1
|
Rafique S, Yang S, Sajid MS, Faheem M. A review of intact glycopeptide enrichment and glycan separation through hydrophilic interaction liquid chromatography stationary phase materials. J Chromatogr A 2024; 1735:465318. [PMID: 39244913 DOI: 10.1016/j.chroma.2024.465318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Protein glycosylation, one of the most important biologically relevant post-translational modifications for biomarker discovery, faces analytical challenges due to heterogeneous glycosite, diverse glycans, and mass spectrometry limitations. Glycopeptide enrichment by removing abundant hydrophobic peptides helps overcome some of these obstacles. Hydrophilic interaction liquid chromatography (HILIC), known for its selectivity, glycan separations, intact glycopeptide enrichment, and compatibility with mass spectrometry, has seen recent advancements in stationary phases like Amide-80, glycoHILIC, amino acids or peptides for improved HILIC-based glycopeptide analysis. Utilization of these materials can improve glycopeptide enrichment through solid-phase extraction and separation via high-performance liquid chromatography. Additionally, using glycopeptides themselves to modify HILIC stationary phases holds promise for improving selectivity and sensitivity in glycosylation analysis. Additionally, HILIC has capability to assess the information about glycosites and structural information of glycans. This review summarizes recent breakthroughs in HILIC stationary materials, highlighting their impact on glycopeptide analysis. Ongoing research on advanced materials continues to refine HILIC's performance, solidifying its value as a tool for exploring protein glycosylation.
Collapse
Affiliation(s)
- Saima Rafique
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Muhammad Salman Sajid
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA.
| | - Muhammad Faheem
- Riphah International University Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| |
Collapse
|
2
|
Zhou Y, Liao KS, Chen TY, Hsieh YSY, Wong CH. Effective Organotin-Mediated Regioselective Functionalization of Unprotected Carbohydrates. J Org Chem 2023. [PMID: 37167441 DOI: 10.1021/acs.joc.3c00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Regioselective functionalization of unprotected carbohydrates at a secondary OH group in the presence of primary OH groups based on the commonly used organotin-mediated reaction has been improved. We found that the preactivation of the dibutylstannylene acetal intermediate with tetrabutylammonium bromide in toluene is a key to the improved condition for the efficient, high-yielding, and regioselective tosylation, benzoylation, or benzylation of unprotected carbohydrates. The counteranion of tetrabutylammonium ion with a weak coordination ability plays a crucial role in the improved regioselective reactions. A convenient access to the intermediates of synthetic value is also demonstrated in the organotin-mediated regioselective tosylation of unprotected carbohydrates, followed by the nucleophilic inversion reaction to give sulfur-containing and azide-modified carbohydrates.
Collapse
Affiliation(s)
- Yixuan Zhou
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
| | - Yves S Y Hsieh
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City 110, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Kav B, Weikl TR, Schneck E. Measuring pico-Newton Forces with Lipid Anchors as Force Sensors in Molecular Dynamics Simulations. J Phys Chem B 2023; 127:4081-4089. [PMID: 37127845 PMCID: PMC10184124 DOI: 10.1021/acs.jpcb.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Binding forces between biomolecules are ubiquitous in nature but sometimes as weak as a few pico-Newtons (pN). In many cases, the binding partners are attached to biomembranes with the help of a lipid anchor. One important example are glycolipids that promote membrane adhesion through weak carbohydrate-carbohydrate binding between adjacent membranes. Here, we use molecular dynamics (MD) simulations to quantify the forces generated by bonds involving membrane-anchored molecules. We introduce a method in which the protrusion of the lipid anchors from the membrane acts as the force sensor. Our results with two different glycolipids reveal binding forces of up to 20 pN and corroborate the recent notion that carbohydrate-carbohydrate interactions are generic rather than specific.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Ding P, Wei Q, Tian N, Ding X, Wang L, Wang B, Okoro OV, Shavandi A, Nie L. Enzymatically crosslinked hydrogel based on tyramine modified gelatin and sialylated chitosan. Biomed Mater 2022; 18. [PMID: 36322975 DOI: 10.1088/1748-605x/ac9f90] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The enzymatically crosslinked hydrogel could replicate the cellular microenvironment for biomedical applications. In the present study, to improve the cytocompatibility of chitosan (CS), sialic acid (SA) was introduced to CS to synthesize sialylated CS (CS-SA), and the tyramine (TA) was grafted to gelatin (G) to obtain TA modified gelatin (G-TA). The successful synthesis of CS-SA and G-TA was confirmed using1H NMR and UV-Vis absorption spectra. The interpenetrating polymer networks G-TA/CS-SA (GC) hydrogel was then fabricated via blending G-TA and CS-SA solutions and crosslinked using horseradish peroxidase. The storage modulus (G') of the fabricated GC hydrogels with different ratios of G-TA/CS-SA greatly varied during the formation and strain of hydrogels. With the increase of CS-SA concentration from 0% to 2%, the storage modulus of GC hydrogels was also observed to decrease from 1500 Pa to 101 Pa; the water uptake capacity of GC hydrogels increased from 1000% to 4500%. Additionally, the cell counting kit-8 and fluorescent images demonstrated the excellent cytocompatibility of GC hydrogels after culturing with NIH 3T3 cells. The obtained results indicated that the fabricated GC hydrogels might have potential in biomedical fields, such as wound dressing.
Collapse
Affiliation(s)
- Peng Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China.,Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, People's Republic of China
| | - Qianqian Wei
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Ning Tian
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xiaoyue Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Ling Wang
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Bin Wang
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China.,Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Kav B, Demé B, Gege C, Tanaka M, Schneck E, Weikl TR. Interplay of Trans- and Cis-Interactions of Glycolipids in Membrane Adhesion. Front Mol Biosci 2021; 8:754654. [PMID: 34869588 PMCID: PMC8641917 DOI: 10.3389/fmolb.2021.754654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
Glycolipids mediate stable membrane adhesion of potential biological relevance. In this article, we investigate the trans- and cis-interactions of glycolipids in molecular dynamics simulations and relate these interactions to the glycolipid-induced average separations of membranes obtained from neutron scattering experiments. We find that the cis-interactions between glycolipids in the same membrane leaflet tend to strengthen the trans-interactions between glycolipids in apposing leaflets. The trans-interactions of the glycolipids in our simulations require local membrane separations that are significantly smaller than the average membrane separations in the neutron scattering experiments, which indicates an important role of membrane shape fluctuations in glycolipid trans-binding. Simulations at the experimentally measured average membrane separations provide a molecular picture of the interplay between glycolipid attraction and steric repulsion of the fluctuating membranes probed in the experiments.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| | - Bruno Demé
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Christian Gege
- Heidelberg University, Institute of Physical Chemistry of Biosystems, Heidelberg, Germany
| | - Motomu Tanaka
- Heidelberg University, Institute of Physical Chemistry of Biosystems, Heidelberg, Germany.,Kyoto University, Institute for Advanced Study, Center for Integrative Medicine and Physics, Kyoto, Japan
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.,Technische Universität Darmstadt, Physics Department, Darmstadt, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| |
Collapse
|
6
|
Misevic G, Checiu I, Popescu O. Glyconectin Cell Adhesion Epitope, β-d-Glc pNAc3S-(1→3)-α-l-Fuc p, Is Involved in Blastulation of Lytechinus pictus Sea Urchin Embryos. Molecules 2021; 26:4012. [PMID: 34209220 PMCID: PMC8271808 DOI: 10.3390/molecules26134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Glycans, as the most peripheral cell surface components, are the primary candidates to mediate the initial steps of cell recognition and adhesion via glycan-glycan binding. This molecular mechanism was quantitatively demonstrated by biochemical and biophysical measurements at the cellular and molecular level for the glyconectin 1 β-d-GlcpNAc3S-(1→3)-α-l-Fucp glycan structure (GN1). The use of adhesion blocking monoclonal antibody Block 2 that specifically recognize this epitope showed that, besides Porifera, human colon carcinoma also express this structure in the apical glycocalyx. Here we report that Block 2 selectively immune-precipitate a Mr 580 × 103 (g580) acidic non-glycosaminoglycan glycan from the total protein-free glycans of Lytechinus pictus sea urchin hatched blastula embryos. Immuno-fluorescence confocal light microscopy and immunogold electron microscopy localized the GN1 structure in the apical lamina glycocalyx attachments of ectodermal cells microvilli, and in the Golgi complex. Biochemical and immune-chemical analyses showed that the g580 glycan is carrying about 200 copies of the GN1 epitope. This highly polyvalent g580 glycan is one of the major components of the glycocalyx structure, maximally expressed at hatched blastula and gastrula. The involvement of g580 GN1 epitope in hatched blastula cell adhesion was demonstrated by: (1) enhancement of cell aggregation by g580 and sponge g200 glycans, (2) inhibition of cell reaggregation by Block 2, (3) dissociation of microvilli from the apical lamina matrix by the loss of its gel-like structure resulting in a change of the blastula embryonal form and consequent inhibition of gastrulation at saturating concentration of Block 2, and (4) aggregation of beads coated with the immune-purified g580 protein-free glycan. These results, together with the previous atomic force microscopy measurements of GN1 binding strength, indicated that this highly polyvalent and calcium ion dependent glycan-glycan binding can provide the force of 40 nanonewtons per single ectodermal cell association of microvilli with the apical lamina, and conservation of glycocalyx gel-like structure. This force can hold the weight of 160,000 cells in sea water, thus it is sufficient to establish, maintain and preserve blastula form after hatching, and prior to the complete formation of further stabilizing basal lamina.
Collapse
Affiliation(s)
- Gradimir Misevic
- Research and Development, Gimmune GmbH, Baarerstrasse 12, 6302 Zug, Switzerland
- LIBO Medicine Biotechnology Co., Ltd., 78 Dongsheng West Road, Jiangyin 214400, China
| | - Iacob Checiu
- Gynatal, Assisted Reproduction Center, Str. Protopop George Dragomir 1, 300229 Timisoara, Romania
| | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independenței, 060031 Bucharest, Romania
| |
Collapse
|
7
|
Witt H, Savić F, Verbeek S, Dietz J, Tarantola G, Oelkers M, Geil B, Janshoff A. Membrane fusion studied by colloidal probes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:223-237. [PMID: 33599795 PMCID: PMC8071799 DOI: 10.1007/s00249-020-01490-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Membrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.
Collapse
Affiliation(s)
- Hannes Witt
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
- Physics of Living Systems, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Filip Savić
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Sarah Verbeek
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Jörn Dietz
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Gesa Tarantola
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Marieelen Oelkers
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Burkhard Geil
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Glycan-to-Glycan Binding: Molecular Recognition through Polyvalent Interactions Mediates Specific Cell Adhesion. Molecules 2021; 26:molecules26020397. [PMID: 33451117 PMCID: PMC7828597 DOI: 10.3390/molecules26020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Glycan-to-glycan binding was shown by biochemical and biophysical measurements to mediate xenogeneic self-recognition and adhesion in sponges, stage-specific cell compaction in mice embryos, and in vitro tumor cell adhesion in mammals. This intermolecular recognition process is accepted as the new paradigm accompanying high-affinity and low valent protein-to-protein and protein-to-glycan binding in cellular interactions. Glycan structures in sponges have novel species-specific sequences. Their common features are the large size >100 kD, polyvalency >100 repeats of the specific self-binding oligosaccharide, the presence of fucose, and sulfated and/or pyruvylated hexoses. These structural and functional properties, different from glycosaminoglycans, inspired their classification under the glyconectin name. The molecular mechanism underlying homophilic glyconectin-to-glyconectin binding relies on highly polyvalent, strong, and structure-specific interactions of small oligosaccharide motifs, possessing ultra-weak self-binding strength and affinity. Glyconectin localization at the glycocalyx outermost cell surface layer suggests their role in the initial recognition and adhesion event during the complex and multistep process. In mammals, Lex-to-Lex homophilic binding is structure-specific and has ultra-weak affinity. Cell adhesion is achieved through highly polyvalent interactions, enabled by clustering of small low valent structure in plasma membranes.
Collapse
|
9
|
Kav B, Grafmüller A, Schneck E, Weikl TR. Weak carbohydrate-carbohydrate interactions in membrane adhesion are fuzzy and generic. NANOSCALE 2020; 12:17342-17353. [PMID: 32789381 DOI: 10.1039/d0nr03696j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbohydrates such as the trisaccharide motif LeX are key constituents of cell surfaces. Despite intense research, the interactions between carbohydrates of apposing cells or membranes are not well understood. In this article, we investigate carbohydrate-carbohydrate interactions in membrane adhesion as well as in solution with extensive atomistic molecular dynamics simulations that exceed the simulation times of previous studies by orders of magnitude. For LeX, we obtain association constants of soluble carbohydrates, adhesion energies of lipid-anchored carbohydrates, and maximally sustained forces of carbohydrate complexes in membrane adhesion that are in good agreement with experimental results in the literature. Our simulations thus appear to provide a realistic, detailed picture of LeX-LeX interactions in solution and during membrane adhesion. In this picture, the LeX-LeX interactions are fuzzy, i.e. LeX pairs interact in a large variety of short-lived, bound conformations. For the synthetic tetrasaccharide Lac 2, which is composed of two lactose units, we observe similarly fuzzy interactions and obtain association constants of both soluble and lipid-anchored variants that are comparable to the corresponding association constants of LeX. The fuzzy, weak carbohydrate-carbohydrate interactions quantified in our simulations thus appear to be a generic feature of small, neutral carbohydrates such as LeX and Lac 2.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany and Technische Universität Darmstadt, Physics Department, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Witt H, Vache M, Cordes A, Janshoff A. Detachment of giant liposomes - coupling of receptor mobility and membrane shape. SOFT MATTER 2020; 16:6424-6433. [PMID: 32588015 DOI: 10.1039/d0sm00863j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion is an intricate physical process controlled by ligand-receptor affinity, density, mobility, and external forces transmitted through the elastic properties of the cell. As a model for cellular adhesion we study the detachment of cell-sized liposomes and membrane-coated silica beads from supported bilayers using atomic force microscopy. Adhesion between the two surfaces is mediated by the interaction between the adhesive lipid anchored saccharides lactosylceramide and the ganglioside GM3. We found that force-distance curves of liposome detachment have a very peculiar, partially concave shape, reminiscent of the nonlinear extension of polymers. By contrast, detachment of membrane coated beads led to force-distance curves similar to the detachment of living cells. Theoretical modelling of the enforced detachment suggests that the non-convex force curve shape arises from the mobility of ligands provoking a switch of shapes from spherical to unduloidal during detachment.
Collapse
Affiliation(s)
- Hannes Witt
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
11
|
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Yoshida K, Kaino M, Sekiguchi M, Chigira N, Amano Y, Inokuchi M, Li Q, Hasegawa T. Self-assembly of bacteria cellulose hydrogels carrying multiple carbohydrate appendages to visualize carbohydrate-carbohydrate interactions. Carbohydr Polym 2019; 223:115062. [PMID: 31426967 DOI: 10.1016/j.carbpol.2019.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022]
Abstract
Nata de coco was chemically modified to afford the bacterial cellulose hydrogels carrying terminal alkynes. The resultant hydrogels were then converted into hydrogels carrying lactosides or those carrying α-2,3-sialyllactosides by the Cu+-catalyzed alkyne-azide cyclization. The stable homo association of the hydrogels carrying lactosides was observed in an aqueous solution containing Ca2+, thereby demonstrating the Ca2+-mediated lactoside-lactoside interactions. Ca2+ also stabilized the hetero associations among the hydrogels carrying lactosides and those carrying α-2,3-sialyllactosides, thereby also demonstrating the Ca2+-induced interactions between the lactosides and the α-2,3-sialyllactosides. The sizes of these hydrogels were of the order of ca. 5 mm, and their associations could thus be readily monitored with the naked eye.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Mizuki Kaino
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Maki Sekiguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Naoto Chigira
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Yoshitsugu Amano
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Mayu Inokuchi
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Qintong Li
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Teruaki Hasegawa
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
| |
Collapse
|
13
|
Zhao Y, Yu C, Yu Y, Wei X, Duan X, Dai X, Zhang X. Bioinspired Heteromultivalent Ligand-Decorated Nanotherapeutic for Enhanced Photothermal and Photodynamic Therapy of Antibiotic-Resistant Bacterial Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39648-39661. [PMID: 31591880 DOI: 10.1021/acsami.9b15118] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pseudomonas aeruginosa can cause a multitude of inflammations in humans. Due to its ability to form biofilm, the bacteria show durable resistance to drugs. Herein, we developed a heteromultivalent ligand-decorated nanotherapeutic inspired by living system for inhibition of antibiotic-resistant bacterial pneumonia. The nanotherapeutic with a heteromultivalent glycomimetic shell can specifically recognize P. aeruginosa to inhibit its biofilm formation and protect native cells from bacterial infection; the rate of biofilm inhibition was up to 85%. The nanotherapeutic with a bioresponsive hydrophobic core can protonate and control drug release in the microenvironment of bacterial infections. By utilizing these properties, the nanotherapeutics can effectively penetrate the internal structure of biofilms to release the drug, dispersing the biofilm by over 80% under laser irradiation. In vivo bioinspired nanotherapeutics have the potential to efficiently inhibit antibiotic-resistant P. aeruginosa-induced pneumonia. Collectively, we expect biomimicking systems to be the next generation of prevention and treatment as integrated antibacterial agents against P. aeruginosa.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Cong Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaozhuang Duan
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xijuan Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
14
|
Synthesis of Glycosylated Metal Complexes for Probing Carbohydrate-Carbohydrate Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1104:21-39. [PMID: 30484242 DOI: 10.1007/978-981-13-2158-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Densely packed carbohydrate clusters on cell surfaces play essential roles in varieties of bioprocesses. Little information has been, however, accumulated so far concerning their structural/functional details. In this chapter, we discuss artificial systems to investigate carbohydrate-carbohydrate interactions within/between the carbohydrate cluster(s). Among such artificial systems, much attention will be especially placed on glycosylated tris-bipyridine ferrous complexes for monitoring not only carbohydrate-carbohydrate interactions within the glycocluster but also their resultant conformational changes.
Collapse
|
15
|
Masubuchi K, Maehata M, Suzuki C, Matsuoka R, Sekiguchi M, Chigira N, Amano Y, Inokuchi M, Li Q, Hasegawa T. Synthesis and conformational analysis of poly(phenylacetylene)s with serinol-tethered carbohydrate appendages. Carbohydr Res 2019; 481:23-30. [PMID: 31220628 DOI: 10.1016/j.carres.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022]
Abstract
We synthesized phenylacetylenes containing β-lactoside, β-cellobioside, or β-maltoside, and polymerized them to produce the corresponding poly (phenylacetylene)s. In these poly (phenylacetylene)s, the pendent carbohydrates were tethered to the mainchains by serinol spacers. Because similar glycosyl serinol units are found in the natural glycosphingolipids in cell membranes, the densely packed carbohydrate clusters along the poly (phenylacetylene) mainchains act as molecular mimics of cell surface glycoclusters. We analyzed the conformation of the glycosylated poly (phenylacetylene)s using circular dichroism spectroscopy, and found that the spatial carbohydrate packing within the glycoclusters changed on the addition of salts.
Collapse
Affiliation(s)
- Kana Masubuchi
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Masakiyo Maehata
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Chieko Suzuki
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Ryoji Matsuoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Maki Sekiguchi
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Naoto Chigira
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Yoshitsugu Amano
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Mayu Inokuchi
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Qintong Li
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan
| | - Teruaki Hasegawa
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma, 374-0193, Japan; Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
16
|
Chigira N, Maeda N, Tachikawa K, Sekiguchi M, Amano Y, Inokuchi M, Li Q, Hasegawa T. Glycosylated tris-bipyridine ferrous complexes as molecular mimics of densely packed glycoclusters on cell surfaces: spatial carbohydrate packing of glycoclusters changes on additions of salts. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1615500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Naoto Chigira
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
| | - Nao Maeda
- Faculty of Life Sciences, Toyo University, Ora-gun, Japan
| | | | - Maki Sekiguchi
- Faculty of Life Sciences, Toyo University, Ora-gun, Japan
| | - Yoshitsugu Amano
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
| | - Mayu Inokuchi
- Faculty of Life Sciences, Toyo University, Ora-gun, Japan
| | - Qintong Li
- Faculty of Life Sciences, Toyo University, Ora-gun, Japan
| | - Teruaki Hasegawa
- Faculty of Life Sciences, Toyo University, Ora-gun, Japan
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan
| |
Collapse
|
17
|
Abstract
Force spectroscopy allows the manipulation of single molecules and the characterization of their properties and interactions thereby rendering it a powerful tool for biological sciences. Force spectroscopy at the level of individual molecules requires force resolution in the piconewton regime as achieved by optical tweezers (OT), magnetic tweezers (MT), and atomic force microscopy (AFM) with AFM providing the largest force range from tenth of piconewton to several micronewton. In membrane probe spectroscopy the commonly used sharp cantilever tip is replaced by a lipid-coated glass sphere. This technique expands the scope of force spectroscopy to processes at and between lipid bilayers, like the formation of coiled coils between SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) proteins as well as subsequent membrane fusion. To this end, two solid-supported membranes equipped with SNARE proteins or fusion peptides are separately deposited on a flat glassy surface and on a micrometer glass sphere attached to the end of a tipless AFM cantilever. These two membranes are rapidly brought into contact until a defined force is reached. The AFM deflection readout is used to monitor the distance between the two bilayers, which allows to observe and identify fusion processes of the two lipid membranes, while the forces needed to separate the two surfaces give insights into the formation of SNARE complexes. By changing the contact pressure one can access fusion kinetics and to some extent reconstruct the energy landscape of membrane fusion. In this chapter we describe the preparation of membrane-coated colloidal probes attached to AFM cantilevers, experimental procedures, and necessary data analysis to perform membrane probe spectroscopy in the presence of fusogenic peptides or proteins.
Collapse
|
18
|
Abeyratne-Perera HK, Ogharandukun E, Chandran PL. Complex-type N-glycans on VSV-G pseudotyped HIV exhibit 'tough' sialic and 'brittle' mannose self-adhesions. SOFT MATTER 2019; 15:4525-4540. [PMID: 31099376 DOI: 10.1039/c9sm00579j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The complex-type glycan shields of eukaryotic cells have a core layer of mannose residues buried under tiers of sugars that end with sialic acid (SA) residues. We investigate if the self-latching of mannose residues, earlier reported in pure monolayer studies, also manifests in the setting of a complex-type glycan shield. Would distal SA residues impede access to the mannose core? The interactions of mannobiose-, SA-, and lactose-coated probes with the complex-type VSV-G glycan shield on an HIV pseudovirus were studied with force-spectroscopy and gold-nanoparticle solutions. In force spectroscopy, the sugar probes can be forced to sample the depths of the glycan shield, whereas with sugar-coated nanoparticles, only interactions permitted by freely-diffusive contact occur. Deep-indentation mechanics was performed to verify the inferred structure of the engineered virus and to isolate the glycan shield layer for subsequent interaction studies. The adhesion between the sugar-probes and complex-type glycan shield was deconvoluted by comparing against the cross- and self- adhesions between the sugars in pure monolayers. Results from complementing systems were consistent with mannobiose-coated probes latching to the mannose core in the glycan shield, unhindered by the SA and distal sugars, with a short-range 'brittle' release of adhesion resulting in tightly coated viruses. SA-Coated probes, however, adhere to the terminal SA layer of a glycan shield with long-range and mechanically 'tough' adhesions resulting in large-scale virus aggregation. Lactose-coated probes exhibit ill-defined adherence to sialic residues. The selection and positioning of sugars within a glycan shield can influence how carbohydrate surfaces of different composition adhere.
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, 1011 LK Downing Hall 2300 6th Street, NW, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
19
|
Zhang F, Wang D, Qin H, Feng L, Liang X, Qing G. Chemoselectivity of Pristine Cellulose Nanocrystal Films Driven by Carbohydrate-Carbohydrate Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13114-13122. [PMID: 30880380 DOI: 10.1021/acsami.9b00471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological photonic nanostructures comprising a hierarchically self-assembled cellulose nanocrystal (CNC) have been exploited for the development of sensing, optoelectronics, and energy materials. Although multiple techniques are used for controlling the optical response and chiral nematic structure of CNC-derived materials, the presence of external studies that pristine CNC has chemoselectivity is not yet reported to implement this destination. Here, we report that the CNC film without modification shows a high optical sensitivity for glucose through color variation from blue to red. Moreover, various glucose homologs or analogs that only differ in terms of the orientation of a hydroxyl group are selectively distinguished through the naked eye. The excellent chemoselectivity of CNC is attributed to carbohydrate-carbohydrate selective hydrogen-bonding interactions. Close binding with glucose induces the rearrangement of a CNC chain and strengthens the repulsive interaction, thus increasing the helical pitch of the chiral nematic structure of the CNC film and changing its macroscopic color. This CNC chemoselectivity presents an unprecedented control of chiral nematic mesoporous carbon through monosaccharide species. The results provide a simple but highly efficient method to tune the optical and structural properties of CNC nanomaterials and to apply them for practical biosensors, chiral separation, and energy applications.
Collapse
Affiliation(s)
- Fusheng Zhang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology , Tianjin University of Science and Technology , 26 Yingkou Road , Tanggu District, Tianjin 300000 , China
| | - Liang Feng
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
20
|
Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J Biol Chem 2019; 294:7797-7809. [PMID: 30902814 PMCID: PMC6514631 DOI: 10.1074/jbc.ra119.007532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Avian coronaviruses, including infectious bronchitis virus (IBV), are important
respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is
responsible for binding to host tissues. Glycosylation sites in the spike
protein are highly conserved across viral genotypes, suggesting an important
role for this modification in the virus life cycle. Here, we analyzed the
N-glycosylation of the receptor-binding domain (RBD) of IBV
strain M41 spike protein and assessed the role of this modification in host
receptor binding. Ten single Asn–to–Ala substitutions at the
predicted N-glycosylation sites of the M41–RBD were
evaluated along with two control Val–to–Ala substitutions. CD
analysis revealed that the secondary structure of all variants was retained
compared with the unmodified M41–RBD construct. Six of the 10
glycosylation variants lost binding to chicken trachea tissue and an
ELISA-presented α2,3-linked sialic acid oligosaccharide ligand.
LC/MSE glycomics analysis revealed that glycosylation sites have
specific proportions of N-glycan subtypes. Overall, the
glycosylation patterns of most variant RBDs were highly similar to those of the
unmodified M41–RBD construct. In silico docking
experiments with the recently published cryo-EM structure of the M41 IBV spike
protein and our glycosylation results revealed a potential ligand receptor site
that is ringed by four glycosylation sites that dramatically impact ligand
binding. Combined with the results of previous array studies, the glycosylation
and mutational analyses presented here suggest a unique glycosylation-dependent
binding modality for the M41 spike protein.
Collapse
Affiliation(s)
- Lisa M Parsons
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kim M Bouwman
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| | - Hugo Azurmendi
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Robert P de Vries
- the Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - John F Cipollo
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993,
| | - Monique H Verheije
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| |
Collapse
|
21
|
Verma AK, Dubbu S, Chennaiah A, Vankar YD. Synthesis of di- and trihydroxy proline derivatives from D-glycals: Application in the synthesis of polysubstituted pyrrolizidines and bioactive 1C-aryl/alkyl pyrrolidines. Carbohydr Res 2019; 475:48-55. [PMID: 30825721 DOI: 10.1016/j.carres.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Six different types of O-benzyl protected proline derivatives have been synthesized from D-glycals and 2C-formyl-glycals. One of the di-O-benzyl protected proline derivatives has been utilized for the synthesis of polysubstituted pyrrolizidines via [3 + 2] cycloaddition in a stereoselective manner. Further, we also report on the stereoselective synthesis of biologically active 1C-aryl/alkyl pyrrolidines i.e. 4-epi-radicamine B, 4-epi-radicamine A, 1C-butyl and 1C-methyl pyrrolidines through double reductive amination of a variety of D-glucal derived diketones with p-methoxybenzylamine.
Collapse
Affiliation(s)
- Ashish Kumar Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sateesh Dubbu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ande Chennaiah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Yashwant D Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
22
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Verma AK, Chennaiah A, Dubbu S, Vankar YD. Palladium catalyzed synthesis of sugar-fused indolines via C(sp 2)-H/NH activation. Carbohydr Res 2019; 473:57-65. [PMID: 30639591 DOI: 10.1016/j.carres.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
A simple Pd(OAc)2 catalyzed strategy for the synthesis of sugar-fused indolines from 2-N-oxalylamido-2-deoxy-C-aryl glycosides is reported by utilizing N-oxalylamido group as an auxiliary via C(sp2)-H/NH Activation. The reaction is successfully applied on glucose as well as galactose derived differently substituted 2-N-oxalylamido-2-deoxy-C-aryl glycosides to give sugar-fused indolines in moderate to good yields. The utility of this strategy in the synthesis of sugar-fused indoles is also described.
Collapse
Affiliation(s)
- Ashish Kumar Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Ande Chennaiah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sateesh Dubbu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Yashwant D Vankar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
24
|
Leivers M, Seddon JM, Declercq M, Robles E, Luckham P. Measurement of Forces between Supported Cationic Bilayers by Colloid Probe Atomic Force Microscopy: Electrolyte Concentration and Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:729-738. [PMID: 30562468 DOI: 10.1021/acs.langmuir.8b03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interactions between supported cationic surfactant bilayers were measured by colloidal probe atomic force spectroscopy, and the effect of different halide salts was investigated. Di(alkylisopropylester)dimethylammonium methylsulfate (DIPEDMAMS) bilayers were fabricated by the vesicle fusion technique on muscovite mica. The interactions between the bilayers were measured in increasing concentrations of NaCl, NaBr, NaI, and CaCl2. In NaCl, the bilayer interactions were repulsive at all concentrations investigated, and the Debye length and surface potential were observed to decrease with increasing concentration. The interactions were found to follow the electrical double layer (EDL) component of DLVO theory well. However, van der Waals forces were not detected; instead, a strong hydration repulsion was observed at short separations. CaCl2 had a similar effect on the interactions as NaCl. NaBr and NaI were observed to be more efficient at decreasing surface potential than the chloride salts, with the efficacy increasing with the ionic radius.
Collapse
Affiliation(s)
- Matthew Leivers
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - John M Seddon
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Marc Declercq
- The Procter & Gamble Company, Brussels Innovation Center , 1853 Strombeek Bever Temselaan 100 , 1853 Grimbergen , Belgium
| | - Eric Robles
- The Procter & Gamble Company, Newcastle Innovation Center , Whitley Road , Longbenton, Newcastle-Upon-Tyne NE12 9TS , United Kingdom
| | - Paul Luckham
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
25
|
Dubbu S, Bardhan A, Chennaiah A, Vankar YD. A Cascade of Prins Reaction and Pinacol-Type Rearrangement: Access to 2,3-Dideoxy-3C-Formyl β-C
-Aryl/Alkyl Furanosides and 2-Deoxy-2C-Branched β-C
-Aryl Furanoside. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Anirban Bardhan
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Ande Chennaiah
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
26
|
Stereoselective Synthesis of 1,2-Annulated Sugars Having Substituted Tetrahydropyran/(-furan) Scaffolds Using the Prins-Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Glycosylated tris-bipyridine ferrous complexes for probing a mechanism behind carbohydrate-carbohydrate interactions: Spatial carbohydrate packing of glycoclusters changes on additions of salts in carbohydrate- and anion-dependent manners. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
29
|
Sun N, Xiong Y, Qing G, Zhao Y, Li X, Liang X. Selective enrichment of sialylated glycopeptides with a d-allose@SiO2 matrix. RSC Adv 2018; 8:38780-38786. [PMID: 35558282 PMCID: PMC9090606 DOI: 10.1039/c8ra07192f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 11/21/2022] Open
Abstract
Abnormal sialylation of glycoprotein is associated with different kinds of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Sun
- Pharmacy College
- Dalian Medical University
- Dalian
- P.R. China
| | - Yuting Xiong
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yanyan Zhao
- Pharmacy College
- Dalian Medical University
- Dalian
- P.R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
30
|
Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids. Sci Rep 2017; 7:11613. [PMID: 28912550 PMCID: PMC5599529 DOI: 10.1038/s41598-017-11816-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022] Open
Abstract
Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.
Collapse
|
31
|
Abeyratne-Perera HK, Chandran PL. Mannose Surfaces Exhibit Self-Latching, Water Structuring, and Resilience to Chaotropes: Implications for Pathogen Virulence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9178-9189. [PMID: 28817934 DOI: 10.1021/acs.langmuir.7b01006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several viral and fungal pathogens, including HIV, SARS, Dengue, Ebola, and Cryptococcus neoformans, display a preponderance of mannose residues on their surface, particularly during the infection cycle or in harsh environments. The innate immune system, on the other hand, abounds in mannose receptors which recognize mannose residues on pathogens and trigger their phagocytosis. We pose the question if there is an advantage for pathogens to display mannose on their surface, despite these residues being recognized by the immune system. The surface properties and interactions of opposing monolayers of mannobiose (disaccharide of mannose) were probed using atomic force spectroscopy. Unlike its diastereoisomer lactose, mannobiose molecules exhibited lateral packing interactions that manifest on the surface scale as a self-recognizing latch. A break-in force is required for opposing surfaces to penetrate and a breakout (or self-adhesion force) of similar magnitude is required for penetrated surfaces to separate. A hierarchy of self-adhesion forces was distinguished as occurring at the single residue (∼25 pN), cluster (∼250 pN), monolayer (∼1.1 nN), and supramonolayer level. The break-in force and break-out force appear resilient to the presence of simple chaotropes that attenuate a layer of structured water around the mannose surface. The layer of structured water otherwise extends to distances several times longer than a mannobiose residue, indicating a long-range propagation of the hydrogen bonding imposed by the residues. The span of the structured water increases with the velocity of an approaching surface, similar to shear thickening, but fissures at higher approach velocities. Our studies suggest that mannose residues could guide interpathogen interactions, such as in biofilms, and serve as a moated fortress for pathogens to hide behind to resist detection and harsh environments.
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department and ‡Chemical Engineering Department, Howard University , Washington, D.C. 20059, United States
| | - Preethi L Chandran
- Biochemistry and Molecular Biology Department and ‡Chemical Engineering Department, Howard University , Washington, D.C. 20059, United States
| |
Collapse
|
32
|
Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, Kato K. Hyper-Assembly of Self-Assembled Glycoclusters Mediated by Specific Carbohydrate-Carbohydrate Interactions. Chem Asian J 2017; 12:968-972. [DOI: 10.1002/asia.201700202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/13/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Gengwei Yan
- School of Physical Science; SOKENDAI (The Graduate University for Advanced Studies); 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1 Asahidai Nomi 923-1292 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- School of Materials Science; Japan Advanced Institute of Science and Technology; 1-1 Asahidai Nomi 923-1292 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Tatsuya Suzuki
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Saeko Yanaka
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Advanced Institute for Materials Research; Tohoku University; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- JST; ERATO; Isobe Degenerate π-Integration Project; 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
- School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Koichi Kato
- School of Physical Science; SOKENDAI (The Graduate University for Advanced Studies); 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience; National Institutes of Natural Sciences; 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences; Nagoya City University; 3-1 Tanabe-dori Mizuho-ku Nagoya 467-8603 Japan
| |
Collapse
|
33
|
Hadjialirezaei S, Picco G, Beatson R, Burchell J, Stokke BT, Sletmoen M. Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by optical tweezers. PLoS One 2017; 12:e0175323. [PMID: 28414807 PMCID: PMC5393574 DOI: 10.1371/journal.pone.0175323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/23/2017] [Indexed: 02/03/2023] Open
Abstract
Carbohydrate–protein interactions govern many crucial processes in biological systems including cell recognition events. We have used the sensitive force probe optical tweezers to quantify the interactions occurring between MGL lectins and MUC1 carrying the cancer-associated glycan antigens mucins Tn and STn. Unbinding forces of 7.6±1.1 pN and 7.1±1.1 pN were determined for the MUC1(Tn)—MGL and MUC1(STn)—MGL interactions, at a force loading rate of ~40 pN/s. The interaction strength increased with increasing force loading rate, to 27.1±4.4 and 36.9±3.6 pN at a force loading rate of ~ 310 pN/s. No interactions were detected between MGL and MUC1(ST), a glycoform of MUC1 also expressed by breast carcinoma cells. Interestingly, this glycan (ST) can be found on proteins expressed by normal cells, although in this case not on MUC1. Additionally, GalNAc decorated polyethylene glycol displayed similar rupture forces as observed for MUC1(Tn) and MUC1(STn) when forced to unbind from MGL, indicating that GalNAc is an essential group in these interactions. Since the STn glycan decoration is more frequently found on the surface of carcinomas than the Tn glycan, the binding of MUC1 carrying STn to MGL may be more physiologically relevant and may be in part responsible for some of the characteristics of STn expressing tumours.
Collapse
Affiliation(s)
- Soosan Hadjialirezaei
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gianfranco Picco
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Richard Beatson
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Joy Burchell
- Breast Cancer Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Sletmoen
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
34
|
Sun YS, Zhu XD. Real-time, label-free characterization of oligosaccharide-binding proteins using carbohydrate microarrays and an ellipsometry-based biosensor. INSTRUMENTATION SCIENCE & TECHNOLOGY 2017; 45:506-524. [PMID: 30918436 PMCID: PMC6432655 DOI: 10.1080/10739149.2016.1278017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Carbohydrates present on cell surfaces mediate cell behavior through interactions with other biomolecules. Due to their structural complexity, diversity, and heterogeneity, it is difficult to fully characterize a variety of carbohydrates and their binding partners. As a result, novel technologies for glycomics applications have been developed, including carbohydrate microarrays and label-free detection methods. In this paper, we report using the combination of oligosaccharide microarrays and the label-free oblique-incidence reflectivity difference (OI-RD) microscopy for real-time characterization of oligosaccharide binding proteins. Aminated human milk oligosaccharides were immobilized on epoxy-coated glass substrates as microarrays for reactions with Family 1 of solute binding proteins from Bifidobacterium longum subsp. infantis (B. infantis). Binding affinities of these protein-oligosaccharide interactions showed preferences of Family 1 of solute binding proteins to host glycans, which helps in characterizing the complex process of human milk oligosaccharides foraging by B. infantis.
Collapse
Affiliation(s)
- Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New
Taipei City, Taiwan
| | - X. D. Zhu
- Department of Physics, University of California at Davis,
Davis, CA, USA
| |
Collapse
|
35
|
Witt H, Savić F, Oelkers M, Awan SI, Werz DB, Geil B, Janshoff A. Size, Kinetics, and Free Energy of Clusters Formed by Ultraweak Carbohydrate-Carbohydrate Bonds. Biophys J 2016; 110:1582-1592. [PMID: 27074683 DOI: 10.1016/j.bpj.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/15/2016] [Accepted: 03/08/2016] [Indexed: 10/21/2022] Open
Abstract
Weak noncovalent intermolecular interactions play a pivotal role in many biological processes such as cell adhesion or immunology, where the overall binding strength is controlled through bond association and dissociation dynamics as well as the cooperative action of many parallel bonds. Among the various molecules participating in weak bonds, carbohydrate-carbohydrate interactions are probably the most ancient ones allowing individual cells to reversibly enter the multicellular state and to tell apart self and nonself cells. Here, we scrutinized the kinetics and thermodynamics of small homomeric Lewis X-Lewis X ensembles formed in the contact zone of a membrane-coated colloidal probe and a solid supported membrane ensuring minimal nonspecific background interactions. We used an atomic force microscope to measure force distance curves at Piconewton resolution, which allowed us to measure the force due to unbinding of the colloidal probe and the planar membrane as a function of contact time. Applying a contact model, we could estimate the free binding energy of the formed adhesion cluster as a function of dwell time and thereby determine the precise size of the contact zone, the number of participating bonds, and the intrinsic rates of association and dissociation in the presence of calcium ions. The unbinding energy per bond was found to be on the order of 1 kBT. Approximately 30 bonds were opened simultaneously at an off-rate of koff = 7 ± 0.2 s(-1).
Collapse
Affiliation(s)
- Hannes Witt
- Institute of Physical Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Filip Savić
- Institute of Physical Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Marieelen Oelkers
- Institute of Physical Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Shahid I Awan
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Braunschweig, Germany
| | - Burkhard Geil
- Institute of Physical Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-Universität, Göttingen, Germany.
| |
Collapse
|
36
|
Nonaka Y, Uruno R, Dai F, Matsuoka R, Nakamura M, Iwamura M, Iwabuchi H, Okada T, Chigira N, Amano Y, Hasegawa T. Hexavalent glycoclusters having tris-bipyridine ferrous complex cores as minimum combinatorial libraries for probing carbohydrate–carbohydrate interactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Liu L, Siuda I, Richards MR, Renaud J, Kitova EN, Mayer PM, Tieleman DP, Lowary TL, Klassen JS. Structure and Stability of Carbohydrate-Lipid Interactions. Methylmannose Polysaccharide-Fatty Acid Complexes. Chembiochem 2016; 17:1571-8. [PMID: 27253157 DOI: 10.1002/cbic.201600123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/07/2022]
Abstract
We report a detailed study of the structure and stability of carbohydrate-lipid interactions. Complexes of a methylmannose polysaccharide (MMP) derivative and fatty acids (FAs) served as model systems. The dependence of solution affinities and gas-phase dissociation activation energies (Ea ) on FA length indicates a dominant role of carbohydrate-lipid interactions in stabilizing (MMP+FA) complexes. Solution (1) H NMR results reveal weak interactions between MMP methyl groups and FA acyl chain; MD simulations suggest the complexes are disordered. The contribution of FA methylene groups to the Ea is similar to that of heats of transfer of n-alkanes from the gas phase to polar solvents, thus suggesting that MMP binds lipids through dipole-induced dipole interactions. The MD results point to hydrophobic interactions and H-bonds with the FA carboxyl group. Comparison of collision cross sections of deprotonated (MMP+FA) ions with MD structures suggests that the gaseous complexes are disordered.
Collapse
Affiliation(s)
- Lan Liu
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Iwona Siuda
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Michele R Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Justin Renaud
- Chemistry Department, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Paul M Mayer
- Chemistry Department, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - John S Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
38
|
Haugstad KE, Hadjialirezaei S, Stokke BT, Brewer CF, Gerken TA, Burchell J, Picco G, Sletmoen M. Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc-GalNAc interactions. Glycobiology 2016; 26:1338-1350. [PMID: 27282157 DOI: 10.1093/glycob/cww065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanism(s) underlying the enhanced self-interactions of mucins possessing the Tn (GalNAcα1-Ser/Thr) or STn (NeuNAcα2-6GalNAcα1-Ser/Thr) cancer markers were investigated using optical tweezers (OT). The mucins examined included modified porcine submaxillary mucin containing the Tn epitope (Tn-PSM), ovine submaxillary mucin with the STn epitope (STn-OSM), and recombinant MUC1 analogs with either the Tn and STn epitope. OT experiments in which the mucins were immobilized onto polystyrene beads revealed identical self-interaction characteristics for all mucins. Identical binding strength and energy landscape characteristics were also observed for synthetic polymers displaying multiple GalNAc decorations. Polystyrene beads without immobilized mucins showed no self-interactions and also no interactions with mucin-decorated polystyrene beads. Taken together, the experimental data suggest that in these molecules, the GalNAc residue mediates interactions independent of the anchoring polymer backbone. Furthermore, GalNAc-GalNAc interactions appear to be responsible for self-interactions of mucins decorated with the STn epitope. Hence, Tn-MUC1 and STn-MUC1 undergo self-interactions mediated by the GalNAc residue in both epitopes, suggesting a possible molecular role in cancer. MUC1 possessing the T (Galβ1-3GalNAcα1-Ser/Thr) or ST antigen (NeuNAcα2-3Galβ1-3GalNAcα1-Ser/Thr) failed to show self-interactions. However, in the case of ST-MUC1, self-interactions were observed after subsequent treatment with neuraminidase and β-galactosidase. This enzymatic treatment is expected to introduce Tn-epitopes and these observations thus further strengthen the conclusion that the observed interactions are mediated by the GalNAc groups.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Soosan Hadjialirezaei
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- Departments of Pediatrics, Biochemistry and Chemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Joy Burchell
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Gianfranco Picco
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Marit Sletmoen
- Department of Biotechnology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
39
|
Li X, Xiong Y, Qing G, Jiang G, Li X, Sun T, Liang X. Bioinspired Saccharide-Saccharide Interaction and Smart Polymer for Specific Enrichment of Sialylated Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13294-13302. [PMID: 27172767 DOI: 10.1021/acsami.6b03104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Abnormal sialylation of proteins is highly associated with many major diseases, such as cancers and neurodegenerative diseases. However, this study is challenging owing to the difficulty in enriching trace sialylated glycopeptides (SGs) from highly complex biosamples. The key to solving this problem relies strongly on the design of novel SG receptors to capture the sialic acid (SA) moieties in a specific and tunable manner. Inspired by the saccharide-saccharide interactions in life systems, here we introduce saccharide-based SG receptors into this study. Allose (a monosaccharide) displays specific and pH-sensitive binding toward SAs. Integrating allose units into a polyacrylamide chain generates a saccharide-responsive smart copolymer (SRSC). Such design significantly improves the selectivity of SA binding; meanwhile, this binding can be intelligently triggered in a large extent by solution polarity and pH. As a result, SRSC exhibits high-performance enrichment capacity toward SGs, even under 500-fold interference of bovine serum albumins digests, which is notably higher than conventional materials. In real biosamples of HeLa cell lysates, 180 sialylated glycosylation sites (SGSs) have been identified using SRSC. This is apparently superior to those obtained by SA-binding lectins including WGA (18 SGSs) and SNA (22 SGSs). Furthermore, lactose displays good chemoselectivity toward diverse disaccharides, which indicated the good potential of lactose-based material in glycan discrimination. Subsequently, the lactose-based SRSC facilitates the stepwise isolation of O-linked or N-linked SGs with the same peptide sequence but varied glycans by CH3CN/H2O gradients. This study opens a new avenue for next generation of glycopeptide enrichment materials.
Collapse
Affiliation(s)
- Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Ge Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xianqin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
40
|
Iwamura M, Koyama R, Nonaka Y, Dai F, Matsuoka R, Nakamura M, Iwabuchi H, Okada T, Hasegawa T. High-Throughput Evaluation System based on Fluorescence Intensity Distribution Analysis-Polarization to Investigate Carbohydrate–Carbohydrate Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maho Iwamura
- Graduate School of Life Sciences, Toyo University
| | | | - Yuki Nonaka
- Graduate School of Life Sciences, Toyo University
| | - Fumiko Dai
- Graduate School of Life Sciences, Toyo University
| | | | | | | | | | - Teruaki Hasegawa
- Department of Life Sciences, Toyo University
- Bio-Nano Electronics Research Centre, Toyo University
| |
Collapse
|
41
|
Vilanova E, Santos GRC, Aquino RS, Valle-Delgado JJ, Anselmetti D, Fernàndez-Busquets X, Mourão PAS. Carbohydrate-Carbohydrate Interactions Mediated by Sulfate Esters and Calcium Provide the Cell Adhesion Required for the Emergence of Early Metazoans. J Biol Chem 2016; 291:9425-37. [PMID: 26917726 DOI: 10.1074/jbc.m115.708958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Early metazoans had to evolve the first cell adhesion mechanism addressed to maintain a distinctive multicellular morphology. As the oldest extant animals, sponges are good candidates for possessing remnants of the molecules responsible for this crucial evolutionary innovation. Cell adhesion in sponges is mediated by the calcium-dependent multivalent self-interactions of sulfated polysaccharides components of extracellular membrane-bound proteoglycans, namely aggregation factors. Here, we used atomic force microscopy to demonstrate that the aggregation factor of the sponge Desmapsamma anchorata has a circular supramolecular structure and that it thus belongs to the spongican family. Its sulfated polysaccharide units, which were characterized via nuclear magnetic resonance analysis, consist preponderantly of a central backbone composed of 3-α-Glc1 units partially sulfated at 2- and 4-positions and branches of Pyr(4,6)α-Gal1→3-α-Fuc2(SO3)1→3-α-Glc4(SO3)1→3-α-Glc→4-linked to the central α-Glc units. Single-molecule force measurements of self-binding forces of this sulfated polysaccharide and their chemically desulfated and carboxyl-reduced derivatives revealed that the sulfate epitopes and extracellular calcium are essential for providing the strength and stability necessary to sustain cell adhesion in sponges. We further discuss these findings within the framework of the role of molecular structures in the early evolution of metazoans.
Collapse
Affiliation(s)
- Eduardo Vilanova
- From the Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - Gustavo R C Santos
- From the Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - Rafael S Aquino
- From the Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - Juan J Valle-Delgado
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain, Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain, Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona 08028, Spain, and
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, Bielefeld 33615, Germany
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain, Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain, Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona 08028, Spain, and
| | - Paulo A S Mourão
- From the Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil,
| |
Collapse
|
42
|
Qi Z, Bharate P, Lai CH, Ziem B, Böttcher C, Schulz A, Beckert F, Hatting B, Mülhaupt R, Seeberger PH, Haag R. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection. NANO LETTERS 2015; 15:6051-7. [PMID: 26237059 DOI: 10.1021/acs.nanolett.5b02256] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.
Collapse
Affiliation(s)
- Zhenhui Qi
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195, Berlin, Germany
| | - Priya Bharate
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Chian-Hui Lai
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Benjamin Ziem
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195, Berlin, Germany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin , Fabeckstrasse 36a, 14195, Berlin, Germany
| | - Andrea Schulz
- Research Center for Electron Microscopy and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin , Fabeckstrasse 36a, 14195, Berlin, Germany
| | - Fabian Beckert
- Freiburg Materials Research Center (FMF) and Institute for Macromolecular Chemistry of the University of Freiburg , Stefan-Meier-Strasse 31, D-79104 Freiburg, Germany
| | - Benjamin Hatting
- Fachbereich Physik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center (FMF) and Institute for Macromolecular Chemistry of the University of Freiburg , Stefan-Meier-Strasse 31, D-79104 Freiburg, Germany
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
43
|
Murthy RV, Bavireddi H, Gade M, Kikkeri R. Exploiting the Lactose-GM3Interaction for Drug Delivery. ChemMedChem 2015; 10:792-6. [DOI: 10.1002/cmdc.201500046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/07/2022]
|
44
|
Haugstad KE, Stokke BT, Brewer CF, Gerken TA, Sletmoen M. Single molecule study of heterotypic interactions between mucins possessing the Tn cancer antigen. Glycobiology 2014; 25:524-34. [PMID: 25527429 DOI: 10.1093/glycob/cwu183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mucins are linear, heavily O-glycosylated proteins with physiological roles that include cell signaling, cell adhesion, inflammation, immune response and tumorgenesis. Cancer-associated mucins often differ from normal mucins by presenting truncated carbohydrate chains. Characterization of the binding properties of mucins with truncated carbohydrate side chains could thus prove relevant for understanding their role in cancer mechanisms such as metastasis and recognition by the immune system. In this work, heterotypic interactions of model mucins that possess the Tn (GalNAcαThr/Ser) and T (Galβ1-3GalNAcαThr/Ser) cancer antigens derived from porcine submaxillary mucin (PSM) were studied using atomic force microscopy. PSM possessing only the Tn antigen (Tn-PSM) was found to bind to PSM analogs possessing a combination of T, Tn and STn antigens as well as biosynthetic analogs of the core 1 blood group A tetrasaccharide (GalNAcα1-3[Fucα1-2] Galβ1-3GalNAcαSer/Thr). The rupture forces for the heterotypic interactions ranged from 18- to 31 pN at a force-loading rate of ∼0.5 nN/s. The thermally averaged distance from the bound complex to the transition state (xβ) was estimated to be in the range 0.37-0.87 nm for the first barrier of the Bell Evans analysis and within 0.34-0.64 nm based on a lifetime analysis. These findings reveal that the binding strength and energy landscape for heterotypic interactions of Tn-PSM with the above mucins, resemble homotypic interactions of Tn-PSM. This suggests common carbohydrate epitope interactions for the Tn cancer antigen with the above mucin analogs, a finding that may be important to the role of the Tn antigen in cancer cells.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - C Fred Brewer
- Department of Molecular Pharmacology Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- W.A. Bernbaum Center for Cystic Fibrosis Research, Departments of Pediatrics, Biochemistry and Chemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Marit Sletmoen
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| |
Collapse
|
45
|
Pan Y, Ma C, Tong W, Fan C, Zhang Q, Zhang W, Tian F, Peng B, Qin W, Qian X. Preparation of Sequence-Controlled Triblock Copolymer-Grafted Silica Microparticles by Sequential-ATRP for Highly Efficient Glycopeptides Enrichment. Anal Chem 2014; 87:656-62. [DOI: 10.1021/ac5034215] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yiting Pan
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Chemical
Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Cheng Ma
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wei Tong
- Tianjin
Key Laboratory for Prevention and Control of Occupational and Environmental
Hazards, Logistics College of CAPF, Tianjin 300162, China
| | - Chao Fan
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qian Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wanjun Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fang Tian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Peng
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
46
|
Bihr T, Fenz S, Sackmann E, Merkel R, Seifert U, Sengupta K, Smith AS. Association rates of membrane-coupled cell adhesion molecules. Biophys J 2014; 107:L33-6. [PMID: 25468354 PMCID: PMC4255260 DOI: 10.1016/j.bpj.2014.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
Thus far, understanding how the confined cellular environment affects the lifetime of bonds, as well as the extraction of complexation rates, has been a major challenge in studies of cell adhesion. Based on a theoretical description of the growth curves of adhesion domains, we present a new (to our knowledge) method to measure the association rate k(on) of ligand-receptor pairs incorporated into lipid membranes. As a proof of principle, we apply this method to several systems. We find that the k(on) for the interaction of biotin with neutravidin is larger than that for integrin binding to RGD or sialyl Lewis(x) to E-selectin. Furthermore, we find k(on) to be enhanced by membrane fluctuations that increase the probability for encounters between the binders. The opposite effect on k(on) could be attributed to the presence of repulsive polymers that mimic the glycocalyx, which points to two potential mechanisms for controlling the speed of protein complexation during the cell recognition process.
Collapse
Affiliation(s)
- Timo Bihr
- Institut für Theoretische Physik and Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-Universität, Erlangen, Germany; II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Susanne Fenz
- Institute of Complex Systems 7: Biomechanics Forschungszentrum Jülich, Jülich, Germany; Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Universität Würzburg, Würzburg, Germany
| | - Erich Sackmann
- Physics Department, Biophysics E22, Technische Universität München, München, Germany
| | - Rudolf Merkel
- Institute of Complex Systems 7: Biomechanics Forschungszentrum Jülich, Jülich, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Marseille, France
| | - Ana-Sunčana Smith
- Institut für Theoretische Physik and Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-Universität, Erlangen, Germany; Institute Ruđer Bošković, Division of Physical Chemistry, Zagreb, Croatia.
| |
Collapse
|
47
|
Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces. Appl Environ Microbiol 2014; 80:5911-7. [PMID: 25038098 DOI: 10.1128/aem.01600-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion--the first step in colonization and biofilm formation--is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future.
Collapse
|
48
|
Natalia B, Henry A, Betty L, Marina RL, Roberto R. Probing poly(N-isopropylacrylamide-co-butylacrylate)/cell interactions by atomic force microscopy. J Biomed Mater Res A 2014; 103:145-53. [DOI: 10.1002/jbm.a.35163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Becerra Natalia
- Department of Informatics Bioengineering; Robotics and System Engineering (DIBRIS), University of Genova; Via Opera Pia, 13 Genova Italy
- Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA; Calle 70 No 52-21 Medellín Colombia
- Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco; IPS Universitaria, Universidad de Antioquia UdeA; Calle 70 No 52-21 Medellín Colombia
| | - Andrade Henry
- Department of Informatics Bioengineering; Robotics and System Engineering (DIBRIS), University of Genova; Via Opera Pia, 13 Genova Italy
- Centro de Bioingeniería; Universidad Pontificia Bolivariana; Circular 1 No. 73-76; Bloque 22C Medellín Colombia
| | - López Betty
- Grupo Ciencia de Materiales. Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA; Calle 70 No 52-21 Medellín Colombia
| | - Restrepo Luz Marina
- Grupo Ingeniería de Tejidos y Terapia celular Facultad de Medicina Laboratorio Terapia celular y Biobanco; IPS Universitaria, Universidad de Antioquia UdeA; Calle 70 No 52-21 Medellín Colombia
| | - Raiteri Roberto
- Department of Informatics Bioengineering; Robotics and System Engineering (DIBRIS), University of Genova; Via Opera Pia, 13 Genova Italy
| |
Collapse
|
49
|
Braunger JA, Brückner BR, Nehls S, Pietuch A, Gerke V, Mey I, Janshoff A, Steinem C. Phosphatidylinositol 4,5-bisphosphate alters the number of attachment sites between ezrin and actin filaments: a colloidal probe study. J Biol Chem 2014; 289:9833-43. [PMID: 24500715 DOI: 10.1074/jbc.m113.530659] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct linkage between the plasma membrane and the actin cytoskeleton is controlled by the protein ezrin, a member of the ezrin-radixin-moesin protein family. To function as a membrane-cytoskeleton linker, ezrin needs to be activated in a process that involves binding of ezrin to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylation of a conserved threonine residue. Here, we used colloidal probe microscopy to quantitatively analyze the interaction between ezrin and F-actin as a function of these activating factors. We show that the measured individual unbinding forces between ezrin and F-actin are independent of the activating parameters, in the range of approximately 50 piconewtons. However, the cumulative adhesion energy greatly increases in the presence of PIP2 demonstrating that a larger number of bonds between ezrin and F-actin has formed. In contrast, the phosphorylation state, represented by phosphor-mimetic mutants of ezrin, only plays a minor role in the activation process. These results are in line with in vivo experiments demonstrating that an increase in PIP2 concentration recruits more ezrin to the apical plasma membrane of polarized cells and significantly increases the membrane tension serving as a measure of the adhesion sites between the plasma membrane and the F-actin network.
Collapse
Affiliation(s)
- Julia A Braunger
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sletmoen M, Stokke BT. Structure-Function Relationships in Glycopolymers: Effects of Residue Sequences, Duplex, and Triplex Organization. Biopolymers 2013; 99:757-71. [DOI: 10.1002/bip.22320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marit Sletmoen
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology; Trondheim; Norway
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology; Trondheim; Norway
| |
Collapse
|