1016/j.ijpharm.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
The microfluidic method primainly utilizes two incompatible liquids as continuous phase and dispersed phase respectively. It controls the formation of droplets by managing the microchannel structure and the flow rate ratio of the two phases. Droplet-based microfluidics is a rapidly expanding interdisciplinary research field encompassing physics, biochemistry, and Microsystems engineering. Droplet microfluidics offer a diverse and practical toolset that enables chemical and biological experiments to be conducted at high speeds and with greater efficiency compared to traditional instruments. The applications of droplet-based microfluidics are vast, including areas such as drug delivery, owing to its compatibility with numerous chemical and biological reagents and its ability to carry out various operations. This technology has been extensively researched due to its promising features. In this review, we delve into the materials used in droplet generation-based microfluidic devices, manufacturing techniques, methods for droplet generation in channels, and, finally, we summarize the applications of droplet generation-based microfluidics in drug delivery vectors, encompassing nanoparticles, microspheres, microcapsules, and hydrogel particles. We also discuss the challenges and future prospects of this technology across a wide array of applications.
Collapse
Affiliation(s)
- Ranran Fan
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Lili Jin
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Hui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Changhao Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
3
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406668. [PMID: 39231358 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haoran Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Xue L, Liao M, Lin J. An all-in-one microfluidic SlipChip for power-free and rapid biosensing of pathogenic bacteria. LAB ON A CHIP 2024; 24:4039-4049. [PMID: 39108250 DOI: 10.1039/d4lc00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Point-of-care testing of pathogens is becoming more and more important for the prevention and control of food poisoning. Herein, a power-free colorimetric biosensor was presented for rapid detection of Salmonella using a microfluidic SlipChip for fluidic control and Au@PtPd nanocatalysts for signal amplification. All the procedures, including solution mixing, immune reaction, magnetic separation, residual washing, mimicking catalysis and colorimetric detection, were integrated on this SlipChip. First, the mixture of the bacterial sample, immune magnetic nanobeads (IMBs) and immune Au@PtPd nanocatalysts (INCs), washing buffer and H2O2-TMB chromogenic substrate were preloaded into the sample, washing and catalysis chambers, respectively. After the top layer of this SlipChip was slid to connect the sample chamber with the separation chamber, the mixture was moved back and forth through the asymmetrical split-and-recombine micromixer by using a disposable syringe to form the IMB-Salmonella-INC sandwich conjugates. Then, the conjugates were captured in the separation chamber using a magnetic field, and the top layer was slid to connect the washing chamber with the separation chamber for washing away excessive INCs. Finally, the top layer was slid to connect the catalysis chamber with the separation chamber, and the colorless substrate was catalyzed by the INCs with peroxidase-mimic activity to generate color change, followed by using a smartphone app to collect and analyze the image to determine the bacterial concentration. This all-in-one microfluidic biosensor enabled simple detection of Salmonella as low as 101.2 CFU mL-1 within 30 min and was featured with low cost, straightforward operation, and compact design.
Collapse
Affiliation(s)
- Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Mirabile A, Sangiorgio G, Bonacci PG, Bivona D, Nicitra E, Bonomo C, Bongiorno D, Stefani S, Musso N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics (Basel) 2024; 14:1598. [PMID: 39125474 PMCID: PMC11311727 DOI: 10.3390/diagnostics14151598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR's role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored.
Collapse
Affiliation(s)
- Alessia Mirabile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Paolo Giuseppe Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (A.M.); (G.S.); (P.G.B.); (D.B.); (E.N.); (C.B.); (S.S.); (N.M.)
| |
Collapse
|
7
|
Xie Y, Chen Z, Cai D, Huang D, Huang E, Yang X, Zhang T, Wen H, Wang Y, Zhao M, Liu D, Xu B. Rapid Detection of Uropathogens Using an Integrated Multiplex Digital Nucleic Acid Detection Assay Powered by a Digital-to-Droplet Microfluidic Device. Anal Chem 2024. [PMID: 39018349 DOI: 10.1021/acs.analchem.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The digital nucleic acid detection assay features the capability of absolute quantitation without the need for calibration, thereby facilitating the rapid identification of pathogens. Although several integrated digital nucleic acid detection techniques have been developed, there are still constraints in terms of automation and analysis throughput. To tackle these challenges, this study presents a digital-to-droplet microfluidic device comprising a digital microfluidics (DMF) module at the bottom and a droplet microfluidics module at the top. Following sample introduction, the extraction of nucleic acid and the dispensation of nucleic acid elution for mixing with the multiple amplification reagents are carried out in the DMF module. Subsequently, the reaction droplets are transported to the sample inlet of the droplet microfluidic module via a liquid outlet, and then droplet generation in four parallel units within the droplet microfluidics module is actuated by negative pressure generated by a syringe vacuum. The digital-to-droplet microfluidic device was employed to execute an integrated multiplex digital droplet nucleic acid detection assay (imDDNA) incorporating loop-mediated isothermal amplification (LAMP). This assay was specifically designed to enable simultaneous detection of four uropathogens, namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecalis. The entire process of the imDDNA is completed within 75 min, with a detection range spanning 5 orders of magnitude (9.43 × 10-2.86 × 104 copies μL-1). The imDDNA was employed for the detection of batched clinical specimens, showing a consistency of 91.1% when compared with that of the conventional method. The imDDNA exhibits simplicity in operation and accuracy in quantification, thus offering potential advantages in achieving rapid pathogen detection.
Collapse
Affiliation(s)
- Yang Xie
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Dongyang Cai
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Dezhi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Enqi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xiao Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hongting Wen
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Meng Zhao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Dayu Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
8
|
Li Z, Zhang S, Zhang J, Avery L, Banach D, Zhao H, Liu C. Palm-Sized Lab-In-A-Magnetofluidic Tube Platform for Rapid and Sensitive Virus Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310066. [PMID: 38634211 PMCID: PMC11187901 DOI: 10.1002/advs.202310066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Simple, sensitive, and accurate molecular diagnostics are critical for preventing rapid spread of infection and initiating early treatment of diseases. However, current molecular detection methods typically rely on extensive nucleic acid sample preparation and expensive instrumentation. Here, a simple, fully integrated, lab-in-a-magnetofluidic tube (LIAMT) platform is presented for "sample-to-result" molecular detection of virus. By leveraging magnetofluidic transport of micro/nano magnetic beads, the LIAMT device integrates viral lysis, nucleic acid extraction, isothermal amplification, and CRISPR detection within a single engineered microcentrifuge tube. To enable point-of-care molecular diagnostics, a palm-sized processor is developed for magnetofluidic separation, nucleic acid amplification, and visual fluorescence detection. The LIAMT platform is applied to detect SARS-CoV-2 and HIV viruses, achieving a detection sensitivity of 73.4 and 63.9 copies µL-1, respectively. Its clinical utility is further demonstrated by detecting SARS-CoV-2 and HIV in clinical samples. This simple, affordable, and portable LIAMT platform holds promise for rapid and sensitive molecular diagnostics of infectious diseases at the point-of-care.
Collapse
Affiliation(s)
- Ziyue Li
- Department of Biomedical EngineeringUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut06269USA
| | - Shuo Zhang
- Department of Biomedical EngineeringUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut06269USA
| | - Jiongyu Zhang
- Department of Biomedical EngineeringUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsConnecticut06269USA
| | - Lori Avery
- Department of Pathology and Laboratory MedicineUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
| | - David Banach
- Department of MedicineDivision of Infectious DiseasesUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
| | - Hui Zhao
- Department of Mechanical EngineeringUniversity of NevadaLas VegasNevada89154USA
| | - Changchun Liu
- Department of Biomedical EngineeringUniversity of Connecticut Health CenterFarmingtonConnecticut06030USA
| |
Collapse
|
9
|
Luo Y, Hu Q, Yu Y, Lyu W, Shen F. Experimental investigation of confinement effect in single molecule amplification via real-time digital PCR on a multivolume droplet array SlipChip. Anal Chim Acta 2024; 1304:342541. [PMID: 38637051 DOI: 10.1016/j.aca.2024.342541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).
Collapse
Affiliation(s)
- Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China.
| |
Collapse
|
10
|
Hu W, Zhu Y, Tang Q, Ji X, Wang L, Ou W, Li G, Wu L, Cong H, Qin Y. Facile prepared microfluidic chip for multiplexed digital RT-qPCR test. Biotechnol J 2024; 19:e2300273. [PMID: 37702130 DOI: 10.1002/biot.202300273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
The chip-based digital polymerase chain reaction (PCR) is an indispensable technique for amplifying and quantifying nucleic acids, which has been widely employed in molecular diagnostics at both fundamental and clinical levels. However, the previous designs have yet to achieve widespread application due to limitations in complex chip fabrication, pretreatment procedures, special surface properties, and low throughput. This study presents a facile digital microfluidic chip driven by centrifugal force for digital PCR analysis. Interestingly, regardless of the hydrophilicity or hydrophobicity of the inner chip surface, an efficient digitization process can be achieved. PCR reagents introduced into the inlet can be allocated to 9600 microchambers and subsequently isolated by the immiscible phase (silicone oil). The centrifugal priming approach offers a facile means to achieve high-throughput analysis. The design was further employed for the quantification of nucleic acids using digital PCR. The calculated result exhibited a strong correlation with the measured value at the concentrations from 1 copy/μL to 1000 copies/μL (R2 = 0.99). Additionally, the chip also allowed digital multiplexed analysis, thereby indicating its potential for multi-target detection applications.
Collapse
Affiliation(s)
- Wenqi Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, P. R. China
| | - Yidan Zhu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, P. R. China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Xiaolei Ji
- Nantong Center for Disease Control and Prevention, Nantong, Jiangsu, P. R. China
| | - Lei Wang
- Nantong Egens Biotechnology Co., Ltd, Nantong, Jiangsu, P. R. China
| | - Weijun Ou
- Nantong Egens Biotechnology Co., Ltd, Nantong, Jiangsu, P. R. China
| | - Guo Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Li Wu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, P. R. China
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu, P. R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| |
Collapse
|
11
|
Shi Q, Li J, Liu C, Zhai X, Chen L, Zhang Y, Feng D, Zhang R, Li J, Ling S, Zheng L, Luo Y, Liu Y. Fluorescence-coded logarithmic-dilution digital droplet PCR for ultrawide-dynamic-range nucleic acid quantification. Biosens Bioelectron 2023; 241:115702. [PMID: 37751652 DOI: 10.1016/j.bios.2023.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Digital PCR (dPCR) is considered the next generation of nucleic acid detection for its ability of absolute quantification and high sensitivity. However, when compared to the current gold standard, quantitative PCR (qPCR), dPCR is falling behind by several orders of magnitude in dynamic range, which limits its clinical applicability. Here we present fluorescence-coded logarithmic-dilution digital droplet PCR (Flodd-PCR) that features a dynamic range across 7 orders of magnitude, over 2 orders higher than conventional dPCR (4-5 log range) and approaching that of qPCR (7-8 log range). Flodd-PCR realizes such a wide dynamic range by dividing ∼20,000 droplets into 4 groups, each featuring a unique dilution factor of the loaded DNA template and thus a shifted dynamic range. This is achieved by a microfluidic chip that performs multi-step serial dilution (20-925 folds) and droplet generation. The post-PCR droplets can be clustered in silico based on their dilution indicator fluorescence and analyzed independently. Experimentally, Flodd-PCR can detect 4-20,000,000 copies/μL (cp./μL) of the synthetic human papillomavirus (HPV) DNA and outperforms standard dPCR when analyzing clinical HPV samples. Furthermore, Flodd-PCR can be implemented with existing dPCR system set-up with minimal adjustment, and therefore will also have wide practicality in different applications which conventional dPCR has already demonstrated.
Collapse
Affiliation(s)
- Qingyuan Shi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuanpei Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Long Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dezhi Feng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
12
|
Zhang N, Li C, Dou X, Du Y, Tian F. Test Article for automation purposes. Crit Rev Anal Chem 2023; 53:1969-1989. [PMID: 37881955 DOI: 10.1080/10408347.2022.2042999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
13
|
Ngo HT, Akarapipad P, Lee PW, Park JS, Chen FE, Trick AY, Hsieh K, Wang TH. Rapid and Portable Quantification of HIV RNA via a Smartphone-enabled Digital CRISPR Device and Deep Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289911. [PMID: 37292781 PMCID: PMC10246075 DOI: 10.1101/2023.05.12.23289911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For the 28.2 million people in the world living with HIV/AIDS and receiving antiretroviral therapy, it is crucial to monitor their HIV viral loads with ease. To this end, rapid and portable diagnostic tools that can quantify HIV RNA are critically needed. We report herein a rapid and quantitative digital CRISPR-assisted HIV RNA detection assay that has been implemented within a portable smartphone-based device as a potential solution. Specifically, we first developed a fluorescence-based reverse transcription recombinase polymerase amplification (RT-RPA)-CRISPR assay for isothermally and rapidly detecting HIV RNA at 42 °C in < 30 min. When realized within a commercial stamp-sized digital chip, this assay yields strongly fluorescent digital reaction wells corresponding to HIV RNA. The isothermal reaction condition and the strong fluorescence in the small digital chip unlock compact thermal and optical components in our device, allowing us to engineer a palm-size (70 × 115 × 80 mm) and lightweight (< 0.6 kg) device. Further leveraging the smartphone, we wrote a custom app to control the device, perform the digital assay, and acquire fluorescence images throughout the assay time. We additionally trained and verified a Deep Learning-based algorithm for analyzing fluorescence images and detecting strongly fluorescent digital reaction wells. Using our smartphone-enabled digital CRISPR device, we were able to detect 75 copies of HIV RNA in 15 min and demonstrate the potential of our device toward convenient monitoring of HIV viral loads and combating the HIV/AIDS epidemic.
Collapse
|
14
|
Yan Y, Yang T, Luo Z, Li D, Li L, Lin X. Ultrasensitive quantification of pathogens in milliliters of beverage by filtration-based digital LAMP. Food Chem 2023; 408:135226. [PMID: 36549156 DOI: 10.1016/j.foodchem.2022.135226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The quantitative detection of pathogens in milliliters of beverage sample requires complex preprocessing. To achieve rapid and ultrasensitive quantification of pathogens in large volume food sample, we developed a filtration-based interfacial digital LAMP (idLAMP) system, which consists of a nanoporous membrane for filtration and nanoporous hydrogel for digital amplification. Digital counting of single bacteria at the membrane surface under nanoconfinement could be achieved. The idLAMP successfully accomplished the quantitative detection of Escherichia coli in 100 mL water samples within 30 min, with wide dynamic range from 0.09 to 900 cells/mL. This technique could also be well applied to the quantification of Escherichia coli and Salmonella typhi in real beverage samples (juice, tea drinks, carbonated drinks and alcoholic drinks) without tedious sample pretreatments. With facile operation, higher specificity and sensitivity and better end-point analysis capabilities, the system has great potential in quantitative counting of single bacteria in large-volume food samples.
Collapse
Affiliation(s)
- Yuhua Yan
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Tao Yang
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
15
|
Du L, Li Y, Zhang X, Zhou Z, Wang Y, Jing D, Zhou J. One-Step Fabrication of Droplet Arrays Using a Biomimetic Structural Chip. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17413-17420. [PMID: 36972187 DOI: 10.1021/acsami.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the field of one-step efficient preparation of dewetting droplet arrays, the process is hampered by the requirement for low chemical wettability of solid surfaces, which restricts the complete transition of wetting state and its broad prospects in biological applications. Inspired by the physical structure of the lotus leaf, enabling it to promote the change of the infiltration state of an aqueous solution on the surface, we developed a method of one-step fabrication of droplet arrays on the biomimetic structural chip designed in the present work. This greatly reduces the need for chemical modification techniques to achieve low wettability and reduces the reliance on complex and sophisticated surface preparation techniques, thus improving the fabrication efficiency of droplet arrays fully generated on a chip by one-step operation without the need for extra liquid phase or the control of harsh barometric pressure. We also studied the influence of dimensions of the biomimetic structure and the preparation process parameters such as number of smears and speed of smearing on the preparation rate and uniformity of the droplet arrays. The amplification of templating DNA molecules in the droplet arrays prepared in a one-step fabrication way is also performed to verify its application potential for DNA molecular diagnosis.
Collapse
Affiliation(s)
- Lin Du
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxin Li
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinlian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
| | - Zijian Zhou
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dalei Jing
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Cai D, Wang Y, Zou J, Li Z, Huang E, Ouyang X, Que Z, Luo Y, Chen Z, Jiang Y, Zhang G, Wu H, Liu D. Droplet Encoding-Pairing Enabled Multiplexed Digital Loop-Mediated Isothermal Amplification for Simultaneous Quantitative Detection of Multiple Pathogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205863. [PMID: 36646503 PMCID: PMC9982564 DOI: 10.1002/advs.202205863] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Despite the advantages of digital nucleic acid analysis (DNAA) in terms of sensitivity, precision, and resolution, current DNAA methods commonly suffer a limitation in multiplexing capacity. To address this issue, a droplet encoding-pairing enabled DNAA multiplexing strategy is developed, wherein unique tricolor combinations are deployed to index individual primer droplets. The template droplets and primer droplets are sequentially introduced into a microfluidic chip with a calabash-shaped microwell array and are pairwise trapped and merged in the microwells. Pre-merging and post-amplification image analysis with a machine learning algorithm is used to identify, enumerate, and address the droplets. By incorporating the amplification signals with droplet encoding information, simultaneous quantitative detection of multiple targets is achieved. This strategy allows for the establishment of flexible multiplexed DNAA by simply adjusting the primer droplet library. Its flexibility is demonstrated by establishing two multiplexed (8-plex) droplet digital loop-mediated isothermal amplification (mddLAMP) assays for individually detecting lower respiratory tract infection and urinary tract infection causative pathogens. Clinical sample analysis shows that the microbial detection outcomes of the mddLAMP assays are consistent with those of the conventional assay. This DNAA multiplexing strategy can achieve flexible high-order multiplexing on demand, making it a desirable tool for high-content pathogen detection.
Collapse
Affiliation(s)
- Dongyang Cai
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yu Wang
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Jingjing Zou
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhujun Li
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Enqi Huang
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Xiuyun Ouyang
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhiquan Que
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yanzhang Luo
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Zhenhua Chen
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Yanqing Jiang
- Beijing Baicare Biotechnology Co., LtdBeijing102206China
| | - Guohao Zhang
- Beijing Baicare Biotechnology Co., LtdBeijing102206China
| | - Hongkai Wu
- Department of ChemistryHong Kong University of Science and TechnologyHong KongChina
| | - Dayu Liu
- Department of Laboratory Medicinethe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical DiagnosisGuangzhou510180China
- Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong ProvinceGuangzhou510180China
| |
Collapse
|
17
|
Hu Q, Kanwal F, Lyu W, Zhang J, Liu X, Qin K, Shen F. Multiplex Digital Polymerase Chain Reaction on a Droplet Array SlipChip for Analysis of KRAS Mutations in Pancreatic Cancer. ACS Sens 2023; 8:114-121. [PMID: 36520653 DOI: 10.1021/acssensors.2c01776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a terminal disease with high mortality and very poor prognosis. A sensitive and quantitative analysis of KRAS mutations in pancreatic cancer provides a tool not only to understand the biological mechanisms of pancreatic cancer but also for diagnosis and treatment monitoring. Digital polymerase chain reaction (PCR) is a promising tool for KRAS mutation analysis, but current methods generally require a complex microfluidic handling system, which can be challenging to implement in routine research and point-of-care clinical diagnostics. Here, we present a droplet-array SlipChip (da-SlipChip) for the multiplex quantification of KRAS G12D, V, R, and C mutant genes with the wild-type (WT) gene background by dual color (FAM/ROX) fluorescence detection. This da-SlipChip is a high-density microwell array of 21,696 wells of 200 pL in 4 by 5424 microwell format with simple loading and slipping operation. It does not require the same precise alignment of microfeatures on the different plates that are acquired by the traditional digital PCR SlipChip. This device can provide accurate quantification of both mutant genes and the WT KRAS gene. We collected tumor tissue, paired normal pancreatic tissue, and other normal tissues from 18 pancreatic cancer patients and analyzed the mutation profiles of KRAS G12D, V, R, and C in these samples; the results from the multiplex digital PCR on da-SlipChip agree well with those of next-generation sequencing (NGS). This da-SlipChip moves digital PCR closer to the practical point-of-care applications not only for detecting KRAS mutations in pancreatic cancer but also for other applications that require precise nucleic acid quantification with high sensitivity.
Collapse
Affiliation(s)
- Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Fariha Kanwal
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
18
|
Wang W, Wu J, Zhao Z, Li Q, Huo B, Sun X, Han D, Liu M, Cai LC, Peng Y, Bai J, Gao Z. Ultrasensitive Automatic Detection of Small Molecules by Membrane Imaging of Single Molecule Assays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54914-54923. [PMID: 36459426 DOI: 10.1021/acsami.2c15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Determination of trace amounts of targets or even a single molecule target has always been a challenge in the detection field. Digital measurement methods established for single molecule counting of proteins, such as single molecule arrays (Simoa) or dropcast single molecule assays (dSimoa), are not suitable for detecting small molecule, because of the limited category of small molecule antibodies and the weak signal that can be captured. To address this issue, we have developed a strategy for single molecule detection of small molecules, called small molecule detection with single molecule assays (smSimoa). In this strategy, an aptamer is used as a recognition element, and an addressable DNA Nanoflower (DNF) attached on the magnetic beads surface, which exhibit fluorescence imaging, is employed as the output signal. Accompanied by digital imaging and automated counting analysis, E2 at the attomolar level can be measured. The smSimoa breaks the barrier of small molecule detection concentration and provides a basis for high throughput detection of multiple substances with fluorescence encoded magnetic beads.
Collapse
Affiliation(s)
- Weiya Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Qiaofeng Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Mingzhu Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Ling Chao Cai
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| |
Collapse
|
19
|
Li Y, Ma M, Xu X, Li Q, Ji C. Value of digital PCR in the early diagnosis of sepsis: A systematic review and meta-analysis. J Crit Care 2022; 72:154138. [PMID: 36084378 DOI: 10.1016/j.jcrc.2022.154138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND We systematically assessed whether a digital polymerase chain reaction (PCR) could detect pathogenic microorganisms in patients with sepsis early and accurately. METHODS We searched the Cochrane Library, MEDLINE, Embase, CNKI, CBM, and Wanfang Data databases for eligible studies to compare the detection of pathogenic microorganisms in blood samples by digital PCR with the gold standard. The Quality Assessment of Diagnostic Accuracy Studies 2 was used to evaluate bias risk, and a random-effects meta-analysis approach was used for sensitivity and specificity calculations. RESULTS Among the eight articles, there were eight identified studies with a total of 1278 subjects. The pooled sensitivity of digital PCR was 94% (95% confidence interval [CI], 85%-98%), the specificity was 87% (95% CI, 76%-94%), the positive likelihood ratio was 7.3 (95% CI, 3.8-14.2), the negative likelihood ratio was 0.07 (95% CI, 0.03-0.17), the positive predictive value was 84.7%, the negative predictive value was 89.2%, the diagnostic odds ratio was 105 (95% CI, 37-303), and the area under the receiver operating characteristic curve was 0.97 (95% CI, 0.95-1.00). Digital PCR can shorten the detection time of pathogenic microorganisms in patients with sepsis. CONCLUSIONS Digital PCR can detect pathogenic microorganisms in patients with sepsis earlier than blood culture. Therefore, digital PCR can be used as a potential strategy for the detection of pathogenic microorganisms in patients with sepsis.
Collapse
Affiliation(s)
- Yu Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjun Ma
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Xu
- Critical Care Department, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| | - Qiushuang Li
- Clinical Evaluation Center, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Conghua Ji
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Clinical Evaluation Center, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
20
|
Noji H, Minagawa Y, Ueno H. Enzyme-based digital bioassay technology - key strategies and future perspectives. LAB ON A CHIP 2022; 22:3092-3109. [PMID: 35861036 DOI: 10.1039/d2lc00223j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Digital bioassays based on single-molecule enzyme reactions represent a new class of bioanalytical methods that enable the highly sensitive detection of biomolecules in a quantitative manner. Since the first reports of these methods in the 2000s, there has been significant growth in this new bioanalytical strategy. The principal strategy of this method is to compartmentalize target molecules in micron-sized reactors at the single-molecule level and count the number of microreactors showing positive signals originating from the target molecule. A representative application of digital bioassay is the digital enzyme-linked immunosorbent assay (ELISA). Owing to their versatility, various types of digital ELISAs have been actively developed. In addition, some disease markers and viruses possess catalytic activity, and digital bioassays for such enzymes and viruses have, thus, been developed. Currently, with the emergence of new microreactor technologies, the targets of this methodology are expanding from simple enzymes to more complex systems, such as membrane transporters and cell-free gene expression. In addition, multiplex or multiparametric digital bioassays have been developed to assess precisely the heterogeneities in sample molecules/systems that are obscured by ensemble measurements. In this review, we first introduce the basic concepts of digital bioassays and introduce a range of digital bioassays. Finally, we discuss the perspectives of new classes of digital bioassays and emerging fields based on digital bioassay technology.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Hiroshi Ueno
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Yu Z, Xu L, Lyu W, Shen F. Parallel multistep digital analysis SlipChip demonstrated with the quantification of nucleic acid by digital LAMP-CRISPR. LAB ON A CHIP 2022; 22:2954-2961. [PMID: 35696983 DOI: 10.1039/d2lc00284a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Digital biological analysis compartmentalizes targets of interest, such as nucleic acids, proteins, and cells, to a single event level and performs detection and further investigation. Microfluidic-based digital biological analysis methods, including digital PCR, digital protein analysis, and digital cell analysis, have demonstrated superior advantages in research applications and clinical diagnostics. However, most of the methods are still based on a one-step "divide and detect" strategy, and it is challenging for these methods to perform further parallel manipulation of reaction partitions to achieve "divide, manipulate, and analyze" capabilities. Here, we present a parallel multistep digital analysis (PAMDA) SlipChip for the parallel multistep manipulation of a large number of droplets for digital biological analysis, demonstrated by the quantification of SARS-CoV-2 nucleic acids by a two-step digital isothermal amplification combined with clustered regularly interspaced short palindromic repeats (CRISPR). This PAMDA SlipChip utilizes a "chain-of-pearl" channel with a self-partitioning droplet formation mechanism that does not require the precise alignment of microfeatures for fluidic loading as the traditional SlipChip design. This device can first generate 2400 3.2 nanoliter droplets to perform digital loop-mediated isothermal amplification (LAMP) and then deliver reagents containing Cas12a protein and crRNA to each individual partition in parallel to simultaneously initiate digital CRISPR detection by a simple multistep slipping operation. This PAMDA SlipChip not only provides a promising tool to perform digital CRISPR with a flexible assay and workflow design but can also be applied for a broad range of applications in digital biological analysis that require multistep manipulation of partitions in parallel.
Collapse
Affiliation(s)
- Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
- MineBio Technology LLC, 333 Gui Ping Road, Shanghai, 200233, China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
22
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
23
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Zhang N, Li C, Dou X, Du Y, Tian F. Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA). Crit Rev Anal Chem 2022; 52:1969-1989. [PMID: 35201910 DOI: 10.1080/10408347.2022.2042669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
25
|
Wei C, Yu C, Li S, Meng J, Li T, Cheng J, Pan F, Li J. Easy-to-Operate Co-flow Step Emulsification Device for Droplet Digital Polymerase Chain Reaction. Anal Chem 2022; 94:3939-3947. [PMID: 35200004 DOI: 10.1021/acs.analchem.1c04983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital polymerase chain reaction (PCR) plays important roles in the detection and quantification of nucleic acid targets, while there still remain challenges including high cost, complex operation, and low integration of the instrumental system. Here, in this work, a novel microfluidic chip based on co-flow step emulsification is proposed for droplet digital PCR (ddPCR), which can achieve droplet generation, droplet array self-assembly, PCR amplification, and fluorescence detection on a single device. With the combination of single-layer lithography and punching operation, a step microstructure was constructed and it served as the key element to develop a Laplace pressure gradient at the Rayleigh-Plateau instability interface so as to achieve droplet generation. It is demonstrated that the fabrication of step microstructure is low cost, easy-to-operate, and reliable. In addition, the single droplet volume can be adjusted flexibly due to the co-flow design; thus, the ddPCR chip can get an ultrahigh upper limit of quantification to deal with DNA templates with high concentrations. Furthermore, the volume fraction of the resulting droplets in this ddPCR chip can be up to 72% and it results in closely spaced droplet arrays, makes the best of CCD camera for fluorescence detections, and is beneficial for the minimization of a ddPCR system. The quantitative capability of the ddPCR chip was evaluated by measuring template DNA at concentrations from 20 to 50 000 copies/μL. Owing to the characteristics of low cost, easy operation, excellent quantitative capability, and minimization, the proposed ddPCR chip meets the requirements of DNA molecule quantification and is expected to be applied in the point-of-care testing field.
Collapse
Affiliation(s)
- Chunyang Wei
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Chengzhuang Yu
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Jiyu Meng
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Tiejun Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Jingmeng Cheng
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Feng Pan
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Junwei Li
- Institute of Biophysics, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.,Department of Electronics and Information Engineering, Hebei University of Technology, Langfang 065000, China
| |
Collapse
|
26
|
Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. BIOSENSORS 2022; 12:bios12020124. [PMID: 35200384 PMCID: PMC8869588 DOI: 10.3390/bios12020124] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health Organization further clarifies these standards with a set of criteria that has the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most of them only detect a single target. With the progression of syndromic infections, coinfections and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now more important than ever. This review summarizes current diagnostic technologies for multiplexed detection and forecasts which methods have promise for detecting multiple targets and meeting all REASSURED criteria.
Collapse
|
27
|
Yu Y, Yu Z, Pan X, Xu L, Guo R, Qian X, Shen F. Multiplex digital PCR with digital melting curve analysis on a self-partitioning SlipChip. Analyst 2022; 147:625-633. [PMID: 35107102 DOI: 10.1039/d1an01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Digital polymerase chain reaction (digital PCR) can provide absolute quantification of target nucleic acids with high sensitivity, excellent precision, and superior resolution. Digital PCR has broad applications in both life science research and clinical molecular diagnostics. However, limited by current fluorescence imaging methods, parallel quantification of multiple target molecules in a single digital PCR remains challenging. Here, we present a multiplex digital PCR method using digital melting curve analysis (digital MCA) with a SlipChip microfluidic system. The self-partitioning SlipChip (sp-SlipChip) can generate an array of nanoliter microdroplets with trackable physical positions using a simple loading-and-slipping operation. A fluorescence imaging adaptor and an in situ thermal cycler can be used to perform digital PCR and digital MCA on the sp-SlipChip. The unique signature melting temperature (Tm) designed for amplification products can be used as a fingerprint to further classify the positive amplification partitions into different subgroups. Amplicons with Tm differences as low as 1.5 degrees celsius were clearly separated, and multiple amplicons in the same partition could also be distinguished by digital MCA. We further demonstrated this digital MCA method with simultaneous digital quantification of five common respiratory pathogens, including Staphylococcus aureus, Acinetobacter baumannii, Streptococcus pneumoniae, Hemophilus influenzae, and Klebsiella pneumoniae. Since digital MCA only requires an intercalation dye instead of sequence-specific hydrolysis probes to perform multiplex digital PCR analysis, it can be less expensive and not limited to the number of fluorescence channels.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Rui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
28
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Ye S, Li C, Zheng X, Huang W, Tao Y, Yu Y, Yang L, Lan Y, Ma L, Bian S, Du W. OsciDrop: A Versatile Deterministic Droplet Generator. Anal Chem 2022; 94:2918-2925. [DOI: 10.1021/acs.analchem.1c04852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shun Ye
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Weihang Huang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yi Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanghuan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Dawei Biotechnologies Co., Ltd., Beijing 100085, China
| | - Shengtai Bian
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Xu C, Ma B, Gao Z, Dong X, Zhao C, Liu H. Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage. SCIENCE ADVANCES 2021; 7:eabk0100. [PMID: 34767438 PMCID: PMC8589306 DOI: 10.1126/sciadv.abk0100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
DNA has been considered as a compelling candidate for digital data storage due to advantages such as high coding density, long retention time, and low energy consumption. Despite many works reported, the development of a DNA-based database of full integration, high efficiency, and practical applicability is still challenging. In this work, we report the synthesis and sequencing of DNA on a single electrode with scalability for an integrated DNA-based data storage system. The synthesis of DNA is based on phosphoramidite chemistry and electrochemical deprotection. The sequencing relies on charge redistribution originated from polymerase-catalyzed primer extension, leading to a measurable current spike. By regeneration of the electrode after sequencing, repeated sequencing can be achieved to improve the accuracy. A SlipChip device is developed to simplify the liquid introduction involved in DNA synthesis and sequencing. As the proof-of-concept experiment, text information is stored in the system and then accurately retrieved.
Collapse
|
31
|
Lyu W, Zhang J, Yu Y, Xu L, Shen F. Slip formation of a high-density droplet array for nucleic acid quantification by digital LAMP with a random-access system. LAB ON A CHIP 2021; 21:3086-3093. [PMID: 34160518 DOI: 10.1039/d1lc00361e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital nucleic acid analysis (digital NAA) is an important tool for the precise quantification of nucleic acids. Various microfluidic-based approaches for digital NAA have been developed, but most methods require complex auxiliary control instruments, cumbersome device fabrication, or inconvenient preparation processes. A SlipChip is a microfluidic device that can generate and manipulate liquid partitions through simple movements of two microfluidic plates in close contact. However, the traditional SlipChip requires accurate alignment of microfeatures on different plates; therefore, the dimensions of the microwells and density of partitions can be constrained. Here, we developed a droplet array SlipChip (da-SlipChip) that can form droplets of various sizes at high density in a single slipping step. This process does not require precise overlapping microfeatures on different plates; therefore, the design flexibility and partition density can be significantly increased. We quantified SARS-CoV-2 nucleic acids extracted from the COVID-19 pseudovirus by digital loop-mediated isothermal amplification (LAMP) on a da-SlipChip with 21 696 of 0.25 nL droplets, and the results were in good agreement with those of the commercial digital PCR method of Stilla. Furthermore, we demonstrated a random-access system with a single-throughput fluorescence imager and a stackable thermal control instrument with nine independent heating modules. This random-access system with the da-SlipChip can greatly improve the total throughput and flexibility for digital isothermal nucleic acid quantification and significantly reduce the total waiting time.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
32
|
Catterton MA, Ball AG, Pompano RR. Rapid Fabrication by Digital Light Processing 3D Printing of a SlipChip with Movable Ports for Local Delivery to Ex Vivo Organ Cultures. MICROMACHINES 2021; 12:993. [PMID: 34442615 PMCID: PMC8399530 DOI: 10.3390/mi12080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
SlipChips are two-part microfluidic devices that can be reconfigured to change fluidic pathways for a wide range of functions, including tissue stimulation. Currently, fabrication of these devices at the prototype stage requires a skilled microfluidic technician, e.g., for wet etching or alignment steps. In most cases, SlipChip functionality requires an optically clear, smooth, and flat surface that is fluorophilic and hydrophobic. Here, we tested digital light processing (DLP) 3D printing, which is rapid, reproducible, and easily shared, as a solution for fabrication of SlipChips at the prototype stage. As a case study, we sought to fabricate a SlipChip intended for local delivery to live tissue slices through a movable microfluidic port. The device was comprised of two multi-layer components: an enclosed channel with a delivery port and a culture chamber for tissue slices with a permeable support. Once the design was optimized, we demonstrated its function by locally delivering a chemical probe to slices of hydrogel and to living tissue with up to 120 µm spatial resolution. By establishing the design principles for 3D printing of SlipChip devices, this work will enhance the ability to rapidly prototype such devices at mid-scale levels of production.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
| | - Alexander G Ball
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904-4259, USA
| |
Collapse
|
33
|
He Z, Wang J, Fike BJ, Li X, Li C, Mendis BL, Li P. A portable droplet generation system for ultra-wide dynamic range digital PCR based on a vibrating sharp-tip capillary. Biosens Bioelectron 2021; 191:113458. [PMID: 34216876 DOI: 10.1016/j.bios.2021.113458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 12/31/2022]
Abstract
Monodisperse droplet has been widely used as a versatile tool in different disciplines including biosensing. Existing methods still struggle to balance the droplet generation performance with system simplicity. Here we introduce a novel droplet generation scheme based on the acoustic streaming generated from a vibrating sharp-tip capillary. The unique fluid pattern enables efficient droplet generation without any external pressure sources. This method achieved real-time modulation of droplet size over an ultra-wide range (6.77-661 μm), high throughput (up to 5000 droplets/s), and good monodispersity (<4%) with a power consumption below 60 mW. This method has enabled a multi-volume digital PCR with a dynamic range of ~6 orders of magnitude and multiplexing capability. It has also enabled a simple protocol to produce cell-laden alginate microcapsules in variable sizes with excellent biocompatibility. Overall, the present method combines high performance with small footprint and portability, which will be especially valuable for droplet applications requiring variable droplet size and performed in resource-limited settings.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bethany J Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
34
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
35
|
Tan YL, Huang AQ, Tang LJ, Jiang JH. Multiplexed droplet loop-mediated isothermal amplification with scorpion-shaped probes and fluorescence microscopic counting for digital quantification of virus RNAs. Chem Sci 2021; 12:8445-8451. [PMID: 34221326 PMCID: PMC8221175 DOI: 10.1039/d1sc00616a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets. The digital multiplexed LAMP assay is thus developed by implementing the LAMP reaction using a droplet microfluidic chip coupled to a droplet counting microwell chip. The droplet counting system allows rapid and accurate counting of the numbers of total droplets and the positive droplets by collecting multi-color fluorescence images of the droplets in a microwell. The multiplexed dLAMP assay was successfully demonstrated for the quantification of HCV and HIV cDNA with high precision and detection limits as low as 4 copies per reaction. We also verified its potential for simultaneous digital assay of HCV and HIV RNA in clinical plasma samples. This multiplexed dLAMP technique can afford a useful platform for highly sensitive and specific detection of nucleic acids of viruses and other pathogens, enabling rapid diagnosis and prevention of infectious diseases. The development of multiplexed dLAMP with scorpion-shaped probes and fluorescence microscopic counting affords simultaneous digital quantification of multiple virus RNAs.![]()
Collapse
Affiliation(s)
- Ya-Ling Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - A-Qian Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| |
Collapse
|
36
|
Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 2021; 178:113015. [PMID: 33493896 PMCID: PMC7817442 DOI: 10.1016/j.bios.2021.113015] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
Dependable, specific and rapid diagnostic methods for severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) detection are needed to promote public health interventions for coronavirus disease 2019 (COVID-19). Herein, we have established an entropy-driven amplified electrochemiluminescence (ECL) strategy to detect the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2 known as RdRp-COVID which as the target for SARS-CoV-2 plays an essential role in the diagnosis of COVID-19. For the construction of the sensors, DNA tetrahedron (DT) is modified on the surface of the electrode to furnish robust and programmable scaffolds materials, upon which target DNA-participated entropy-driven amplified reaction is efficiently conducted to link the Ru (bpy)32+ modified S3 to the linear ssDNA at the vertex of the tetrahedron and eventually present an "ECL on" state. The rigid tetrahedral structure of the DT probe enhances the ECL intensity and avoids the cross-reactivity between single-stranded DNA, thus increasing the sensitivity of the assays. The enzyme-free entropy-driven reaction prevents the use of expensive enzyme reagents and facilitates the realization of large-scale screening of SARS-CoV-2 patients. Our DT-based ECL sensor has demonstrated significant specificity and high sensitivity for SARS-CoV-2 with a limit of detection (LOD) down to 2.67 fM. Additionally, our operational method has achieved the detection of RdRp-COVID in human serum samples, which supplies a reliable and feasible sensing platform for the clinical bioanalysis.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Bo Yao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| |
Collapse
|
37
|
Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron 2021; 175:112908. [DOI: 10.1016/j.bios.2020.112908] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
|
38
|
Liu X, Wang Y, Gao Y, Song Y. Gas-propelled biosensors for quantitative analysis. Analyst 2021; 146:1115-1126. [PMID: 33459312 DOI: 10.1039/d0an02154g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gas-propelled biosensors display a simple gas-based signal amplification with quantitative detection features based on the target recognition event in combination with gas propulsion. Due to the liquid-gas conversion, the gas not only pushes the ink bar forward in the microchannel, but also serves as the power to propel the micromotors in the liquid. Thus, this continuous motion leads to a shift in distances which is associated with the target amount. Therefore, gas-propelled biosensors provide a visual quantification based on distance or speed signals without the need for expensive instruments. In this review, we focus on current developments in gas-propelled biosensors for quantitative analysis. First, we list the types of gas utilized as actuators in biosensors. Second, we review the representative gas-propelled biosensors, including the propulsion mechanisms and fabrication methods. Moreover, gas-propelled quantification based on distance and speed is summarized. Finally, we cover applications and provide a future perspective of gas-propelled biosensors.
Collapse
Affiliation(s)
- Xinli Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
39
|
Narayanamurthy V, Jeroish ZE, Bhuvaneshwari KS, Samsuri F. Hepatitis C virus (HCV) diagnosis via microfluidics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:740-763. [PMID: 33511975 DOI: 10.1039/d0ay02045a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Humans are subjected to various diseases; hence, proper diagnosis helps avoid further disease consequences. One such severe issue that could cause significant damage to the human liver is the hepatitis C virus (HCV). Several techniques are available to detect HCV under various categories, such as detection through antibodies, antigens, and RNA. Although immunoassays play a significant role in discovering hepatitis viruses, there is a need for point-of-care tests (POCT). Some developing strategies are required to ensure the appropriate selection of POCT for HCV detection, initiate appropriate antiviral therapy, and define associated risks, which will be critical in achieving optimal outcomes. Though molecular assays are precise, reproducible, sensitive, and specific, alternative strategies are required to enhance HCV diagnosis among the infected population. Herein, we described and assessed the potential of various microfluidic detection techniques and confirmatory approaches used in present communities. In addition, current key market players in HCV chip-based diagnosis and the future perspectives on the basis of which the diagnosis can be made easier are presented in the present review.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
| | | | | | | |
Collapse
|
40
|
Schulz M, Ruediger J, Landmann E, Bakheit M, Frischmann S, Rassler D, Homann AR, von Stetten F, Zengerle R, Paust N. High Dynamic Range Digital Assay Enabled by Dual-Volume Centrifugal Step Emulsification. Anal Chem 2021; 93:2854-2860. [PMID: 33481582 DOI: 10.1021/acs.analchem.0c04182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We implement dual-volume centrifugal step emulsification on a single chip to extend the dynamic range of digital assays. Compared to published single-volume approaches, the range between the lower detection limit (LDL) and the upper limit of quantification (ULQ) increases by two orders of magnitude. In comparison to existing multivolume approaches, the dual-volume centrifugal step emulsification requires neither complex manufacturing nor specialized equipment. Sample metering into two subvolumes, droplet generation, and alignment of the droplets in two separate monolayers are performed automatically by microfluidic design. Digital quantification is demonstrated by exemplary droplet digital loop-mediated isothermal amplification (ddLAMP). Within 5 min, the reaction mix is split into subvolumes of 10.5 and 2.5 μL, and 2,5k and 176k droplets are generated with diameters of 31.6 ± 1.4 and 213.9 ± 7.5 μm, respectively. After 30 min of incubation, quantification over 5 log steps is demonstrated with a linearity of R2 ≥ 0.992.
Collapse
Affiliation(s)
- Martin Schulz
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Julian Ruediger
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Emelie Landmann
- Mast Diagnostica GmbH, Feldstraße 20, 23858 Reinfeld, Germany
| | | | | | - Daniela Rassler
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
41
|
Otuboah FY, Zheng J, Chen C, Wang Z, Wan X, Sun L. High-throughput and uniform large field-of-view multichannel fluorescence microscopy with super-thin dichroism for a dPCR gene chip. APPLIED OPTICS 2020; 59:10768-10776. [PMID: 33361897 DOI: 10.1364/ao.403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the rapid development of digital precision medicine, the digital polymerase chain reaction (dPCR) deoxyribonucleic acid (DNA) gene chip integrates more channels with smaller size and larger area, which leads to a higher technical requirement for commercial optical fluorescence microscopy. The multitime image splicing method is widely used for DNA detection. However, it consumes time and has visible seamless image results. This work has demonstrated the design and fabrication of a three channel reversed and reduced fluorescence microscopic imaging system with high-resolution and large field of view for one-time imaging. We introduced the super ultra-thin dichroic mirror into the space between the objective lens and the gene chip to achieve a uniform illumination and a strong signal for the large area gene chip. The fabricated new fluorescence microscopy can take a one-time imaging for the 28×18mm dPCR gene chip with more than 20,000 multi micro-droplets within FAM, HEX, and ROX fluorescence channels. The optical system was designed with a numerical aperture (NA) of 0.106. Modulation transfer function (MTF) is higher than 0.675 at 70 lp/mm, and the function resolution capability is 10 µm with the whole magnification of -0.65times. The fly's eye lens-based illumination system was tested with a uniform output of over 90% in the whole ϕ34.7mm chip area. The design was tested, and the experimental results showed that this new system provides a fast, efficient, and professional optical imaging method for detection of the new emerged digital PCR gene chip, which has larger area and more channels.
Collapse
|
42
|
Kathrada AI, Wei SC, Xu Y, Cheow, LF, Chen CH. Microfluidic compartmentalization to identify gene biomarkers of infection. BIOMICROFLUIDICS 2020; 14:061502. [PMID: 33312326 PMCID: PMC7717927 DOI: 10.1063/5.0032849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 05/20/2023]
Abstract
Infectious diseases caused by pathogens, such as SARS-COV, H7N9, severe fever with thrombocytopenia syndrome virus, and human immunodeficiency virus, have fatal outcomes with common features of severe fever and subsequent bacterial invasion progressing to multiorgan failure. Gene biomarkers are promising to distinguish specific infections from others with similar presenting symptoms for the prescription of correct therapeutics, preventing pandemics. While routine laboratory methods based on polymerase chain reaction (PCR) to measure gene biomarkers have provided highly sensitive and specific viral detection techniques over the years, they are still hampered by their precision and resource intensity precluding their point-of-care use. Recently, there has been growing interest in employing microfluidic technologies to advance current methods for infectious disease determination via gene biomarker measurements. Here, based on the requirement of infection detection, we will review three microfluidic approaches to compartmentalize gene biomarkers: (1) microwell-based PCR platforms; (2) droplet-based PCR; and (3) point-of-care devices including centrifugal chip, SlipChip, and self-powered integrated microfluidic point-of-care low-cost enabling chip. By capturing target genes in microwells with a small sample volume (∼μl), sensitivity can be enhanced. Additionally, with the advance of significant sample volume minimization (∼pl) using droplet technology, gene quantification is possible. These improvements in cost, automation, usability, and portability have thereby allowed point-of-care applications to decentralize testing platforms from laboratory-based settings to field use against infections.
Collapse
Affiliation(s)
- Ahmad Ismat Kathrada
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block 4, #04-08, Singapore 117583
| | | | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
| | | | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Room Y6700, 6/F, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Hong Kong, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
43
|
Zhang Y, Zhang P, Chen L, Kaushik A, Hu K, Wang TH. ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosens Bioelectron 2020; 167:112499. [PMID: 32846271 PMCID: PMC7534973 DOI: 10.1016/j.bios.2020.112499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/24/2023]
Abstract
Digital nucleic acid amplification tests (digital NAATs) have emerged as a popular tool for nucleic acid detection due to their high sensitivity and specificity. Most current digital NAAT platforms, however, are limited to a "one-color-one-target" approach wherein each target is encoded with a specific fluorescently-labeled probe for single-plex fluorometric detection. This approach is difficult to multiplex due to spectral overlap between any additional fluorophores, and multiplexability of digital NAATs has therefore been limited. As a means to scale multiplexability, we have developed a multiplexed digital NAAT platform, termed Droplet Digital Ratiometric Fluorescence Coding (ddRFC), via a padlock probe-based nucleic acid detection assay which encodes each nucleic acid target with a unique combination of 2 fluorophores. We detect this encoded two-color fluorescence signature of each target by performing digital amplification in microfluidic droplets. To demonstrate the utility of our platform, we have synthesized 6 distinct padlock probes, each rendering a unique two-color fluorescence signature to a nucleic acid target representing a clinically important sexually transmitted infection (STI). We proceed to demonstrate broad-based, two-plex, four-plex, and six-plex detection of the STI targets with single-molecule resolution. Our design offers a cost-effective approach to scale up multiplexability by simply tuning the number of molecular beacon binding sites on the padlock probe without redesigning amplification primers or fluorescent molecular beacons. With further development, our platform has the potential to enable highly multiplexed detection of nucleic acid targets, with potentially unrestricted multiplexability, and serve as a diagnostic tool for many more diseases in the future.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katherine Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
44
|
Moniri A, Miglietta L, Malpartida-Cardenas K, Pennisi I, Cacho-Soblechero M, Moser N, Holmes A, Georgiou P, Rodriguez-Manzano J. Amplification Curve Analysis: Data-Driven Multiplexing Using Real-Time Digital PCR. Anal Chem 2020; 92:13134-13143. [PMID: 32946688 DOI: 10.1021/acs.analchem.0c02253] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Information about the kinetics of PCR reactions is encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from real-time dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188), which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of coamplification in dPCR based on multivariate Poisson statistics and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step toward maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven multiplexing with high accuracy. Furthermore, we expect that combining this method with existing probe-based assays will increase multiplexing capabilities significantly. We envision that once emerging point-of-care technologies can reliably capture real-time data from isothermal chemistries, the ACA method will facilitate the implementation of dPCR outside of the lab.
Collapse
Affiliation(s)
- Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Luca Miglietta
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Kenny Malpartida-Cardenas
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Ivana Pennisi
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K.,Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London W2 1NY, U.K
| | - Miguel Cacho-Soblechero
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Alison Holmes
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, U.K
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Jesus Rodriguez-Manzano
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K.,NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
45
|
McCarthy Riley BF, Ward CL, Linz TH. Influence of microfabrication on digital PCR performance in bead-based microwell array assays. Anal Bioanal Chem 2020; 412:6917-6926. [PMID: 32772126 DOI: 10.1007/s00216-020-02822-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Abstract
Digital PCR (dPCR) is a highly sensitive analytical technique used to quantify DNA targets. Detection sensitivity can be further enhanced by capturing target sequences onto beads for preconcentration and sample cleanup prior to analysis in microfluidic microwell arrays. However, robust digital analysis requires individual beads to be interrogated within individual wells. Fabricating microwells with dimensions ≤ 3 μm is challenging, and the high surface area-to-volume ratio of the wells leaves PCR susceptible to inhibition stemming from materials used during device processing. This report describes the development of a microfabrication procedure to create ultralow-volume wells (100 fL) for bead-based dPCR and characterize the effects of microprocessing materials on assay performance. Standard microfabrication protocols used for creating microelectronics resulted in devices with nanoscopic debris originating from photoresists used during processing. A model dPCR assay was developed to characterize the effects of this debris, which revealed variable PCR inhibition. Debris within microwells attenuated digital and analog assay signals to a greater extent than debris on the device surface. Spatial heterogeneity of debris across devices was quantified to characterize regional PCR inhibition and intra- and inter-device variability. Ultimately, a fabrication procedure was developed to create pristine microfluidic arrays using dual processes to remove positive resist and forgoing use of negative resist entirely, which enabled robust amplification with digital signals matching theoretical predictions. Results from this work catalog the unique performance artifacts from device microfabrication and provide a guide for future studies seeking to conduct robust, high-sensitivity bead-based dPCR assays. Graphical abstract.
Collapse
Affiliation(s)
| | - Cassandra L Ward
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
46
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
47
|
Yin J, Zou Z, Yin F, Liang H, Hu Z, Fang W, Lv S, Zhang T, Wang B, Mu Y. A Self-Priming Digital Polymerase Chain Reaction Chip for Multiplex Genetic Analysis. ACS NANO 2020; 14:10385-10393. [PMID: 32794742 DOI: 10.1021/acsnano.0c04177] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital PCR (polymerase chain reaction) is a powerful and attractive tool for the quantification of nucleic acids. However, the multiplex detection capabilities of this system are limited or require expensive instrumentation and reagents, all of which can hinder multiplex detection goals. Here, we propose strategies toward solving these issues regarding digital PCR. We designed and tested a self-priming digital PCR chip containing 6-plex detection capabilities using monochrome fluorescence, which has six detection areas and four-layer structures. This strategy achieved multiplex digital detection by the use of self-priming to preintroduce the specific reaction mix to a certain detection area. This avoids competition when multiple primer pairs coexist, allowing for multiplexing in a shorter time while using less reagents and low-cost instruments. This also prevents the digital PCR chip from experiencing long sample introduction time and evaporation. For further validation, this multiplex digital PCR chip was used to detect five types of EGFR (epidermal growth factor receptor) gene mutations in 15 blood samples from lung cancer patients. We conclude that this technique can precisely quantify EGFR mutations in high-performance diagnostics. This multiplex digital detection chip is a simple and inexpensive test intended for liquid biopsies. It can be applied and used in prenatal diagnostics, the monitoring of residual disease, rapid pathogen detection, and many other procedures.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zheyu Zou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fangfang Yin
- Weifang People's Hospital, Weifang 261000, China
| | - Hongxiao Liang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Zhenming Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Weibo Fang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
48
|
García Alonso D, Yu M, Qu H, Ma L, Shen F. Advances in Microfluidics-Based Technologies for Single Cell Culture. ACTA ACUST UNITED AC 2020; 3:e1900003. [PMID: 32648694 DOI: 10.1002/adbi.201900003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Single cell culture has been considered one of the fundamental tools for single cell studies. Complex biological systems evolve from single cells, and the cells within biological systems are intrinsically heterogeneous. Therefore, culturing and understanding the behaviors of single cells are of great interest for both biological research and clinical studies. In recent years, advances in microfluidics-based technologies have demonstrated unprecedented capabilities for single cell studies, and they have made high-throughput single cell cultures possible. Microfluidic systems enable precise control of the microenvironment for single cell culture and monitoring of the behavior of single cells in real time. In addition, microfluidic devices can consist of upstream cell sorting and cell isolation, and they can also be seamlessly integrated with various downstream analysis methods. Therefore, microfluidic technologies can obtain data about the performance at the single-cell level, providing information that cannot be achieved by studying the ensemble behavior of cell colonies. In this review, the recent developments in droplet-based microfluidics, microwell-based microfluidics, trap-based microfluidics and SlipChip-based microfluidics for the study of single cell culture is focused on. Perspectives on future improvement regarding single cell culture and its related research opportunities are also provided.
Collapse
Affiliation(s)
- Daniel García Alonso
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Liang Ma
- Thermo Fisher Scientific, 5781 Van Allen way, Carlsbad, CA, 92008, USA
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
49
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Fortschritte in der optischen Einzelmoleküldetektion: Auf dem Weg zu höchstempfindlichen Bioaffinitätsassays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
| | - Matthias J. Mickert
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Hans H. Gorris
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
50
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| |
Collapse
|