1
|
Meng J, Wang J, Zhang J, Yang Z, Wu Z, Zhang W. Regio-, Site- and Stereo-Selective Aziridination of Conjugated Dienes Enabled by Palladium/Copper/Iodide/Oxygen Cooperation. Chemistry 2024:e202403298. [PMID: 39462200 DOI: 10.1002/chem.202403298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Vinylaziridines are important building blocks in organic chemistry, especially in the synthesis of nitrogen-containing heterocycles. The direct and efficient transfer of an appropriate nitrogen source to readily accessible conjugated dienes is a notable methodology. The Pd-catalyzed oxidative 1,2-difunctionalization of conjugated dienes through a π-allyl-palladium species should be an ideal method for the selective synthesis of vinylaziridines. However, this method faces the challenge of regioselectivity, often resulting in 1,4-difunctionalization instead. In this study, we developed a Pd-catalyzed aerobic 1,2-difunctionalization of conjugated dienes via a π-allyl-palladium species to achieve regio-, site- and stereo-selective aziridination under the synergistic effects of PdII, CuI, I-, and O2. The π-allyl palladium species formed in the system undergoes an unusual iodination process, leading to the formation of an allyl iodide intermediate. Subsequently, the vinylaziridine is obtained through intramolecular SN2' substitution of the allyl iodide.
Collapse
Affiliation(s)
- Jingjie Meng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Junwei Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Usman FO, Gogoi AR, Mixdorf JC, Gutierrez O, Nguyen HM. Rhodium-Catalyzed Asymmetric Synthesis of 1,2-Disubstituted Allylic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202314843. [PMID: 37856668 PMCID: PMC11069351 DOI: 10.1002/anie.202314843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Although there are many methods for the asymmetric synthesis of monosubstituted allylic fluorides, construction of enantioenriched 1,2-disubstituted allylic fluorides has not been reported. To address this gap, we report an enantioselective synthesis of 1,2-disubstituted allylic fluorides using chiral diene-ligated rhodium catalyst, Et3 N ⋅ 3HF as a source of fluoride, and Morita Baylis Hillman (MBH) trichloroacetimidates. Kinetic studies show that one enantiomer of racemic MBH substrate reacts faster than the other. Computational studies reveal that both syn and anti π-allyl complexes are formed upon ionization of allylic substrate, and the syn complexes are slightly energetically favorable. This is in contrast to our previous observation for formation of monosubstituted π-allyl intermediates, in which the syn π-allyl conformation is strongly preferred. In addition, the presence of an electron-withdrawing group at C2 position of racemic MBH substrate renders 1,2-disubstituted π-allyl intermediate formation endergonic and reversible. To compare, formation of monosubstituted π-allyl intermediates was exergonic and irreversible. DFT calculations and kinetic studies support a dynamic kinetic asymmetric transformation process wherein the rate of isomerization of the 1,2-disubstituted π-allylrhodium complexes is faster than that of fluoride addition onto the more reactive intermediate. The 1,2-disubstituted allylic fluorides were obtained in good yields, enantioselectivity, and branched selectivity.
Collapse
Affiliation(s)
- Fuad O Usman
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Luo Y, Ma Y, Li G, Huo X, Zhang W. Desymmetrization of Geminal Difluoromethylenes using a Palladium/Copper/Lithium Ternary System for the Stereodivergent Synthesis of Fluorinated Amino Acids. Angew Chem Int Ed Engl 2023; 62:e202313838. [PMID: 37815160 DOI: 10.1002/anie.202313838] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Fluorinated amino acids and related peptides/proteins have been found widespread applications in pharmaceutical and agricultural compounds. However, strategies for introducing a C-F bond into amino acids in an enantioselective manner are still limited and no such asymmetric catalysis strategy has been reported. Herein, we have successfully developed a Pd/Cu/Li ternary system for stereodivergent synthesis of chiral fluorinated amino acids. This method involves a sequential desymmetrization of geminal difluoromethylenes and allylic substitution with amino acid Schiff bases via Pd/Li and Pd/Cu dual activation, respectively. A series of non-natural amino acids bearing a chiral allylic/benzylic fluorine motif are easily synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities (up to >20 : 1 dr and >99 % ee). A density functional theory (DFT) study revealed the F-Cu interaction of the allylic substrate and the Cu catalyst significantly influence the stereoselectivity.
Collapse
Affiliation(s)
- Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqi Ma
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Leibler INM, Gandhi SS, Tekle-Smith MA, Doyle AG. Strategies for Nucleophilic C(sp 3)-(Radio)Fluorination. J Am Chem Soc 2023; 145:9928-9950. [PMID: 37094357 DOI: 10.1021/jacs.3c01824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.
Collapse
Affiliation(s)
| | - Shivaani S Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Horwitz MA, Dürr AB, Afratis K, Chen Z, Soika J, Christensen KE, Fushimi M, Paton RS, Gouverneur V. Regiodivergent Nucleophilic Fluorination under Hydrogen Bonding Catalysis: A Computational and Experimental Study. J Am Chem Soc 2023; 145:9708-9717. [PMID: 37079853 PMCID: PMC10161234 DOI: 10.1021/jacs.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The controlled programming of regiochemical outcomes in nucleophilic fluorination reactions with alkali metal fluoride is a problem yet to be solved. Herein, two synergistic approaches exploiting hydrogen bonding catalysis are presented. First, we demonstrate that modulating the charge density of fluoride with a hydrogen-bond donor urea catalyst directly influences the kinetic regioselectivity in the fluorination of dissymmetric aziridinium salts with aryl and ester substituents. Moreover, we report a urea-catalyzed formal dyotropic rearrangement, a thermodynamically controlled regiochemical editing process consisting of C-F bond scission followed by fluoride rebound. These findings offer a route to access enantioenriched fluoroamine regioisomers from a single chloroamine precursor, and more generally, new opportunities in regiodivergent asymmetric (bis)urea-based organocatalysis.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Konstantinos Afratis
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zijun Chen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Julia Soika
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Makoto Fushimi
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
6
|
Mandal A, Jang J, Yang B, Kim H, Shin K. Palladium-Catalyzed Electrooxidative Hydrofluorination of Aryl-Substituted Alkenes with a Nucleophilic Fluorine Source. Org Lett 2023; 25:195-199. [PMID: 36583971 DOI: 10.1021/acs.orglett.2c04045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report an electrocatalytic hydrofluorination of aryl-substituted alkenes with a nucleophilic fluorine source. The merger of palladium catalysis with electrooxidation enables the transformation of various substrates ranging from styrenes to more challenging α,β-unsaturated carbonyl derivatives to the corresponding benzylic fluorides. This method can also be applied to the late-stage modification of pharmaceutical derivatives. Mechanistic studies suggest that the generation of a high-valent palladium intermediate via anodic oxidation is the crucial step in this electrocatalytic hydrofluorination.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baeho Yang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Xu J, Peng C, Yao B, Xu HJ, Xie Q. Direct Deoxyfluorination of Alcohols with KF as the Fluorine Source. J Org Chem 2022; 87:6471-6478. [PMID: 35442691 DOI: 10.1021/acs.joc.2c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes a method for the deoxyfluorination of alcohols with KF as the fluorine source via in situ generation of highly active CF3SO2F. Diverse functionalities, including halogen, nitro, ketone, ester, alkene, and alkyne, are well tolerated. Mild conditions, a short reaction time, and a wide substrate scope make this method an excellent choice for the construction of C-F bonds.
Collapse
Affiliation(s)
- Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bolin Yao
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, P. R. China
| |
Collapse
|
8
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
9
|
Zeng JL, Xu ZH, Niu LF, Yao C, Liang LL, Zou YL, Yang L. Generating Monofluoro‐Substituted Amines and Amino Acids by the Interaction of Inexpensive KF and Sulfamidates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Liang Zeng
- Xuchang University College of chemical and materials engineering 88 Bayi Road, Weidu District, 461000 Xuchang City CHINA
| | - Zhi-Hong Xu
- Xuchang University college of chemical and materials engineering CHINA
| | - Liang-Feng Niu
- Xuchang University college of chemical and materials engineering CHINA
| | - Chuan Yao
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lu-Lu Liang
- Xuchang University college of chemical and materials engineering CHINA
| | - Yu-Lu Zou
- Xuchang University college of chemical and matericals engineering CHINA
| | - Lijun Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College key laboratory of radiopharmacokinetics for innovative drugs CHINA
| |
Collapse
|
10
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Zhang K, Sheng X, Deiana L, Svensson Grape E, Inge K, Himo F, Cordova A. Solvent Dependency in Stereoselective δ‐Lactam Formation of Chiral α‐Fluoromalonate Derivatives: Stereodivergent Synthesis of Heterocycles with Fluorine Containing Quaternary Stereocenters Adjacent to Tertiary Stereocenters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kaiheng Zhang
- Mittuniversitetet Fakulteten for naturvetenskap teknik och medier SWEDEN
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences CHINA
| | - Luca Deiana
- Stockholms Universitet Naturvetenskapliga fakulteten SWEDEN
| | | | - Ken Inge
- Stockholm University Faculty of Natural Sciences SWEDEN
| | | | - Armando Cordova
- Mittuniversitetet Fakulteten for naturvetenskap teknik och medier SWEDEN
| |
Collapse
|
12
|
Deolka S, Govindarajan R, Khaskin E, Fayzullin RR, Roy MC, Khusnutdinova JR. Photoinduced Trifluoromethylation of Arenes and Heteroarenes Catalyzed by High-Valent Nickel Complexes. Angew Chem Int Ed Engl 2021; 60:24620-24629. [PMID: 34477296 DOI: 10.1002/anie.202109953] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/30/2022]
Abstract
We describe a series of air-stable NiIII complexes supported by a simple, robust naphthyridine-based ligand. Access to the high-valent oxidation state is enabled by the CF3 ligands on the nickel, while the naphthyridine exhibits either a monodentate or bidentate coordination mode that depends on the oxidation state and sterics, and enables facile aerobic oxidation of NiII to NiIII . These NiIII complexes act as efficient catalysts for photoinduced C(sp2 )-H bond trifluoromethylation reactions of (hetero)arenes using versatile synthetic protocols. This blue LED light-mediated catalytic protocol proceeds via a radical pathway and demonstrates potential in the late-stage functionalization of drug analogs.
Collapse
Affiliation(s)
- Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ramadoss Govindarajan
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Robert R Fayzullin
- Abuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Michael C Roy
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
13
|
Deolka S, Govindarajan R, Khaskin E, Fayzullin RR, Roy MC, Khusnutdinova JR. Photoinduced Trifluoromethylation of Arenes and Heteroarenes Catalyzed by High‐Valent Nickel Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Ramadoss Govindarajan
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Abuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C. Roy
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Julia R. Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| |
Collapse
|
14
|
Remete AM, Nonn M, Escorihuela J, Fustero S, Kiss L. Asymmetric Methods for Carbon‐Fluorine Bond Formation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Jorge Escorihuela
- Department of Organic Chemistry University of Valencia Pharmacy Faculty 46100- Burjassot Valencia Spain
| | - Santos Fustero
- Department of Organic Chemistry University of Valencia Pharmacy Faculty 46100- Burjassot Valencia Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| |
Collapse
|
15
|
Schifferer L, Stinglhamer M, Kaur K, Macheño OG. Halides as versatile anions in asymmetric anion-binding organocatalysis. Beilstein J Org Chem 2021; 17:2270-2286. [PMID: 34621390 PMCID: PMC8450959 DOI: 10.3762/bjoc.17.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
This review intends to provide an overview on the role of halide anions in the development of the research area of asymmetric anion-binding organocatalysis. Key early elucidation studies with chloride as counter-anion confirmed this type of alternative activation, which was then exploited in several processes and contributed to the advance and consolidation of anion-binding catalysis as a field. Thus, the use of the halide in the catalyst–anion complex as both a mere counter-anion spectator or an active nucleophile has been depicted, along with the new trends toward additional noncovalent contacts within the HB-donor catalyst and supramolecular interactions to both the anion and the cationic reactive species.
Collapse
Affiliation(s)
- Lukas Schifferer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Martin Stinglhamer
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Kirandeep Kaur
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| | - Olga García Macheño
- Organic Chemistry Institute, Westfälische-Wilhelms University Münster, Correnstraße 36, 48149 Münster, Germany
| |
Collapse
|
16
|
|
17
|
Zhu W, Zhen X, Wu J, Cheng Y, An J, Ma X, Liu J, Qin Y, Zhu H, Xue J, Jiang X. Catalytic asymmetric nucleophilic fluorination using BF 3·Et 2O as fluorine source and activating reagent. Nat Commun 2021; 12:3957. [PMID: 34172752 PMCID: PMC8233348 DOI: 10.1038/s41467-021-24278-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/09/2021] [Indexed: 01/16/2023] Open
Abstract
Fluorination using chiral catalytic methods could result in a direct access to asymmetric fluorine chemistry. However, challenges in catalytic asymmetric fluorinations, especially the longstanding stereochemical challenges existed in BF3·Et2O-based fluorinations, have not yet been addressed. Here we report the catalytic asymmetric nucleophilic fluorination using BF3·Et2O as the fluorine reagent in the presence of chiral iodine catalyst. Various chiral fluorinated oxazine products were obtained with good to excellent enantioselectivities (up to >99% ee) and diastereoselectivities (up to >20:1 dr). Control experiments (the desired fluoro-oxazines could not be obtained when Py·HF or Et3N·3HF were employed as the fluorine source) indicated that BF3·Et2O acted not only as a fluorine reagent but also as the activating reagent for activation of iodosylbenzene. Catalytic asymmetric fluorination remains elusive, especially the longstanding stereochemical challenges which exist in BF3Et2O-based fluorinations. Here the authors show a catalytic asymmetric nucleophilic fluorination using BF3·Et2O as the fluorine reagent in the presence of chiral iodine catalyst.
Collapse
Affiliation(s)
- Weiwei Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyuan Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yaping Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junkai An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jikun Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Yuji Qin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Lu M, Xiong Z, Zhou Y, Wang X, Li X, Duan J, Yao W, Xia Y, Wang Z. Assembly of fluorinated chromanones via enantioselective tandem reaction. Chem Commun (Camb) 2021; 57:4722-4725. [PMID: 33977956 DOI: 10.1039/d1cc01187a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective synthesis of fluorinated tricyclic chromanones with multiple vicinal stereogenic centers has been realized for the first time, through the tandem reaction between 2-fluorinated 1-(2-hydroxyaryl)-1,3-diketones and α,β-unsaturated aldehydes. In the presence of chiral amine, the organo-tandem reaction including catalytic Michael addition/cycloketalization/hemiacetalization and acylation sequence provided a wide range of fluorinated tricyclic chromanones with excellent outcomes (>30 examples, up to >99% ee and >19 : 1 d.r.). A plausible catalytic cycle and transition state are also provided for this tandem reaction to rationalize the observed sense of asymmetric induction.
Collapse
Affiliation(s)
- Mengxue Lu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Xiaoyi Li
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Jingxiang Duan
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Xia
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
19
|
Mizuta S, Kitamura K, Kitagawa A, Yamaguchi T, Ishikawa T. Silver-Promoted Fluorination Reactions of α-Bromoamides. Chemistry 2021; 27:5930-5935. [PMID: 33274783 DOI: 10.1002/chem.202004769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Indexed: 01/18/2023]
Abstract
Silver-promoted C-F bond formation in α-bromoamides by using AgF under mild conditions is reported. This simple method enables access to tertiary, secondary, and primary alkyl fluorides involving biomolecular scaffolds. This transformation is applicable to primary and secondary amides and shows broad functional-group tolerance. Kinetics experiments revealed that the reaction rate increased in the order of 3°>2°>1° α-carbon atom. In addition, it was found that the acidic amide proton plays an important role in accelerating the reaction. Mechanistic studies suggested generation of an aziridinone intermediate that undergoes subsequent nucleophilic addition to form the C-F bond with stereospecificity (i.e., retention of configuration). The synthesis of sterically hindered alcohols and ethers by using AgI is also demonstrated. Examples of reactions of α-bromoamides with O nucleophiles are presented.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Kanami Kitamura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Ayako Kitagawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Tomoko Yamaguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
20
|
Jiang X, Li E, Chen J, Huang Y. Photo-induced energy transfer relay of N-heterocyclic carbene catalysis: an asymmetric α-fluorination/isomerization cascade. Chem Commun (Camb) 2021; 57:729-732. [PMID: 33346284 DOI: 10.1039/d0cc07264h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometric configuration of olefin products is often driven by thermodynamic control in synthesis. Methods enabling switching of cis/trans selectivity are rare. Recently, photosensitized approaches have emerged as a powerful tool for accomplishing this task. In this report, we report an in situ isomerization of an N-heterocyclic carbene (NHC)-bound intermediate by a photo-induced energy transfer process that leads to selective access of chiral allylic fluorides with a cis-olefin geometry. In the absence of a photocatalyst or light, the reaction proceeds smoothly to give (E)-olefin products, while the (Z)-isomer can be obtained under photosensitizing conditions. Preliminary mechanistic experiments suggest that an energy transfer process might be operative.
Collapse
Affiliation(s)
- Xinhang Jiang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China and Shenzhen Public Platform of Drug Screening and Preclinical Evaluation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - En Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China and Shenzhen Public Platform of Drug Screening and Preclinical Evaluation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China and Shenzhen Public Platform of Drug Screening and Preclinical Evaluation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
21
|
Affiliation(s)
- Alexandre M. Sorlin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Fuad O. Usman
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Connor K. English
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
22
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
23
|
Liaw MW, Cheng WF, Tong R. C-Aryl Glycosylation: Palladium-Catalyzed Aryl-Allyl Coupling of Achmatowicz Rearrangement Products with Arylboronic Acids. J Org Chem 2020; 85:6663-6674. [PMID: 32314587 DOI: 10.1021/acs.joc.0c00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The first Pd-catalyzed arylation of Achmatowicz rearrangement products with arylboronic acids under mild conditions (rt) to provide the synthetically versatile C-aryl dihydropyranones is reported. It is found that the 4-keto group of Achmatowicz products is essential to increase the reactivity of the Pd-π-allyl complex toward arylboronic acids and that phosphine as the palladium ligand would be destructive to the reaction. This new coupling method addresses the major limitations of previous Pd-catalyzed allyl-aryl couplings of 2,3-unsaturated glycosides with an aryl Grignard or aryl zinc reagent.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wai Fung Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
24
|
Liao L, An R, Li H, Xu Y, Wu J, Zhao X. Catalytic Access to Functionalized Allylic
gem
‐Difluorides via Fluorinative Meyer–Schuster‐Like Rearrangement. Angew Chem Int Ed Engl 2020; 59:11010-11019. [DOI: 10.1002/anie.202003897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Rui An
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Huimin Li
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Yang Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jin‐Ji Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
25
|
Ghorai S, Ur Rehman S, Xu WB, Huang WY, Li C. Cobalt-Catalyzed Regio- and Enantioselective Allylic Alkylation of Malononitriles. Org Lett 2020; 22:3519-3523. [DOI: 10.1021/acs.orglett.0c00962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Samir Ghorai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen-Yu Huang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Deoxyfluorination with CuF
2
: Enabled by Using a Lewis Base Activating Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Sood DE, Champion S, Dawson DM, Chabbra S, Bode BE, Sutherland A, Watson AJB. Deoxyfluorination with CuF
2
: Enabled by Using a Lewis Base Activating Group. Angew Chem Int Ed Engl 2020; 59:8460-8463. [PMID: 32109331 DOI: 10.1002/anie.202001015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Indexed: 11/06/2022]
Affiliation(s)
- D. Eilidh Sood
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Sue Champion
- West of Scotland PET Centre Greater Glasgow and Clyde NHS Trust Glasgow G12 OYN UK
| | - Daniel M. Dawson
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Sonia Chabbra
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Andrew Sutherland
- WestCHEM School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Allan J. B. Watson
- EaStCHEM School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
28
|
Kaldas SJ, Kran E, Mück-Lichtenfeld C, Yudin AK, Studer A. Reaction of Vinyl Aziridines with Arynes: Synthesis of Benzazepines and Branched Allyl Fluorides. Chemistry 2020; 26:1501-1505. [PMID: 31628755 DOI: 10.1002/chem.201904727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/02/2023]
Abstract
We report the cycloaddition between vinyl aziridines and arynes. Depending on the reaction conditions and the choice of the aryne precursor, the aziridinium intermediate can be trapped through two distinct mechanistic pathways. The first one proceeds through a formal [5+2] cycloaddition to furnish valuable multi-substituted benzazepines. In the second pathway, the aziridinium is intercepted by a fluoride ion to afford allylic fluorides in good yields. Both reactions proceed stereospecifically and furnish enantiopure benzazepines and allylic fluorides.
Collapse
Affiliation(s)
- Sherif J Kaldas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Eva Kran
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
29
|
Yin X, Chen B, Qiu F, Wang X, Liao Y, Wang M, Lei X, Liao J. Enantioselective Palladium-Catalyzed Hydrofluorination of Alkenylarenes. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuemei Yin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Bin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Xihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yang Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
30
|
Li X, Shi X, Li X, Shi D. Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein J Org Chem 2019; 15:2213-2270. [PMID: 31598178 PMCID: PMC6774084 DOI: 10.3762/bjoc.15.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023] Open
Abstract
Fluorine chemistry plays an increasingly important role in pharmaceutical, agricultural, and materials industries. The incorporation of fluorine-containing groups into organic molecules can improve their chemical and physical properties, which attracts continuous interest in organic synthesis. Among various reported methods, transition-metal-catalyzed fluorination/fluoroalkylation has emerged as a powerful method for the construction of these compounds. This review attempts to describe the major advances in the transition-metal-catalyzed incorporation of fluorine, trifluoromethyl, difluoromethyl, trifluoromethylthio, and trifluoromethoxy groups reported between 2011 and 2019.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
31
|
Sorlin AM, Mixdorf JC, Rotella ME, Martin RT, Gutierrez O, Nguyen HM. The Role of Trichloroacetimidate To Enable Iridium-Catalyzed Regio- and Enantioselective Allylic Fluorination: A Combined Experimental and Computational Study. J Am Chem Soc 2019; 141:14843-14852. [PMID: 31438667 DOI: 10.1021/jacs.9b07575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asymmetric allylic fluorination has proven to be a robust and efficient methodology with potential applications for the development of pharmaceuticals and practical synthesis for 18F-radiolabeling. A combined computational (dispersion-corrected DFT) and experimental approach was taken to interrogate the mechanism of the diene-ligated, iridium-catalyzed regio- and enantioselective allylic fluorination. Our group has shown that, in the presence of an iridium(I) catalyst and nucleophilic fluoride source (Et3N·3HF), allylic trichloroacetimidates undergo rapid fluoride substitution to generate allylic fluoride products with excellent levels of branched-to-linear ratios. Mechanistic studies reveal the crucial role of the trichloroacetimidate as a potent leaving group and ligand to enable conversion of racemic allylic trichloroacetimidates to the corresponding enantioenriched allylic fluorides, via a dynamic kinetic asymmetric transformation (DYKAT), in the presence of the chiral bicyclo[3.3.0]octadiene-ligated iridium catalyst.
Collapse
Affiliation(s)
- Alexandre M Sorlin
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Jason C Mixdorf
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Madeline E Rotella
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Robert T Martin
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
32
|
Trost BM, Gholami H, Zell D. Palladium-Catalyzed Asymmetric Allylic Fluoroalkylation/Trifluoromethylation. J Am Chem Soc 2019; 141:11446-11451. [PMID: 31280565 DOI: 10.1021/jacs.9b06231] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The first palladium-catalyzed asymmetric allylic trifluoromethylation is disclosed. The methodology evokes a fundamental principle by which the synergistic interplay of a leaving group and its subsequent activation of the nucleophilic trifluoromethyl group enabled the reaction. Allyl fluorides have been shown to be superior precursors for generation of π-allyl complexes, which lead to trifluoromethylated products with high selectivities and functional group tolerance. This study highlights the unique role of a bidentate diamidophosphite ligand class in palladium-catalyzed reactions that allow a challenging transformation to proceed.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| | - Hadi Gholami
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| | - Daniel Zell
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| |
Collapse
|
33
|
Liu YL, Xu XH, Qing FL. Regioselective dehydroxytrifluoromethylthiolation of allylic and propargylic alcohols with AgSCF3. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Pupo G, Vicini AC, Ascough DMH, Ibba F, Christensen KE, Thompson AL, Brown JM, Paton RS, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. J Am Chem Soc 2019; 141:2878-2883. [DOI: 10.1021/jacs.8b12568] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriele Pupo
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anna Chiara Vicini
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David M. H. Ascough
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Francesco Ibba
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Kirsten E. Christensen
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amber L. Thompson
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - John M. Brown
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert S. Paton
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Véronique Gouverneur
- Chemistry Research
Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
35
|
Tang WK, Xu ZW, Xu J, Tang F, Li XX, Dai JJ, Xu HJ, Feng YS. Irradiation-Induced Cobaloxime-Catalyzed C-H Monofluoroalkylation of Styrenes at Room Temperature. Org Lett 2019; 21:196-200. [PMID: 30550293 DOI: 10.1021/acs.orglett.8b03656] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A cobaloxime-catalyzed photochemical synthesis of allyl monofluorides from styrenes is described herein. This method is characterized by mild reaction conditions, low-cost catalyst, and broad substrate scope. Furthermore, this convenient method will provide a facile synthesis toward novel monofluoroalkylated natural product and pharmaceutical derivatives. Mechanistic investigations indicate that a monofluoroalkyl radical is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Wei-Ke Tang
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Zhuo-Wei Xu
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jun Xu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Fei Tang
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Xiao-Xuan Li
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jian-Jun Dai
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Hua-Jian Xu
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China.,School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Yi-Si Feng
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China.,Anhui Provincial Laboratory of Heterocyclic Chemistry , Maanshan 243110 , P. R. China
| |
Collapse
|
36
|
Zhong F, Yue WJ, Zhang HJ, Zhang CY, Yin L. Catalytic Asymmetric Construction of Halogenated Stereogenic Carbon Centers by Direct Vinylogous Mannich-Type Reaction. J Am Chem Soc 2018; 140:15170-15175. [DOI: 10.1021/jacs.8b09484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng-Yuan Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
37
|
Butcher TW, Hartwig JF. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation. Angew Chem Int Ed Engl 2018; 57:13125-13129. [PMID: 30136379 DOI: 10.1002/anie.201807474] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Few allylic electrophiles containing two different substituents at a single allyl terminus and none in which one of the two substituents is a heteroatom, have been shown previously to react with iridium catalysts to form substitution products. We report that iridium-catalysts are uniquely suited to form tertiary allylic fluorides enantioselectively by the addition of a diverse range of carbon-centered nucleophiles at the fluorine-containing terminus of 3-fluoro-substituted allylic esters. The products contain tertiary stereogenic centers bearing a single fluorine, which are isosteric with common tertiary stereocenters containing a single hydrogen. Computational studies reveal the principal steric interactions influencing the stability of endo and exo π-allyl intermediates formed from 3,3-disubstituted allylic electrophiles.
Collapse
Affiliation(s)
- Trevor W Butcher
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
38
|
Butcher TW, Hartwig JF. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium‐Catalyzed Allylic Fluoroalkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry University of California Berkeley CA 94720 USA
| |
Collapse
|
39
|
Pupo G, Ibba F, Ascough DMH, Vicini AC, Ricci P, Christensen KE, Pfeifer L, Morphy JR, Brown JM, Paton RS, Gouverneur V. Asymmetric nucleophilic fluorination under hydrogen bonding phase-transfer catalysis. Science 2018; 360:638-642. [PMID: 29748281 DOI: 10.1126/science.aar7941] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
Abstract
Common anionic nucleophiles such as those derived from inorganic salts have not been used for enantioselective catalysis because of their insolubility. Here, we report that merging hydrogen bonding and phase-transfer catalysis provides an effective mode of activation for nucleophiles that are insoluble in organic solvents. This catalytic manifold relies on hydrogen bonding complexation to render nucleophiles soluble and reactive, while simultaneously inducing asymmetry in the ensuing transformation. We demonstrate the concept using a chiral bis-urea catalyst to form a tridentate hydrogen bonding complex with fluoride from its cesium salt, thereby enabling highly efficient enantioselective ring opening of episulfonium ion. This fluorination method is synthetically valuable considering the scarcity of alternative protocols and points the way to wider application of the catalytic approach with diverse anionic nucleophiles.
Collapse
Affiliation(s)
- Gabriele Pupo
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Francesco Ibba
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - David M H Ascough
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Anna Chiara Vicini
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Paolo Ricci
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Kirsten E Christensen
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Lukas Pfeifer
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - John Richard Morphy
- Medicinal Chemistry, Eli Lilly and Company Limited, Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - John M Brown
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Robert S Paton
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
40
|
Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem Rev 2018; 118:3887-3964. [PMID: 29608052 DOI: 10.1021/acs.chemrev.7b00778] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jiandong Wang
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory , RIKEN, and RIKEN Center for Sustainable Resourse Science , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry , University of the Basque Country UPV/EHU , 20018 San Sebastian , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
41
|
Danahy KE, Cooper JC, Van Humbeck JF. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kelley E. Danahy
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Julian C. Cooper
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jeffrey F. Van Humbeck
- Department of Chemistry; University of Calgary; 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
42
|
Danahy KE, Cooper JC, Van Humbeck JF. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor. Angew Chem Int Ed Engl 2018; 57:5134-5138. [PMID: 29486098 DOI: 10.1002/anie.201801280] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/20/2023]
Abstract
A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies.
Collapse
Affiliation(s)
- Kelley E Danahy
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Julian C Cooper
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
43
|
|
44
|
Wang ZY, Wan JH, Wang GY, Jin RX, Lan Q, Wang XS. Nickel-Catalyzed Heck-Type Monofluoroacetation of Styrenes for Facile Synthesis of Allylic Fluorides. Chem Asian J 2018; 13:261-265. [DOI: 10.1002/asia.201701655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen-Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| | - Jia-Hao Wan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| | - Gao-Yin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| | - Quan Lan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei Anhui 230026 P.R. China
| |
Collapse
|
45
|
Guo R, Huang J, Zhao X. Organoselenium-Catalyzed Oxidative Allylic Fluorination with Electrophilic N–F Reagent. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03829] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruizhi Guo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jiachen Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
46
|
Fustero S, Sedgwick DM, Román R, Barrio P. Recent advances in the synthesis of functionalised monofluorinated compounds. Chem Commun (Camb) 2018; 54:9706-9725. [DOI: 10.1039/c8cc05181j] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past few years, we have tackled the synthesis of interesting monofluorinated organic molecules, such as: dihydronaphthalene derivatives, β-fluoro sulfones and related carbonyl compounds, fluorohydrins and allylic alcohols.
Collapse
Affiliation(s)
- Santos Fustero
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Raquel Román
- Laboratorio de Moléculas Orgánicas
- Centro de Investigación Príncipe Felipe
- E-46012 Valencia
- Spain
| | - Pablo Barrio
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| |
Collapse
|
47
|
Zhang Z, Chen P, Liu G. Copper-mediated intramolecular aminofluorination of 1,3-dienes by using nucleophilic fluorine reagents. Chem Commun (Camb) 2018; 54:8709-8712. [DOI: 10.1039/c8cc04909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-mediated intramolecular aminofluorination of 1,3-dienes is disclosed, in which both AgF and Et3N·3HF can be used as the fluorine source.
Collapse
Affiliation(s)
- Zuxiao Zhang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
48
|
Mixdorf JC, Sorlin AM, Zhang Q, Nguyen HM. Asymmetric Synthesis of Allylic Fluorides via Fluorination of Racemic Allylic Trichloroacetimidates Catalyzed by a Chiral Diene-Iridium Complex. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jason C. Mixdorf
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Alexandre M. Sorlin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Qi Zhang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Hien M. Nguyen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| |
Collapse
|
49
|
Chen H, Liu Z, Lv Y, Tan X, Shen H, Yu HZ, Li C. Selective Radical Fluorination of Tertiary Alkyl Halides at Room Temperature. Angew Chem Int Ed Engl 2017; 56:15411-15415. [DOI: 10.1002/anie.201708197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/27/2017] [Indexed: 11/10/2022]
Affiliation(s)
- He Chen
- Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Zhonglin Liu
- Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Ying Lv
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; Hefei Anhui 230601 P. R. China
| | - Xinqiang Tan
- Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Haigen Shen
- Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Hai-Zhu Yu
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; Hefei Anhui 230601 P. R. China
| | - Chaozhong Li
- Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
- School of Materials and Chemical Engineering; Ningbo University of Technology; 201 Fenghua Road Ningbo 315211 P. R. China
| |
Collapse
|
50
|
|