1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Kocsis B, Boldizsár I, Kovács GM, Nagy T, Gyémánt G, Csillag K, Pócsi I, Leiter É. Could the transcription factor AtnN coordinating the aspercryptin secondary metabolite gene cluster in Aspergillus nidulans be a global regulator? Fungal Biol 2024; 128:2311-2316. [PMID: 39643398 DOI: 10.1016/j.funbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Products of dormant secondary metabolite gene clusters of fungal genomes can be exploited for medical purposes as bioactive agents. These clusters can be switched on under oxidative stress and may endow fungi with a versatile chemical armory in a competitive niche. In Aspergillus nidulans, the aspercryptin gene cluster, including the synthase [atnA (AN7884)] and its transcription factor (atnN), was activated under menadione sodium bisulfite (MSB) treatment. In this study, we generated and phenotypically examined the gene deletion and overexpression mutants of atnN and studied the secondary metabolite production of the mutants. Overexpression of atnN significantly reduced the colony growth of surface cultures compared to the control. The ΔatnN gene deletion strain showed higher sensitivity to tert-butyl hydroperoxide (tBOOH), while the atnNOE strain was more resistant to MSB, Congo Red, and sorbitol. Interestingly, deletion of atnN decreased cleistothecia formation of A. nidulans. Manipulation of atnN affected the synthesis of several secondary metabolites, for example, the siderophore production of A. nidulans. The extracellular triacetylfusarinine C (TAFC) production decreased, while the intracellular ferricrocin (FC) concentration of the cultures increased in the atnNOE mutant cultivating A. nidulans in a complex medium containing 1 % mycological peptone and 2 % maltose. In Czapek-Dox Broth medium, increased asperthecin production was observed in the ΔatnN mutant. The mycotoxin sterigmatocystin synthesis elevated in the ΔatnN mutant, while reduced in the atnNOE mutant on minimal medium. Our study supports previous observations that secondary metabolite production is coordinated in a complex way, and the linkage of stress response, sexual reproduction, and secondary metabolite production can be governed by several transcription factors.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, Eötvös Loránd University, Hungary; Department of Pharmacognosy, Semmelweis University, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, Eötvös Loránd University, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Hungary; HUN-REN-DE Fungal Stress Biology Research Group, Debrecen, Hungary.
| |
Collapse
|
3
|
Rabot C, Grau MF, Entwistle R, Chiang YM, Zamora de Roberts Y, Ahuja M, Oakley CE, Wang CCC, Todd RB, Oakley BR. Transcription Factor Engineering in Aspergillus nidulans Leads to the Discovery of an Orsellinaldehyde Derivative Produced via an Unlinked Polyketide Synthase Gene. JOURNAL OF NATURAL PRODUCTS 2024; 87:2384-2392. [PMID: 39334518 DOI: 10.1021/acs.jnatprod.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Secondary metabolites are generally produced by enzymes encoded by genes within a biosynthetic gene cluster. Transcription factor genes are frequently located within these gene clusters. These transcription factors often drive expression of the other genes of the biosynthetic gene cluster, and overexpression of the transcription factor provides a facile approach to express all genes within a gene cluster, resulting in production of downstream metabolite(s). Unfortunately this approach is not always successful, leading us to engineer more effective hybrid transcription factors. Herein, we attempted to activate a putative cryptic biosynthetic gene cluster in Aspergillus nidulans using a combination of transcription factor engineering and overexpression approaches. This resulted in the discovery of a novel secondary metabolite we term triorsellinaldehyde. Surprisingly, deletion of the polyketide synthase gene within the gene cluster did not prevent triorsellinaldehyde production. However, targeted deletion of a polyketide synthase gene elsewhere in the genome revealed its role in triorsellinaldehyde biosynthesis.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle F Grau
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | | | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Al Mousa AA, Abouelela ME, Mansour A, Nasr M, Ali YH, Al Ghamidi NS, Abo-Dahab Y, Mohamed H, Abo-Dahab NF, Hassane AMA. Wound Healing, Metabolite Profiling, and In Silico Studies of Aspergillus terreus. Curr Issues Mol Biol 2024; 46:11681-11699. [PMID: 39451574 PMCID: PMC11506626 DOI: 10.3390/cimb46100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Burn injuries, which significantly affect global public health, require effective treatment strategies tailored to varying severity. Fungi are considered a sustainable, easily propagated source for lead therapeutic discovery. In this study, we explored the burn wound healing potential of Aspergillus terreus through a combination of in vitro, in vivo, metabolite profiling, and in silico analysis. The in vitro scratch assays performed with human skin fibroblast cells showed promising wound healing activity. Furthermore, the burn-induced rats model showed a marked improvement in cutaneous wound healing, evidenced by an accelerated rate of wound closure and better skin regeneration after A. terreus extract treatment at 14 days. The results of this study demonstrated significant enhancements in wound closure and tissue regeneration in the treated rat model, surpassing the outcomes of standard treatments. This controlled healing process, evidenced by superior collagen synthesis and angiogenesis and confirmed by histopathological studies, suggests that A. terreus has potential beyond the traditionally studied fungal metabolites. The metabolite profiling of 27 bioactive compounds was further investigated by docking analysis for the potential inhibition of the NF-κB pathway, which has an important function in inflammation and wound repair. The compounds eurobenzophenone A (7), aspernolide D (16), asperphenalenone A (23), aspergilate D (15), kodaistatin A (18), and versicolactone A (14) showed the highest binding affinity to the target protein with a pose score of -16.86, -14.65, -12.65, -12.45, -12.19, and -12.08 kcal/mol, respectively. Drug-likeness properties were also conducted. The findings suggest the potential wound healing properties of A. terreus as a source for lead therapeutic candidate discovery.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Ahmed Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt;
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo P.O. Box 11884, Egypt;
| | - Yasser H. Ali
- Department of Plastic & Reconstructive Surgery, Faculty of Medicine, Al-Azhar University, Cairo P.O. Box 11884, Egypt;
| | - Nadaa S. Al Ghamidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia;
| | - Youssef Abo-Dahab
- Bioengineering and Therapeutic Sciences Department, University of California, P.O. Box 2520, San Francisco, CA 94158, USA;
| | - Hassan Mohamed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut P.O. Box 71524, Egypt; (H.M.); (N.F.A.-D.); (A.M.A.H.)
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut P.O. Box 71524, Egypt; (H.M.); (N.F.A.-D.); (A.M.A.H.)
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut P.O. Box 71524, Egypt; (H.M.); (N.F.A.-D.); (A.M.A.H.)
| |
Collapse
|
5
|
Woods KE, Akhter S, Rodriguez B, Townsend KA, Smith N, Smith B, Wambua A, Craddock V, Abisado-Duque RG, Santa EE, Manson DE, Oakley BR, Hancock LE, Miao Y, Blackwell HE, Chandler JR. Characterization of natural product inhibitors of quorum sensing reveals competitive inhibition of Pseudomonas aeruginosa RhlR by ortho-vanillin. Microbiol Spectr 2024; 12:e0068124. [PMID: 39046261 PMCID: PMC11370260 DOI: 10.1128/spectrum.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Quorum sensing (QS) is a cell-cell signaling system that enables bacteria to coordinate population density-dependent changes in behavior. This chemical communication pathway is mediated by diffusible N-acyl L-homoserine lactone signals and cytoplasmic signal-responsive LuxR-type receptors in Gram-negative bacteria. As many common pathogenic bacteria use QS to regulate virulence, there is significant interest in disrupting QS as a potential therapeutic strategy. Prior studies have implicated the natural products salicylic acid, cinnamaldehyde, and other related benzaldehyde derivatives as inhibitors of QS in the opportunistic pathogen Pseudomonas aeruginosa, yet we lack an understanding of the mechanisms by which these compounds function. Herein, we evaluate the activity of a set of benzaldehyde derivatives using heterologous reporters of the P. aeruginosa LasR and RhlR QS signal receptors. We find that most tested benzaldehyde derivatives can antagonize LasR or RhlR reporter activation at micromolar concentrations, although certain molecules also cause mild growth defects and nonspecific reporter antagonism. Notably, several compounds showed promising RhlR or LasR-specific inhibitory activities over a range of concentrations below that causing toxicity. ortho-Vanillin, a previously untested compound, was the most promising within this set. Competition experiments against the native ligands for LasR and RhlR revealed that ortho-vanillin can interact competitively with RhlR but not with LasR. Overall, these studies expand our understanding of benzaldehyde activities in the LasR and RhlR receptors and reveal potentially promising effects of ortho-vanillin as a small molecule QS modulator against RhlR. IMPORTANCE Quorum sensing (QS) regulates many aspects of bacterial pathogenesis and has attracted much interest as a target for anti-virulence therapies over the past 30 years, for example, antagonists of the LasR and RhlR QS receptors in Pseudomonas aeruginosa. Potent and selective QS inhibitors remain relatively scarce. However, natural products have provided a bounty of chemical scaffolds with anti-QS activities, but their molecular mechanisms are poorly characterized. The current study serves to fill this void by examining the activity of an important and wide-spread class of natural product QS modulators, benzaldehydes, and related derivatives, in LasR and RhlR. We demonstrate that ortho-vanillin can act as a competitive inhibitor of RhlR, a receptor that has emerged and may supplant LasR in certain settings as a target for P. aeruginosa QS control. The results and insights provided herein will advance the design of chemical tools to study QS with improved activities and selectivities.
Collapse
Affiliation(s)
- Kathryn E. Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Sana Akhter
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Blanca Rodriguez
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Kade A. Townsend
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Nathan Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ben Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Alice Wambua
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Vaughn Craddock
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Emma E. Santa
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Daniel E. Manson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
6
|
Christinaki AC, Myridakis AI, Kouvelis VN. Genomic insights into the evolution and adaptation of secondary metabolite gene clusters in fungicolous species Cladobotryum mycophilum ATHUM6906. G3 (BETHESDA, MD.) 2024; 14:jkae006. [PMID: 38214578 PMCID: PMC10989895 DOI: 10.1093/g3journal/jkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens 15771, Greece
| |
Collapse
|
7
|
Woods KE, Akhter S, Rodriguez B, Townsend KA, Smith N, Smith B, Wambua A, Craddock V, Abisado-Duque RG, Santa EE, Manson DE, Oakley BR, Hancock LE, Miao Y, Blackwell HE, Chandler JR. Characterization of natural product inhibitors of quorum sensing in Pseudomonas aeruginosa reveals competitive inhibition of RhlR by ortho-vanillin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581676. [PMID: 38559250 PMCID: PMC10979890 DOI: 10.1101/2024.02.24.581676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Quorum sensing (QS) is a cell-cell signaling system that enables bacteria to coordinate population density-dependent changes in behavior. This chemical communication pathway is mediated by diffusible N-acyl L-homoserine lactone signals and cytoplasmic signal-responsive LuxR-type receptors in Gram-negative bacteria. As many common pathogenic bacteria use QS to regulate virulence, there is significant interest in disrupting QS as a potential therapeutic strategy. Prior studies have implicated the natural products salicylic acid, cinnamaldehyde and other related benzaldehyde derivatives as inhibitors of QS in the opportunistic pathogen Pseudomonas aeruginosa, yet we lack an understanding of the mechanisms by which these compounds function. Herein, we evaluate the activity of a set of benzaldehyde derivatives using heterologous reporters of the P. aeruginosa LasR and RhlR QS signal receptors. We find that most tested benzaldehyde derivatives can antagonize LasR or RhlR reporter activation at micromolar concentrations, although certain molecules also caused mild growth defects and nonspecific reporter antagonism. Notably, several compounds showed promising RhlR or LasR specific inhibitory activities over a range of concentrations below that causing toxicity. Ortho-Vanillin, a previously untested compound, was the most promising within this set. Competition experiments against the native ligands for LasR and RhlR revealed that ortho-vanillin can interact competitively with RhlR but not with LasR. Overall, these studies expand our understanding of benzaldehyde activities in the LasR and RhlR receptors and reveal potentially promising effects of ortho-vanillin as a small molecule QS modulator against RhlR.
Collapse
Affiliation(s)
- Kathryn E. Woods
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Sana Akhter
- Center for Computational Biology, University of Kansas, Lawrence, KS 66045
| | - Blanca Rodriguez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Kade A. Townsend
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Nathan Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Ben Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Alice Wambua
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Vaughn Craddock
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | | | - Emma E. Santa
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Daniel E. Manson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Lynn E. Hancock
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
- Center for Computational Biology, University of Kansas, Lawrence, KS 66045
- Current location: Department of Pharmacology and Computational Medicine Program, University of North Carolina–Chapel Hill, Chapel Hill, NC 27599
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | | |
Collapse
|
8
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
9
|
Yu J, Liu X, Ma C, Li C, Zhang Y, Che Q, Zhang G, Zhu T, Li D. Activation of a Silent Polyketide Synthase SlPKS4 Encoding the C 7-Methylated Isocoumarin in a Marine-Derived Fungus Simplicillium lamellicola HDN13-430. Mar Drugs 2023; 21:490. [PMID: 37755103 PMCID: PMC10532586 DOI: 10.3390/md21090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Xiaolin Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Yuhan Zhang
- School of Pharmaceutical Science, Shandong University, Jinan 250100, China;
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Y.); (X.L.); (C.M.); (C.L.); (Q.C.); (G.Z.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
10
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
11
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
12
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Jenkinson CB, Podgorny AR, Zhong C, Oakley BR. Computer-aided, resistance gene-guided genome mining for proteasome and HMG-CoA reductase inhibitors. J Ind Microbiol Biotechnol 2023; 50:kuad045. [PMID: 38061800 PMCID: PMC10734572 DOI: 10.1093/jimb/kuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Secondary metabolites (SMs) are biologically active small molecules, many of which are medically valuable. Fungal genomes contain vast numbers of SM biosynthetic gene clusters (BGCs) with unknown products, suggesting that huge numbers of valuable SMs remain to be discovered. It is challenging, however, to identify SM BGCs, among the millions present in fungi, that produce useful compounds. One solution is resistance gene-guided genome mining, which takes advantage of the fact that some BGCs contain a gene encoding a resistant version of the protein targeted by the compound produced by the BGC. The bioinformatic signature of such BGCs is that they contain an allele of an essential gene with no SM biosynthetic function, and there is a second allele elsewhere in the genome. We have developed a computer-assisted approach to resistance gene-guided genome mining that allows users to query large databases for BGCs that putatively make compounds that have targets of therapeutic interest. Working with the MycoCosm genome database, we have applied this approach to look for SM BGCs that target the proteasome β6 subunit, the target of the proteasome inhibitor fellutamide B, or HMG-CoA reductase, the target of cholesterol reducing therapeutics such as lovastatin. Our approach proved effective, finding known fellutamide and lovastatin BGCs as well as fellutamide- and lovastatin-related BGCs with variations in the SM genes that suggest they may produce structural variants of fellutamides and lovastatin. Gratifyingly, we also found BGCs that are not closely related to lovastatin BGCs but putatively produce novel HMG-CoA reductase inhibitors. ONE-SENTENCE SUMMARY A new computer-assisted approach to resistance gene-directed genome mining is reported along with its use to identify fungal biosynthetic gene clusters that putatively produce proteasome and HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| | - Adam R Podgorny
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| |
Collapse
|
14
|
Yuan X, Li Y, Luo T, Bi W, Yu J, Wang Y. Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome. MYCOBIOLOGY 2023; 51:36-48. [PMID: 36846628 PMCID: PMC9946308 DOI: 10.1080/12298093.2023.2175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Yunqing Li
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Ting Luo
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Wei Bi
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Jiaojun Yu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
| | - Yi Wang
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| |
Collapse
|
15
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
16
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Singh G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. J Fungi (Basel) 2023; 9:160. [PMID: 36836275 PMCID: PMC9964704 DOI: 10.3390/jof9020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Lichen secondary metabolites have tremendous pharmaceutical and industrial potential. Although more than 1000 metabolites have been reported from lichens, less than 10 have been linked to the genes coding them. The current biosynthetic research focuses strongly on linking molecules to genes as this is fundamental to adapting the molecule for industrial application. Metagenomic-based gene discovery, which bypasses the challenges associated with culturing an organism, is a promising way forward to link secondary metabolites to genes in non-model, difficult-to-culture organisms. This approach is based on the amalgamation of the knowledge of the evolutionary relationships of the biosynthetic genes, the structure of the target molecule, and the biosynthetic machinery required for its synthesis. So far, metagenomic-based gene discovery is the predominant approach by which lichen metabolites have been linked to their genes. Although the structures of most of the lichen secondary metabolites are well-documented, a comprehensive review of the metabolites linked to their genes, strategies implemented to establish this link, and crucial takeaways from these studies is not available. In this review, I address the following knowledge gaps and, additionally, provide critical insights into the results of these studies, elaborating on the direct and serendipitous lessons that we have learned from them.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, 35122 Padova, Italy
| |
Collapse
|
18
|
Tammam MA, Sebak M, Greco C, Kijjoa A, El-Demerdash A. Chemical diversity, biological activities and biosynthesis of fungal naphthoquinones and their derivatives: A comprehensive update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
20
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Phakeovilay J, Imaram W, Vuttipongchaikij S, Bunnak W, Lazarus CM, Wattana-Amorn P. C-Methylation controls the biosynthetic programming of alternapyrone. Org Biomol Chem 2022; 20:5050-5054. [PMID: 35695066 DOI: 10.1039/d2ob00947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.
Collapse
Affiliation(s)
- Jaiyfungkhong Phakeovilay
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| | - Witcha Imaram
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Waraporn Bunnak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pakorn Wattana-Amorn
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
22
|
Yang J, Zhou L, Zhou Z, Song Y, Ju J. Anti-pathogenic depsidones and its derivatives from a coral-derived fungus Aspergillus sp. SCSIO SX7S7. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Feng Y, Yang X, Ji H, Deng Z, Lin S, Zheng J. The Streptomyces viridochromogenes product template domain represents an evolutionary intermediate between dehydratase and aldol cyclase of type I polyketide synthases. Commun Biol 2022; 5:508. [PMID: 35618872 PMCID: PMC9135731 DOI: 10.1038/s42003-022-03477-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The product template (PT) domains act as an aldol cyclase to control the regiospecific aldol cyclization of the extremely reactive poly-β-ketone intermediate assembled by an iterative type I polyketide synthases (PKSs). Up to now, only the structure of fungal PksA PT that mediates the first-ring cyclization via C4–C9 aldol cyclization is available. We describe here the structural and computational characterization of a bacteria PT domain that controls C2–C7 cyclization in orsellinic acid (OSA) synthesis. Mutating the catalytic H949 of the PT abolishes production of OSA and results in a tetraacetic acid lactone (TTL) generated by spontaneous O-C cyclization of the acyl carrier protein (ACP)-bound tetraketide intermediate. Crystal structure of the bacterial PT domain closely resembles dehydrase (DH) domains of modular type I PKSs in the overall fold, dimerization interface and His-Asp catalytic dyad organization, but is significantly different from PTs of fungal iterative type I PKSs. QM/MM calculation suggests that the catalytic H949 abstracts a proton from C2 and transfers it to C7 carbonyl to mediate the cyclization reaction. According to structural similarity to DHs and functional similarity to fungal PTs, we propose that the bacterial PT represents an evolutionary intermediate between the two tailoring domains of type I PKSs. Structural analyses of a Streptomyces viridochromogenes product template (PT) domain suggests molecular and functional similarities with known fungal PTs involved in polyketide synthase activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Ninomiya A, Urayama SI, Hagiwara D. Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus. Appl Microbiol Biotechnol 2022; 106:4169-4185. [PMID: 35595930 DOI: 10.1007/s00253-022-11964-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Fungi are a rich source of secondary metabolites with potent biological activities. Co-culturing a fungus with another microorganism has drawn much attention as a practical method for stimulating fungal secondary metabolism. However, in most cases, the molecular mechanisms underlying the activation of secondary metabolite production in co-culture are poorly understood. To elucidate such a mechanism, in this study, we established a model fungal-fungal co-culture system, composed of Aspergillus nidulans and Aspergillus fumigatus. In the co-culture of A. nidulans and A. fumigatus, production of antibacterial diphenyl ethers was enhanced. Transcriptome analysis by RNA-sequencing showed that the co-culture activated expression of siderophore biosynthesis genes in A. fumigatus and two polyketide biosynthetic gene clusters (the ors and cic clusters) in A. nidulans. Gene disruption experiments revealed that the ors cluster is responsible for diphenyl ether production in the co-culture. Interestingly, the ors cluster was previously reported to be upregulated by co-culture of A. nidulans with the bacterium Streptomyces rapamycinicus; orsellinic acid was the main product of the cluster in that co-culture. In other words, the main product of the ors cluster was different in fungal-fungal and bacterial-fungal co-culture. The genes responsible for biosynthesis of the bacterial- and fungal-induced polyketides were deduced using a heterologous expression system in Aspergillus oryzae. The molecular genetic mechanisms that trigger biosynthesis of two different types of compounds in A. nidulans in response to the fungus and the bacterium were demonstrated, which provides an insight into complex secondary metabolic response of fungi to microorganisms. KEY POINTS: • Co-culture of two fungal species triggered antibiotic diphenyl ether production. • The co-culture affected expression levels of several genes for secondary metabolism. • Gene cluster essential for induction of the antibiotics production was determined.
Collapse
Affiliation(s)
- Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
25
|
Courtial J, Helesbeux JJ, Oudart H, Aligon S, Bahut M, Hamon B, N'Guyen G, Pigné S, Hussain AG, Pascouau C, Bataillé-Simoneau N, Collemare J, Berruyer R, Poupard P. Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Sci Rep 2022; 12:8155. [PMID: 35581239 PMCID: PMC9114375 DOI: 10.1038/s41598-022-11896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.
Collapse
Affiliation(s)
- Julia Courtial
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - Hugo Oudart
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Bruno Hamon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Guillaume N'Guyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sandrine Pigné
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Ahmed G Hussain
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Romain Berruyer
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| | - Pascal Poupard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| |
Collapse
|
26
|
Sun WW, Li CY, Chiang YM, Lin TS, Warren S, Chang FR, Wang CCC. Characterization of a silent azaphilone biosynthesis gene cluster in Aspergillus terreus NIH 2624. Fungal Genet Biol 2022; 160:103694. [PMID: 35398258 PMCID: PMC9701353 DOI: 10.1016/j.fgb.2022.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Abstract
Filamentous fungal secondary metabolites are an important source of bioactive components. Genome sequencing ofAspergillus terreusrevealed many silent secondary metabolite biosynthetic gene clusters presumed to be involved in producing secondary metabolites. Activation of silent gene clusters through overexpressing a pathway-specific regulator is an effective avenue for discovering novel fungal secondary metabolites. Replacement of the native promoter of the pathway-specific activator with the inducible Tet-on system to activate thetazpathway led to the discovery of a series of azaphilone secondary metabolites, among which azaterrilone A (1) was purified and identified for the first time. Genetic deletion of core PKS genes and transcriptional analysis further characterized thetazgene cluster to consist of 16 genes with the NR-PKS and the HR-PKS collaborating in a convergent mode. Based on the putative gene functions and the characterized compounds structural information, a biosynthetic pathway of azaterrilone A (1) was proposed.
Collapse
Affiliation(s)
- Wei-Wen Sun
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Chi-Ying Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA; Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Shauna Warren
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Wang G, Ran H, Fan J, Keller NP, Liu Z, Wu F, Yin WB. Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. SCIENCE ADVANCES 2022; 8:eabo6094. [PMID: 35476435 PMCID: PMC9045611 DOI: 10.1126/sciadv.abo6094] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 05/02/2023]
Abstract
Microbial communication has attracted notable attention as an indicator of microbial interactions that lead to marked alterations of secondary metabolites (SMs) in varied environments. However, the mechanisms responsible for SM regulation are not fully understood, especially in fungal-fungal interactions. Here, cocultivation of an endophytic fungus Epicoccum dendrobii with the model fungus Aspergillus nidulans and several other filamentous fungi triggered widespread alteration of SMs. Multiple silent biosynthetic gene clusters in A. nidulans were activated by transcriptome and metabolome analysis. Unprecedentedly, gene deletion and replacement proved that a partial loss-of-function VeA1 protein, but not VeA, was associated with the widespread SM changes in both A. nidulans and A. fumigatus during cocultivation. VeA1 regulation required the transcription factor SclB and the velvet complex members LaeA and VelB for producing aspernidines as representative formation of SMs in A. nidulans. This study provides new insights into the mechanism that trigger metabolic changes during fungal-fungal interactions.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhiguo Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fan Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
28
|
Gerasimova JV, Beck A, Werth S, Resl P. High Diversity of Type I Polyketide Genes in Bacidia rubella as Revealed by the Comparative Analysis of 23 Lichen Genomes. J Fungi (Basel) 2022; 8:449. [PMID: 35628705 PMCID: PMC9146135 DOI: 10.3390/jof8050449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Fungi involved in lichen symbioses produce a large array of secondary metabolites that are often diagnostic in the taxonomic delimitation of lichens. The most common lichen secondary metabolites-polyketides-are synthesized by polyketide synthases, particularly by Type I PKS (TI-PKS). Here, we present a comparative genomic analysis of the TI-PKS gene content of 23 lichen-forming fungal genomes from Ascomycota, including the de novo sequenced genome of Bacidia rubella. Firstly, we identify a putative atranorin cluster in B. rubella. Secondly, we provide an overview of TI-PKS gene diversity in lichen-forming fungi, and the most comprehensive Type I PKS phylogeny of lichen-forming fungi to date, including 624 sequences. We reveal a high number of biosynthetic gene clusters and examine their domain composition in the context of previously characterized genes, confirming that PKS genes outnumber known secondary substances. Moreover, two novel groups of reducing PKSs were identified. Although many PKSs remain without functional assignments, our findings highlight that genes from lichen-forming fungi represent an untapped source of novel polyketide compounds.
Collapse
Affiliation(s)
- Julia V. Gerasimova
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Andreas Beck
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Institute of Biology, University of Graz, 8010 Graz, Austria
| |
Collapse
|
29
|
Brown DW, Kim HS, McGovern A, Probyn C, Proctor RH. Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genet Biol 2022; 160:103696. [DOI: 10.1016/j.fgb.2022.103696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
|
30
|
Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization. J Fungi (Basel) 2022; 8:jof8040355. [PMID: 35448586 PMCID: PMC9032437 DOI: 10.3390/jof8040355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Trichoderma reesei (Hypocrea jecorina) was developed as a microbial cell factory for the heterologous expression of fungal secondary metabolites. This was achieved by inactivation of sorbicillinoid biosynthesis and construction of vectors for the rapid cloning and expression of heterologous fungal biosynthetic genes. Two types of megasynth(et)ases were used to test the strain and vectors, namely a non-reducing polyketide synthase (nr-PKS, aspks1) from Acremonium strictum and a hybrid highly-reducing PKS non-ribosomal peptide synthetase (hr-PKS-NRPS, tenS + tenC) from Beauveria bassiana. The resulting engineered T. reesei strains were able to produce the expected natural products 3-methylorcinaldehyde and pretenellin A on waste materials including potato, orange, banana and kiwi peels and barley straw. Developing T. reesei as a heterologous host for secondary metabolite production represents a new method for waste valorization by the direct conversion of waste biomass into secondary metabolites.
Collapse
|
31
|
Gerke J, Köhler AM, Wennrich JP, Große V, Shao L, Heinrich AK, Bode HB, Chen W, Surup F, Braus GH. Biosynthesis of Antibacterial Iron-Chelating Tropolones in Aspergillus nidulans as Response to Glycopeptide-Producing Streptomycetes. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:777474. [PMID: 37744088 PMCID: PMC10512232 DOI: 10.3389/ffunb.2021.777474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 09/26/2023]
Abstract
The soil microbiome comprises numerous filamentous fungi and bacteria that mutually react and challenge each other by the production of bioactive secondary metabolites. Herein, we show in liquid co-cultures that the presence of filamentous Streptomycetes producing antifungal glycopeptide antibiotics induces the production of the antibacterial and iron-chelating tropolones anhydrosepedonin (1) and antibiotic C (2) in the mold Aspergillus nidulans. Additionally, the biosynthesis of the related polyketide tripyrnidone (5) was induced, whose novel tricyclic scaffold we elucidated by NMR and HRESIMS data. The corresponding biosynthetic polyketide synthase-encoding gene cluster responsible for the production of these compounds was identified. The tropolones as well as tripyrnidone (5) are produced by genes that belong to the broad reservoir of the fungal genome for the synthesis of different secondary metabolites, which are usually silenced under standard laboratory conditions. These molecules might be part of the bacterium-fungus competition in the complex soil environment, with the bacterial glycopeptide antibiotic as specific environmental trigger for fungal induction of this cluster.
Collapse
Affiliation(s)
- Jennifer Gerke
- Department of Moleuclar Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anna M. Köhler
- Department of Moleuclar Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jan-Peer Wennrich
- Microbial Drugs Department, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Verena Große
- Department of Moleuclar Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lulu Shao
- Microbial Drugs Department, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Antje K. Heinrich
- Molecular Biotechnology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Molecular Biotechnology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wanping Chen
- Department of Moleuclar Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Frank Surup
- Microbial Drugs Department, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Gerhard H. Braus
- Department of Moleuclar Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Roux I, Chooi YH. Heterologous Expression of Fungal Biosynthetic Pathways in Aspergillus nidulans Using Episomal Vectors. Methods Mol Biol 2022; 2489:75-92. [PMID: 35524046 DOI: 10.1007/978-1-0716-2273-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous fungi produce a wide diversity of secondary metabolites, whose biosynthesis is encoded in biosynthetic gene clusters (BGCs). As novel BGCs are often found in fungal species that are genetically intractable or difficult to cultivate, heterologous expression is increasingly being used for compound discovery. In addition, heterologous expression is a useful strategy to elucidate the function of the genes within a BGC and shed light on their enzymatic mechanisms. Here, we describe a method for BGC elucidation using multi-marker AMA1-based pYFAC vectors for episomal expression in the fungal host Aspergillus nidulans. The pYFAC vectors have the advantage of high transformation efficiency and support high compound production. In addition, different pathway intermediates can be easily evaluated by testing different vector combinations. This protocol encompasses different AMA1-based strategies for BGC expression such as cloning of a BGC native sequence, promoter exchange or transcription factor overexpression. We also describe procedures for A. nidulans protoplasting, transformation, and small-scale culture analysis of strains containing AMA1 vectors.
Collapse
Affiliation(s)
- Indra Roux
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Yit Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
33
|
Liu Y, Fu Y, Zhou M, Hao X, Zhang P, Zhu X. Acquiring novel chemicals by overexpression of a transcription factor DibT in the dibenzodioxocinone biosynthetic cluster in Pestalotiopsis microspora. Microbiol Res 2022; 257:126977. [DOI: 10.1016/j.micres.2022.126977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
34
|
Williams K, Greco C, Bailey AM, Willis CL. Core Steps to the Azaphilone Family of Fungal Natural Products. Chembiochem 2021; 22:3027-3036. [PMID: 34190382 PMCID: PMC8596599 DOI: 10.1002/cbic.202100240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Azaphilones are a family of polyketide-based fungal natural products that exhibit interesting and useful bioactivities. This minireview explores the literature on various characterised azaphilone biosynthetic pathways, which allows for a proposed consensus scheme for the production of the core azaphilone structure, as well as identifying early diversification steps during azaphilone biosynthesis. A consensus understanding of the core enzymatic steps towards a particular family of fungal natural products can aid in genome-mining experiments. Genome mining for novel fungal natural products is a powerful technique for both exploring chemical space and providing new insights into fungal natural product pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological SciencesUniversity of Bristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | - Claudio Greco
- Department of Molecular MicrobiologyJohn Innes CentreNorwichNR4 7UHUK
| | - Andrew M. Bailey
- School of Biological SciencesUniversity of Bristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | | |
Collapse
|
35
|
Wang W, Yu Y, Keller NP, Wang P. Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22168709. [PMID: 34445420 PMCID: PMC8395729 DOI: 10.3390/ijms22168709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Fungal secondary metabolites are renowned toxins as well as valuable sources of antibiotics, cholesterol-lowering drugs, and immunosuppressants; hence, great efforts were levied to understand how these compounds are genetically regulated. The genes encoding for the enzymes required for synthesizing secondary metabolites are arranged in biosynthetic gene clusters (BGCs). Often, BGCs contain a pathway specific transcription factor (PSTF), a valuable tool in shutting down or turning up production of the BGC product. In this review, we present an in-depth view of PSTFs by examining over 40 characterized BGCs in the well-studied fungal species Aspergillus nidulans and Aspergillus fumigatus. Herein, we find BGC size is a predictor for presence of PSTFs, consider the number and the relative location of PSTF in regard to the cluster(s) regulated, discuss the function and the evolution of PSTFs, and present application strategies for pathway specific activation of cryptic BGCs.
Collapse
Affiliation(s)
- Wenjie Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuchao Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (N.P.K.); (P.W.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Correspondence: (N.P.K.); (P.W.)
| |
Collapse
|
36
|
Genetic Relationships in the Toxin-Producing Fungal Endophyte, Alternaria oxytropis Using Polyketide Synthase and Non-Ribosomal Peptide Synthase Genes. J Fungi (Basel) 2021; 7:jof7070538. [PMID: 34356917 PMCID: PMC8306250 DOI: 10.3390/jof7070538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
The legume Oxytropis sericea hosts a fungal endophyte, Alternaria oxytropis, which produces secondary metabolites (SM), including the toxin swainsonine. Polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) enzymes are associated with biosynthesis of fungal SM. To better understand the origins of the SM, an unannotated genome of A. oxytropis was assessed for protein sequences similar to known PKS and NRPS enzymes of fungi. Contigs exhibiting identity with known genes were analyzed at nucleotide and protein levels using available databases. Software were used to identify PKS and NRPS domains and predict identity and function. Confirmation of sequence for selected gene sequences was accomplished using PCR. Thirteen PKS, 5 NRPS, and 4 PKS-NRPS hybrids were identified and characterized with functions including swainsonine and melanin biosynthesis. Phylogenetic relationships among closest amino acid matches with Alternaria spp. were identified for seven highly conserved PKS and NRPS, including melanin synthesis. Three PKS and NRPS were most closely related to other fungi within the Pleosporaceae family, while five PKS and PKS-NRPS were closely related to fungi in the Pleosporales order. However, seven PKS and PKS-NRPS showed no identity with fungi in the Pleosporales or the class Dothideomycetes, suggesting a different evolutionary origin for those genes.
Collapse
|
37
|
Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021; 12:e0111121. [PMID: 34154413 PMCID: PMC8262933 DOI: 10.1128/mbio.01111-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sunmin Woo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
38
|
Kim W, Jeong MH, Yun SH, Hur JS. Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta. J Fungi (Basel) 2021; 7:398. [PMID: 34065383 PMCID: PMC8161216 DOI: 10.3390/jof7050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
39
|
Liu M, Ohashi M, Hung YS, Scherlach K, Watanabe K, Hertweck C, Tang Y. AoiQ Catalyzes Geminal Dichlorination of 1,3-Diketone Natural Products. J Am Chem Soc 2021; 143:7267-7271. [PMID: 33957045 PMCID: PMC8434754 DOI: 10.1021/jacs.1c02868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymes that can perform halogenation of aliphatic carbons are of significant interest to the synthetic and biocatalysis communities. Here we describe the characterization of AoiQ, a single-component flavin-dependent halogenase (FDH) that catalyzes gem-dichlorination of 1,3-diketone substrates in the biosynthesis of dichlorodiaporthin. AoiQ represents the first biochemically reconstituted FDH that can halogenate an enolizable sp3-hybridized carbon atom.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Yiu-Sun Hung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology – HKI, 07745 Jena, Germany
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology – HKI, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| |
Collapse
|
40
|
Ingham DJ, Blankenfeld BR, Chacko S, Perera C, Oakley BR, Gamblin TC. Fungally Derived Isoquinoline Demonstrates Inducer-Specific Tau Aggregation Inhibition. Biochemistry 2021; 60:1658-1669. [PMID: 34009955 PMCID: PMC8173610 DOI: 10.1021/acs.biochem.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The microtubule-associated
protein tau promotes the stabilization
of the axonal cytoskeleton in neurons. In several neurodegenerative
diseases, such as Alzheimer’s disease, tau has been found to
dissociate from microtubules, leading to the formation of pathological
aggregates that display an amyloid fibril-like structure. Recent structural
studies have shown that the tau filaments isolated from different
neurodegenerative disorders have structurally distinct fibril cores
that are specific to the disease. These “strains” of
tau fibrils appear to propagate between neurons in a prion-like fashion
that maintains their initial template structure. In addition, the
strains isolated from diseased tissue appear to have structures that
are different from those made by the most commonly used in
vitro modeling inducer molecule, heparin. The structural
differences among strains in different diseases and in vitro-induced tau fibrils may contribute to recent failures in clinical
trials of compounds designed to target tau pathology. This study identifies
an isoquinoline compound (ANTC-15) isolated from the fungus Aspergillus nidulans that can both inhibit filaments induced
by arachidonic acid (ARA) and disassemble preformed ARA fibrils. When
compared to a tau aggregation inhibitor currently in clinical trials
(LMTX, LMTM, or TRx0237), ANTC-15 and LMTX were found to have opposing
inducer-specific activities against ARA and heparin in vitro-induced tau filaments. These findings may help explain the disappointing
results in translating potent preclinical inhibitor candidates to
successful clinical treatments.
Collapse
Affiliation(s)
- David J Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bryce R Blankenfeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shibin Chacko
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chamani Perera
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Truman Christopher Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
41
|
Lim S, Bijlani S, Blachowicz A, Chiang YM, Lee MS, Torok T, Venkateswaran K, Wang CCC. Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genet Biol 2021; 152:103567. [PMID: 33989788 DOI: 10.1016/j.fgb.2021.103567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
Fungi produce secondary metabolites that are not directly involved in their growth, but often contribute to their adaptation to extreme environmental stimuli and enable their survival. Conidial pigment or melanin is one of the secondary metabolites produced naturally by a polyketide synthesis (PKS) gene cluster in several filamentous fungi and is known to protect these fungi from extreme radiation conditions. Several pigmented or melanized fungi have been shown to grow under extreme radiation conditions at the Chernobyl nuclear accident site. Some of these fungi, including Paecilomyces variotii, were observed to grow towards the source of radiation. Therefore, in this study, we wanted to identify if the pigment produced by P. variotii, contributes to providing protection against radiation condition. We first identified the PKS gene responsible for synthesis of pigment in P. variotii and confirmed its role in providing protection against UV irradiation through CRISPR-Cas9 mediated gene deletion. This is the first report that describes the use of CRISPR methodology to create gene deletions in P. variotii. Further, we showed that the pigment produced by this fungus, was not inhibited by DHN-melanin pathway inhibitors, indicating that the fungus does not produce melanin. We then identified the pigment synthesized by the PKS gene of P. variotii, as a naptho-pyrone Ywa1, by heterologously expressing the gene in Aspergillus nidulans. The results obtained will further aid in understanding the mechanistic basis of radiation resistance.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ming-Shian Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
42
|
Chiang YM, Lin TS, Chang SL, Ahn G, Wang CCC. An Aspergillus nidulans Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synth Biol 2021; 10:173-182. [PMID: 33375785 DOI: 10.1021/acssynbio.0c00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal natural products (NPs) comprise a vast number of bioactive molecules with diverse activities, and among them are many important drugs. However, the yields of fungal NPs from native producers are usually low, and total synthesis of structurally complex NPs is challenging. As such, downstream derivatization and optimization of lead fungal NPs can be impeded by the high cost of obtaining sufficient starting material. In recent years, reconstitution of NP biosynthetic pathways in heterologous hosts has become an attractive alternative approach to produce complex NPs. Here, we present an efficient, cloning-free strategy for the cluster refactoring and total biosynthesis of fungal NPs in Aspergillus nidulans. Our platform places our genes of interest (GOIs) under the regulation of the robust asperfuranone afo biosynthesis gene machinery, allowing for their concerted activation upon induction. We demonstrated the utility of our system by creating strains that can synthesize high-value NPs, citreoviridin (1), mutilin (2), and pleuromutilin (3), with good to high yield and purity. This platform can be used not only for producing NPs of interests (i.e., total biosynthesis) but also for elucidating cryptic biosynthesis pathways.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Shu-Lin Chang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Green Ahn
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
43
|
Schotte C, Li L, Wibberg D, Kalinowski J, Cox RJ. Synthetic Biology Driven Biosynthesis of Unnatural Tropolone Sesquiterpenoids. Angew Chem Int Ed Engl 2020; 59:23870-23878. [PMID: 32929811 PMCID: PMC7814671 DOI: 10.1002/anie.202009914] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Tropolone sesquiterpenoids (TS) are an intriguing family of biologically active fungal meroterpenoids that arise through a unique intermolecular hetero Diels-Alder (hDA) reaction between humulene and tropolones. Here, we report on the combinatorial biosynthesis of a series of unprecedented analogs of the TS pycnidione 1 and xenovulene A 2. In a systematic synthetic biology driven approach, we recombined genes from three TS biosynthetic gene clusters (pycnidione 1, xenovulene A 2 and eupenifeldin 3) in the fungal host Aspergillus oryzae NSAR1. Rational design of the reconstituted pathways granted control over the number of hDA reactions taking place, the chemical nature of the fused polyketide moiety (tropolono- vs. monobenzo-pyranyl) and the degree of hydroxylation. Formation of unexpected monobenzopyranyl sesquiterpenoids was investigated using isotope-feeding studies to reveal a new and highly unusual oxidative ring contraction rearrangement.
Collapse
Affiliation(s)
- Carsten Schotte
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Lei Li
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Daniel Wibberg
- Center for Biotechnology—CeBiTecUniversitätsstraße 2733615BielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology—CeBiTecUniversitätsstraße 2733615BielefeldGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
44
|
Schüller A, Wolansky L, Berger H, Studt L, Gacek-Matthews A, Sulyok M, Strauss J. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Appl Microbiol Biotechnol 2020; 104:9801-9822. [PMID: 33006690 PMCID: PMC7595996 DOI: 10.1007/s00253-020-10900-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled "dead" Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively growing cells and stationary cultures to identify the cognate nucleosome-free regions (NFRs). Based on these maps, different single-guide RNAs (sgRNAs) were designed and tested for their targeting and activation potential. Our results demonstrate that the system can be used to regulate several genes in parallel and, depending on the VPR-dCas9 positioning, expression can be pushed to very high levels. We have used the system to turn on individual genes within two different biosynthetic gene clusters (BGCs) which are silent under normal growth conditions. This method also opens opportunities to stepwise activate individual genes in a cluster to decipher the correlated biosynthetic pathway. Graphical abstract KEYPOINTS: • An inducible RNA-guided transcriptional regulator based on VPR-dCas9 was established in Aspergillus nidulans. • Genome-wide nucleosome positioning maps were created that facilitate sgRNA positioning. • The system was successfully applied to activate genes within two silent biosynthetic gene clusters.
Collapse
Affiliation(s)
- Andreas Schüller
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Lisa Wolansky
- Institute Krems Bioanalytics , IMC FH Krems University of Applied Sciences , Krems, Austria
| | - Harald Berger
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Lena Studt
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Agnieszka Gacek-Matthews
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
- Institute of Microbiology, Functional Microbiology Division, University of Veterinary Sciences Vienna, Wien, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agrometabolomics, Department of Agrobiotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad-Lorenz-Straße 20, A-3430 Tulln an der Donau, Austria
| | - Joseph Strauss
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria.
| |
Collapse
|
45
|
Schotte C, Li L, Wibberg D, Kalinowski J, Cox RJ. Synthetisch biologisch getriebene Biosynthese von unnatürlichen Tropolon‐Sesquiterpenoiden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carsten Schotte
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Lei Li
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Daniel Wibberg
- Centrum für Biotechnologie – CeBiTec Universitätsstraße 27 33615 Bielefeld Deutschland
| | - Jörn Kalinowski
- Centrum für Biotechnologie – CeBiTec Universitätsstraße 27 33615 Bielefeld Deutschland
| | - Russell J. Cox
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
46
|
Caesar LK, Kelleher NL, Keller NP. In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet Biol 2020; 144:103477. [PMID: 33035657 DOI: 10.1016/j.fgb.2020.103477] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
In 1990 the first fungal secondary metabolite biosynthetic gene was cloned in Aspergillus nidulans. Thirty years later, >30 biosynthetic gene clusters (BGCs) have been linked to specific natural products in this one fungal species. While impressive, over half of the BGCs in A. nidulans remain uncharacterized and their compounds structurally and functionally unknown. Here, we provide a comprehensive review of past advances that have enabled A. nidulans to rise to its current status as a natural product powerhouse focusing on the discovery and annotation of secondary metabolite clusters. From genome sequencing, heterologous expression, and metabolomics to CRISPR and epigenetic manipulations, we present a guided tour through the evolution of technologies developed and utilized in the last 30 years. These insights provide perspective to future efforts to fully unlock the biosynthetic potential of A. nidulans and, by extension, the potential of other filamentous fungi.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, United States; Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin- Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
47
|
Ran H, Li SM. Fungal benzene carbaldehydes: occurrence, structural diversity, activities and biosynthesis. Nat Prod Rep 2020; 38:240-263. [PMID: 32779678 DOI: 10.1039/d0np00026d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to April 2020Fungal benzene carbaldehydes with salicylaldehydes as predominant representatives carry usually hydroxyl groups, prenyl moieties and alkyl side chains. They are found in both basidiomycetes and ascomycetes as key intermediates or end products of various biosynthetic pathways and exhibit diverse biological and pharmacological activities. The skeletons of the benzene carbaldehydes are usually derived from polyketide pathways catalysed by iterative fungal polyketide synthases. The aldehyde groups are formed by direct PKS releasing, reduction of benzoic acids or oxidation of benzyl alcohols.
Collapse
Affiliation(s)
- Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | | |
Collapse
|
48
|
Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom 2020; 6:mgen000415. [PMID: 32735212 PMCID: PMC7641419 DOI: 10.1099/mgen.0.000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.
Collapse
Affiliation(s)
- Irene Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Elena Requena
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Present address: Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña Km 7, 28040 Madrid, Spain
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, USA
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
49
|
Kim HS, Lohmar JM, Busman M, Brown DW, Naumann TA, Divon HH, Lysøe E, Uhlig S, Proctor RH. Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics 2020; 21:510. [PMID: 32703172 PMCID: PMC7376913 DOI: 10.1186/s12864-020-06896-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.
Collapse
Affiliation(s)
- Hye-Seon Kim
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Jessica M Lohmar
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Mark Busman
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Daren W Brown
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Todd A Naumann
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Robert H Proctor
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA.
| |
Collapse
|
50
|
Teixeira MDM, Muszewska A, Travis J, Moreno LF, Ahmed S, Roe C, Mead H, Steczkiewicz K, Lemmer D, de Hoog S, Keim P, Wiederhold N, Barker BM. Genomic characterization of Parengyodontium americanum sp. nov. Fungal Genet Biol 2020; 138:103351. [PMID: 32028048 DOI: 10.1016/j.fgb.2020.103351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
Modern genome analysis and phylogenomic methods have increased the number of fungal species, as well as enhanced appreciation of the degree of diversity within the fungal kingdom. In this context, we describe a new Parengyodontium species, P. americanum, which is phylogenetically related to the opportunistic human fungal pathogen P. album. Five unusual fungal isolates were recovered from five unique and confirmed coccidioidomycosis patients, and these isolates were subsequently submitted to detailed molecular and morphological identification procedures to determine identity. Molecular and morphological diagnostic analyses showed that the isolates belong to the Cordycipitaceae. Subsequently, three representative genomes were sequenced and annotated, and a new species, P. americanum, was identified. Using various genomic analyses, gene family expansions related to novel compounds and potential for ability to grow in diverse habitats are predicted. A general description of the genomic composition of this newly described species and comparison of genome content with Beauveria bassiana, Isaria fumosorosea and Cordyceps militaris shows a shared core genome of 6371 genes, and 148 genes that appear to be specific for P. americanum. This work provides the framework for future investigations of this interesting fungal species.
Collapse
Affiliation(s)
- Marcus de M Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA; Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA; Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jason Travis
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA
| | - Leandro F Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Sarah Ahmed
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Chandler Roe
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA; Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Heather Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Darrin Lemmer
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Paul Keim
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA; Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Nathan Wiederhold
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bridget M Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, AZ, USA; Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|