1
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
2
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Lepikko S, Turkki V, Koskinen T, Raju R, Jokinen V, Kiseleva MS, Rantataro S, Timonen JVI, Backholm M, Tittonen I, Ras RHA. Droplet Friction on Superhydrophobic Surfaces Scales With Liquid-Solid Contact Fraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405335. [PMID: 39286993 DOI: 10.1002/smll.202405335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Indexed: 09/19/2024]
Abstract
It is generally assumed that contact angle hysteresis of superhydrophobic surfaces scales with liquid-solid contact fraction, however, its experimental verification has been problematic due to the limited accuracy of contact angle and sliding angle goniometry. Advances in cantilever-based friction probes enable accurate droplet friction measurements down to the nanonewton regime, thus suiting much better for characterizing the wetting of superhydrophobic surfaces than contact angle hysteresis measurements. This work quantifies the relationship between droplet friction and liquid-solid contact fraction, through theory and experimental validation. Well-defined micropillar and microcone structures are used as model surfaces to provide a wide range of different liquid-solid contact fractions. Micropillars are known to be able to hold the water on top of them, and a theoretical analysis together with confocal laser scanning microscopy shows that despite the spiky nature of the microcones droplets do not sink into the conical structure either, rendering a diminishingly small liquid-solid contact fraction. Droplet friction characterization with a micropipette force sensor technique reveals a strong dependence of the droplet friction on the contact fraction, and the dependency is described with a simple physical equation, despite the nearly three-orders-of-magnitude difference in liquid-solid contact fraction between the sparsest cone surface and the densest pillar surface.
Collapse
Affiliation(s)
- Sakari Lepikko
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| | - Valtteri Turkki
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| | - Tomi Koskinen
- Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, Espoo, 02150, Finland
| | - Ramesh Raju
- Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, Espoo, 02150, Finland
| | - Ville Jokinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Espoo, 02150, Finland
| | - Mariia S Kiseleva
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| | - Samuel Rantataro
- Department of Electrical Engineering and Automation, Aalto University, Maarintie 8, Espoo, 02150, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| | - Matilda Backholm
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| | - Ilkka Tittonen
- Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, Espoo, 02150, Finland
| | - Robin H A Ras
- Department of Applied Physics, Aalto University, P.O. Box 15600, Espoo, 02150, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 15600, Espoo, 02150, Finland
| |
Collapse
|
4
|
Zhang H, Chen H, Lu L, Wang H, Zhao Y, Chai R. Natural Multifunctional Silk Microcarriers for Noise-Induced Hearing Loss Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305215. [PMID: 37984871 PMCID: PMC10767431 DOI: 10.1002/advs.202305215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Noise-induced hearing loss (NIHL) is a common outcome of excessive reactive oxygen species in the cochlea, and the targeted delivery of antioxidants to the inner ear is a potential therapeutic strategy. In this paper, a novel natural biomaterials-derived multifunctional delivery system using silk fibroin-polydopamine (PDA)-composited inverse opal microcarriers (PDA@SFMCs) is presented for inner ear drug delivery and NIHL therapy. Due to their large specific surface area and interpenetrating nanochannels, PDA@SFMCs can rapidly load active biomolecules making them a convenient medium for the storage and delivery of such molecules. In addition, surface modification of PDA enables the microcarriers to remain in the round window niche, thus facilitating the precise local and directed delivery of loaded drugs. Based on these features, it is demonstrated here that n-acetylcysteine-loaded silk microcarriers have satisfactory antioxidant properties on cells and can successfully prevent NIHL in guinea pigs. These results indicate that the natural multifunctional silk microcarriers are promising agents for local inner ear drug delivery in the clinic.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Hong Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Ling Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical EngineeringShenzhen UniversityShenzhen518060China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610072China
- School of Life ScienceBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
5
|
Zhao P, Wang R, Xiang J, Zhang J, Wu X, Chen C, Liu G. Antibacterial, antiviral, and biodegradable collagen network mask for effective particulate removal and wireless breath monitoring. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131654. [PMID: 37236103 DOI: 10.1016/j.jhazmat.2023.131654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Functional face masks that can effectively remove particulate matter and pathogens are critical to addressing the urgent health needs arising from industrial air pollution and the COVID-19 pandemic. However, most commercial masks are manufactured by tedious and complicated network-forming procedures (e.g., meltblowing and electrospinning). In addition, the materials used (e.g., polypropylene) have significant limitations such as a lack of pathogen inactivation and degradability, which can cause secondary infection and serious environmental concerns if discarded. Here, we present a facile and straightforward method for creating biodegradable and self-disinfecting masks based on collagen fiber networks. These masks not only provide superior protection against a wide range of hazardous substances in polluted air, but also address environmental concerns associated with waste disposal. Importantly, collagen fiber networks with naturally existing hierarchical microporous structures can be easily modified by tannic acid to improve its mechanical characteristics and enable the in situ production of silver nanoparticles. The resulting masks exhibit excellent antibacterial (>99.99%, 15 min) and antiviral (>99.999%, 15 min) capabilities, as well as high PM2.5 removal efficiency (>99.9%, 30 s). We further demonstrate the integration of the mask into a wireless platform for respiratory monitoring. Therefore, the smart mask has enormous promise for combating air pollution and contagious viruses, managing personal health, and alleviating waste issues caused by commercial masks.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Gongyan Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Meng X, Qiu D. Surface morphology regulation of colloidal Nanoparticles: A convenient Kinetically-Controlled seeded growth strategy. J Colloid Interface Sci 2023; 633:284-290. [PMID: 36459933 DOI: 10.1016/j.jcis.2022.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Except for chemical composition, surface morphology may endue colloidal nanoparticles with special interfacial behaviors, which is highly desired in certain scenarios, for example, ultra-stable Pickering emulsion for pharmaceutical applications where only limited chemicals are allowed. Herein, silica colloidal nanoparticle was chosen as a demo to illustrate a kinetically-controlled seeded growth strategy for the surface morphology regulation of colloidal nanoparticles. EXPERIMENTS Surface chemical heterogeneity was primarily introduced to the silica seed nanoparticles by a seeded growth process in the presence of mixed silicate moieties with thermodynamical incompatibility. Then a further kinetically-controlled seeded growth step was performed to regulate the surface morphology of silica nanoparticles by promoting the selective condensation of tetraethoxysilane on the hydrophilic microdomains. FINDINGS Upon reducing the growing rate, tetraethoxysilane hydrolysates tend to condensate on silica microdomains, resulting in the formation of raspberry-like nanoparticles. The generality of the kinetically-controlled seeded growth strategy was validated by its success on differently-sized silica seeds modified with a range of silane coupling agents. This established strategy is facile and effective for massive production of raspberry-like silica colloidal nanoparticles with precisely-designed surface morphology and size, offering an ideal platform for the investigation on the exclusive contribution of morphology to the interfacial behaviors of nanoparticles.
Collapse
Affiliation(s)
- Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
7
|
Tan Z, Hu L, Yang D, Zheng D, Qiu X. Lignin: Excellent hydrogel swelling promoter used in cellulose aerogel for efficient oil/water separation. J Colloid Interface Sci 2023; 629:422-433. [DOI: 10.1016/j.jcis.2022.08.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
8
|
Hwang H, Kang D, Park YJ, Shin HS. Dopamine‐assisted wet spinning and mechanical reinforcement of graphene oxide fibers. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyuntae Hwang
- Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| | - Dongwoo Kang
- High Capacitance MLCC Development Group, Component Business Unit, Samsung Electro‐Mechanics Pusan Republic of Korea
| | - Young Jin Park
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| | - Hyeon Suk Shin
- Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
- Low‐Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| |
Collapse
|
9
|
Chen C, Liu Q, Yang Z, Ye Q, An QF. Substrate-independent fabrication of superhydrophilic membrane based on dopamine methacrylamide and zwitterionic substance for effective oil-in-water emulsion separation. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
|
11
|
Wang G, Yang C, Shan M, Jia H, Zhang S, Chen X, Liu W, Liu X, Chen J, Wang X. Synergistic Poly(lactic acid) Antibacterial Surface Combining Superhydrophobicity for Antiadhesion and Chlorophyll for Photodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8987-8998. [PMID: 35839422 DOI: 10.1021/acs.langmuir.2c01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The problem of nosocomial infections caused by bacterial growth on material surfaces is an urgent threat to public health. Although numerous materials and methods have been explored to fight against infections, the methods are complicated and the materials are slightly toxic. It is highly desirable to develop an antibacterial strategy that kills bacteria effectively without drug resistance and cytotoxicity. Herein, we present a synergistic antibacterial polylactic acid (PLA) surface with superhydrophobic antibacterial adhesion and photodynamic bactericidal activity. Initially, the surface displayed low-adhesion superhydrophobicity and resisted most bacterial adhesion. Furthermore, completely non-toxic chlorophyll possessed excellent photodynamic bactericidal properties under non-toxic visible light, which was incorporated into micro-/nanoscale PLA surfaces. We achieved efficient antibacterial activity using completely non-toxic materials and a facile non-solvent-induced phase separation process. This non-toxic, simple, good biocompatible, and no drug-resistant strategy has great advantages in combating bacterial infections.
Collapse
Affiliation(s)
- Gege Wang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Cao Yang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Shan
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Jia
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Shike Zhang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Chen
- College of Food Science and Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Wentao Liu
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xuying Liu
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhou Chen
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghong Wang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Du J, Zhou Y, Bao X, Kang Z, Huang J, Xu G, Yi C, Li D. Surface polydopamine modification of bone defect repair materials: Characteristics and applications. Front Bioeng Biotechnol 2022; 10:974533. [PMID: 35935489 PMCID: PMC9355039 DOI: 10.3389/fbioe.2022.974533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Bone defects are a common challenge for clinical orthopedic surgeons. The existing bone defect repair materials are difficult to achieve satisfactory osseointegration between the material and the bone. Therefore, it is increasingly important to find effective methods to improve the integration of the materials with the bone and thus facilitate bone defect repair. Researchers have found that polydopamine (PDA) has a structure and properties similar to the adhesive proteins secreted by mussels in nature, with good biocompatibility, bioactivity, hydrophilicity, bio-adhesion and thermal stability. PDA is therefore expected to be used as a surface modification material for bone repair materials to improve the bonding of bone repair materials to the bone surface. This paper reviews research related to PDA-modified bone repair materials and looks at their future applications.
Collapse
Affiliation(s)
- Jianhang Du
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ying Zhou
- Department of Rehabilitation, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiaogang Bao
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guohua Xu
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| |
Collapse
|
13
|
Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zhao H, Gao WC, Li Q, Khan MR, Hu GH, Liu Y, Wu W, Huang CX, Li RK. Recent advances in superhydrophobic polyurethane: preparations and applications. Adv Colloid Interface Sci 2022; 303:102644. [PMID: 35313189 DOI: 10.1016/j.cis.2022.102644] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 01/24/2023]
Abstract
Even though polyurethane (PU) has been widely applied, its superhydrophobicity is inadequate for certain applications. As such, the development of superhydrophobic polyurethane (SHPU) has recently attracted significant attention, with numerous motivating reports in recent years. However, a comprehensive review that summarizes these state-of-the-art developments remains lacking. Thus, this review aims to fill up this gap by reviewing the recent preparation methods for SHPU based on superhydrophobic theories and principles. Three main types of methods used in promoting the hydrophobicity of PU are emphasized in this review; (1) incorporation of silicide or fluoride to lower the surface energy, (2) creation of micro/nano-scale rough surfaces by electrospinning or grafting of nanoparticles, and (3) integrating the earlier two methods to develop a synergistic approach. Furthermore, this review also discussed the various applications of SHPU in oil spill treatment, protective coating, self-healing materials and sensors.
Collapse
|
15
|
Sun Z, Cao Z, Li Y, Zhang Q, Zhang X, Qian J, Jiang L, Tian D. Switchable smart porous surface for controllable liquid transportation. MATERIALS HORIZONS 2022; 9:780-790. [PMID: 34901984 DOI: 10.1039/d1mh01820e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controllable liquid transportation through a smart porous membrane is realized by manipulating the surface wetting properties and external stimuli, and has been intensively studied. However, the liquid transportation, e.g., permeation and moving process, at the interface is generally uninterrupted, i.e., the opening and closing of the interface is irreversible. Herein, we present a new strategy to achieve magnetic adaptive switchable surfaces, i.e., liquid-infused micro-nanostructured porous composite film surfaces, for controllable liquid transportation, via modulation of the magnetic field. The liquid transportation process can be interrupted and restarted on the porous composite film because its pore structure can be quickly closed and opened owing to the adaptive morphological transformation of the magnetic liquid with a varying magnetic field. That is, the liquid permeation process occurs due to the open pore structure of the composite film when the external magnetic field is added, while the permeation process can be interrupted owing to the self-repairing closure of the pore when the magnetic field is removed, and the moving process can be achieved. Thus a magnetic field induced switchable porous composite film can serve as a valve to control liquid permeation based transportation, which opens new avenues for artificial liquid gating devices for flow, smart separation, and droplet microfluidics.
Collapse
Affiliation(s)
- Zhenning Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Zhengyu Cao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jiangang Qian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100191, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
16
|
Xu C. Facial fabrication of superhydrophobic cellulose film with hierarchical morphologies. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang‐Lian Xu
- College of Environmental Sciences Sichuan Agricultural University‐Chengdu Campus Chengdu China
| |
Collapse
|
17
|
Xu Y, Huang T, Meng M, Yan Y. Fluorescent polydopamine based molecularly imprinted sensor for ultrafast and selective detection of p-nitrophenol in drinking water. Mikrochim Acta 2021; 189:25. [PMID: 34897555 DOI: 10.1007/s00604-021-05106-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022]
Abstract
A highly effective fluorescent molecularly imprinted sensor (F-PDA-MIS) based on fluorescent polydopamine (F-PDA) was successfully synthesized for selective and ultrafast detection of p-nitrophenol (P-NP) in drinking water. F-PDA with abundant surface functional groups has been artfully modified to firstly serve as both fluorescent monomer and functional monomer in the synthesis of a uniform luminous F-PDA-MIS, which can greatly improve the detection efficiency. As expected, F-PDA-MIS had an obvious emission wavelength of 535 nm with the optimal excitation wavelength at 400 nm. Specially, F-PDA-MIS could detect P-NP in the range 100 to 1100 nM with much lower detection limit of 24.2 nM within 120 s compared with other conventional imprinted fluorescent sensors based on pure quantum dots (QDs) or dyes. This excellent test phenomenon is mainly ascribed to the rapid electron transfer between F-PDA and P-NP. Satisfactory recovery of 98.0-104% for mineral water and 98.6-106% for boiling water were obtained with relative standard deviations (RSDs) of 2.7-3.4% and 2.6-3.5% respectively. The detection reliability of F-PDA-MIS was verified by the comparison with high-performance liquid chromatography (HPLC-UV). Consequently, F-PDA as a fluorescence functional monomer has been shown to be a possible strategy to effectively improve the detection limit and shorten response time of the target determination in water..
Collapse
Affiliation(s)
- Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Huang
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Zhai X, Cheng S, Wang H, Zhang C, Li Y, Dong W. Fast preparation of Fe 3O 4@polydopamine/Au for highly efficient degradation of tetracycline. CHEMOSPHERE 2021; 285:131523. [PMID: 34265702 DOI: 10.1016/j.chemosphere.2021.131523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
This work reported the fast synthesis of magnetic polydopamine Au-Fenton catalyst (Fe3O4@PDA/Au) under UV irradiation at 365 nm. The microstructure of prepared nanocomposites was characterized by various techniques. The effects of several key factors (pH values, H2O2 content and TC concentration) of tetracycline (TC) degradation were evaluated. The results revealed that the TC and total organic carbon (TOC) removal rate reached up to 98.16% and 93.14% within 300 min under optimal conditions (pH 3, H2O2 80 μL, TC concentration 20 mg/L). Besides, HO radicals were generated during the Fenton-like degradation process and the plausible degradation mechanism was discussed. Moreover, Fe3O4@PDA/Au catalyst retained excellent catalytic capacity (TC removal rate 96.94% and TOC removal rate 87.69%) and exhibited fantastic stability after six cycles. Moreover, metal ions leaching was evaluated (0.023 mg/L). Altogether, the novel Fe3O4@PDA/Au Fenton-like catalyst is highly promising for wastewater management.
Collapse
Affiliation(s)
- Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yan Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
19
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
20
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Reproducible and fast preparation of superhydrophobic surfaces via an ultrasound-accelerated one-pot approach for oil collection. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Bian Y, Wang H, Xu J, Wang Z, Du X, Wang Y, Du Y. Polydopamine-Ag composite surface guides HBMSCs adhesion and proliferation. Biomed Mater 2021; 16:025003. [PMID: 33470977 DOI: 10.1088/1748-605x/abdd6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) are regarded as an important resource in the field of maxillofacial bone regeneration because of their favorable properties when compared with other stem cells. Hence, finding suitable materials that could extend the application of HBMSCs has become an emerging medical topic and socioeconomic problem. In this work, polydopamine (PDA)-Ag surface was fabricated by PDA assisted photoreduction method, and the obtained PDA-Ag composite surface significantly promoted HBMSCs adhesion and proliferation. This effect is highly related to the amount of Ag nanoparticles (Ag NPs) present on the PDA surface. The behavior of HBMSCs on PDA-Ag surface could be spatially manipulated by controlling the distribution of Ag NPs on PDA surface (by controlling UV light). The general adhesion property allows the PDA-Ag surface to be fabricated on various substrates, making it a simple, general and controllable method for the fabrication of bioactive surface for HBMSCs.
Collapse
Affiliation(s)
- Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China. Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zakia M, Yoo SI. Core-satellite assemblies of Au@polydopamine@Ag nanoparticles for photothermal-mediated catalytic reaction. SOFT MATTER 2020; 16:10252-10259. [PMID: 33125027 DOI: 10.1039/d0sm01656j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineering plasmonic nanoparticles (NPs) into superstructures comprising two or more distinctive materials is highly desirable because these assemblies can unfold new properties that differ from those exhibited by their individual counterparts. In addition, metal NPs such as Au NPs and Ag NPs have played a major role in environmental remediation. In this study, we designed a heterogeneous NP assembly composed of an Au core and Ag satellite by utilizing a mussel-inspired polydopamine (PDA) strategy. This approach afforded substantial enhancement in the catalytic activity because of the synergistic effect between the Au core and Ag satellite. Specifically, the heat from the localized surface plasmon resonance excitation of the Au NPs can accelerate the reduction reaction of 4-nitrophenol, while the Ag NPs act as a catalyst for reducing the activation energy. Overall, we prepared a facile route to produce heterogeneous metal NP assemblies, which offers promise in scalable synthesis and application in heterogeneous catalysis.
Collapse
Affiliation(s)
- Maulida Zakia
- Department of Polymer Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| | | |
Collapse
|
24
|
Sun N, Zhu Z, Zeng G. Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140822. [PMID: 32758995 DOI: 10.1016/j.scitotenv.2020.140822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Developing superwetting membranes with interconnected pore and multi-scale roughness for efficient oily water separation is significant but challenging owing to the limitations of low water flux and membrane fouling. Herein, we report a scalable method to develop superwetting membranes with superhydrophilicity and underwater superoleophobicity for oily water separation. This novel approach, composed of electrospinning/electrospraying of polyacrylonitrile (PAN), was to fabricate rough sphere membrane substrate, followed by in-situ polymerization of dopamine/polyethyleneimine (DA/PEI) to positively charge the fiber skin and then subsequent immersed into the negatively charged Ludox solution to construct rough membrane surface via electrostatic attraction. Benefiting from the rough sphere surface of the fibrous skin layer, the resultant membrane displayed micro/nanostructured surfaces with intriguing in-air superhydrophilicity of 0° and underwater superoleophobicity of 166° as well as robust oil-proof pressure of 83.55 kPa. As a proof-of-concept, the resultant membrane achieved high water flux and oil rejection efficiency as well as fantastic durability and antifouling performance toward the separation of highly emulsified oily water. The integration of electrospinning/electrospraying with bioinspired method is also expected to fabricate superwetting sphere surface membrane with interconnected pores for other selective separation applications.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
25
|
Chen Z, Yang W, Chen Y, Yin X, Liu Y. Smart coatings embedded with polydopamine-decorated layer-by-layer assembled SnO2 nanocontainers for the corrosion protection of 304 stainless steels. J Colloid Interface Sci 2020; 579:741-753. [DOI: 10.1016/j.jcis.2020.06.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/16/2023]
|
26
|
Fang Q, Xu K, Zhang J, Xiong Q, Duan J, Xuan S. Hybrid Polydopamine/Ag Shell-Encapsulated Magnetic Fe 3O 4 Nanosphere with High Antibacterial Activity. MATERIALS 2020; 13:ma13173872. [PMID: 32887245 PMCID: PMC7504453 DOI: 10.3390/ma13173872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
The bacteria, which usually contaminate water environment, often cause terrible infectious diseases thus seriously threaten people's health. To meet the increasing requirement of the public health care, an easily separable nanomaterial with sustainable anti-bacteria performance is required. This work reports a Fe3O4@PDA/Ag/PDA core-shell nanosphere in which the Ag nanocrystals immobilized on the magnetic carrier are protected by an external polydopamine (PDA) layer. The magnetic hybrid nanospheres are constructed by a tunable coating method and the particle parameters can be effectively controlled by the experimental condition. The antibacterial potential of the nanospheres is evaluable by using the Staphylococcus aureus and Escherichia coli as the models. The results indicate the Fe3O4@PDA/Ag/PDA core-shell nanospheres have a high antibacterial performance by measuring the minimum inhibitory concentration and the minimum bactericidal concentration. Finally, the product is expected to have a sustainable activity because the protecting PDA layer reduce the releasing rate of the Ag+ ions and the materials can be magnetically recovered from the media after the disinfection procedure.
Collapse
Affiliation(s)
- Qunling Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
- Correspondence: (Q.F.); (S.X.)
| | - Kezhu Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Jianfeng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Qingshan Xiong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Jinyu Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (K.X.); (J.Z.); (Q.X.); (J.D.)
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Q.F.); (S.X.)
| |
Collapse
|
27
|
Wang M, Peng M, Zhu J, Li YD, Zeng JB. Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr Polym 2020; 244:116449. [DOI: 10.1016/j.carbpol.2020.116449] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
|
28
|
Bioinspired surfaces with strong water adhesion by electropolymerization of thieno[3,4-b]thiophene with mixed hydrocarbon/short fluorocarbon chains. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Wu L, Zhang X, Anthony Thorpe J, Li L, Si Y. Mussel-inspired polydopamine functionalized recyclable coconut shell derived carbon nanocomposites for efficient adsorption of methylene blue. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Development, characterization and evaluation of the biocompatibility of catechol crosslinked horsegram protein films. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Ting Gu, Zhu D, Lu S. Surface Functionalization of Silver-Coated Aramid Fiber. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
He X, Wang T, Huang J, Chen J, Li J. Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116675] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Fan L, Xie J, Zhang Z, Zheng Y, Yao D, Li T. Magnetically recoverable Fe 3O 4@polydopamine nanocomposite as an excellent co-catalyst for Fe 3+ reduction in advanced oxidation processes. J Environ Sci (China) 2020; 92:69-78. [PMID: 32430134 DOI: 10.1016/j.jes.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 06/11/2023]
Abstract
Advanced oxidation processes are widely applied to removal of persistent toxic substances from wastewater by hydroxyl radicals (·OH), which is generated from hydrogen peroxide (H2O2) decomposition. However, their practical applications have been hampered by many strict conditions, such as iron sludge, rigid pH condition, large doses of hydrogen peroxide and Fe2+, etc. Herein, a magnetically recyclable Fe3O4@polydopamine (Fe3O4@PDA) core-shell nanocomposite was fabricated. As an excellent reducing agent, it can convert Fe3+ to Fe2+. Combined with the coordination of polydopamine and ferric ions, the production of iron sludge is inhibited. The minimum concentration of hydrogen peroxide (0.2 mmol/L and Fe2+ (0.18 mmol/L)) is 150-fold and 100-fold lower than that of previous reports, respectively. It also exhibits excellent degradation performance over a wide pH range from 3.0 to 9.0. Even after the tenth recycling, it still achieves over 99% degradation efficiency with the total organic carbon degradation rate of 80%, which is environmentally benign and has a large economic advantage. This discovery paves a way for extensive practical application of advanced oxidation processes, especially in environmental remediation.
Collapse
Affiliation(s)
- Ling Fan
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinliang Xie
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhilin Zhang
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaping Zheng
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongdong Yao
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ting Li
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
34
|
Robust porous organosilica monoliths via a surfactant-free high internal phase emulsion process for efficient oil-water separation. J Colloid Interface Sci 2020; 566:338-346. [DOI: 10.1016/j.jcis.2020.01.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/21/2022]
|
35
|
Das A, Maji K, Naskar S, Manna U. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem Sci 2020; 11:6556-6566. [PMID: 34094121 PMCID: PMC8152583 DOI: 10.1039/d0sc00517g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022] Open
Abstract
Highly flexible and two-dimensional (2D) graphene oxide (GO) nanosheets have remained instrumental for developing different functional materials for practically relevant applications. In general, 2D GO is routinely assembled into different structures (i.e. layered, porous, etc.) for achieving desired properties. However, a facile approach for modifying GO nanosheets with (1) hierarchical topography and (2) desired chemistry is rare in the literature. In this report, adequate optimization of both hierarchical topography and low surface energy chemistry in a confined space (in the order of μm dimensions) of GO nanosheets is unprecedentedly carried out for achieving magnetically active and 2D 'confined-super-water-repellence'. A chemically reactive polymeric complex was covalently deposited on the GO-nanosheets through a facile 1,4-conjugate addition reaction for adopting a chemically reactive and hierarchically featured polymeric interface. Simultaneously, the deposition of iron oxide nanoparticles on the 2D-nanosheets rendered the entire material magnetically active. The post-covalent modification of these chemically/magnetically active and hierarchically featured GO-nanosheets with octadecylamine (ODA) yielded magnetically active and 2D 'confined-superhydrophobicity'. Further, this synthesized material was extended for addressing highly relevant and severe global challenges of 'oil-in-water' and 'water-in-oil' emulsion separation by either selective collection (with an efficiency of above 1000 wt%) of tiny oil-droplets from bulk water or forming magnetically active 'Pickering-type' aqueous droplets, respectively, under various practically relevant harsh conditions, including extremes of pH, salinity, surfactant contamination, etc. Further, appropriate functionalization of this chemically/magnetically active 2D nano-interface could be useful in developing functional interfaces for various applications related to energy, catalysis and healthcare.
Collapse
Affiliation(s)
- Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Kousik Maji
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Sarajit Naskar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
36
|
Kong Q, Li Z, Zhang Z, Ren X. Functionalization of PET fabric via silicone based organic–inorganic hybrid coating. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Cheng H, Li Z, Li Y, Shi Z, Bao M, Han C, Wang Z. Multi-functional magnetic bacteria as efficient and economical Pickering emulsifiers for encapsulation and removal of oil from water. J Colloid Interface Sci 2020; 560:349-358. [DOI: 10.1016/j.jcis.2019.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022]
|
38
|
Study on oil-water separation of selective-wettability meshes with different Micro/Nano structures. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Alp G, Alp E, Aydogan N. Magnetic liquid marbles to facilitate rapid manipulation of the oil phase: Synergistic effect of semifluorinated ligand and catanionic surfactant mixtures. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Hou Y, Duan C, Zhu G, Luo H, Liang S, Jin Y, Zhao N, Xu J. Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Facile fabrication of superhydrophobic polyurethane sponge towards oil-water separation with exceptional flame-retardant performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115801] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Lu D, Zhou J, Hou S, Xiong Q, Chen Y, Pu K, Ren J, Duan H. Functional Macromolecule-Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902733. [PMID: 31463987 DOI: 10.1002/adma.201902733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of well-defined inorganic colloidal nanostructures using functional macromolecules is an enabling technology that offers the possibility of fine-tuning the physicochemical properties of nanomaterials and has contributed to a broad range of practical applications. The utilization of functional reactive polymers and their colloidal assemblies leads to a high level of control over structural parameters of inorganic nanoparticles that are not easily accessible by conventional methods based on small-molecule ligands. Recent advances in polymerization techniques for synthetic polymers and newly exploited functions of natural biomacromolecules have opened up new avenues to monodisperse and multifunctional nanostructures consisting of integrated components with distinct chemistries but complementary properties. Here, the evolution of colloidal synthesis of inorganic nanoparticles is revisited. Then, the new developments of colloidal synthesis enabled by functional macromolecules and practical applications associated with the resulting optical, catalytic, and structural properties of colloidal nanostructures are summarized. Finally, a perspective on new and promising pathways to novel colloidal nanostructures built upon the continuous development of polymer chemistry, colloidal science, and nanochemistry is provided.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiajing Zhou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
43
|
Chen X, Song L, Jiang X, Zhang X. Bioinspired superhydrophobic–superhydrophilic convertible film based on anisotropic red blood cell-like particles with protuberances. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
“Living” electrospray – A controllable polydopamine nano-coating strategy with zero liquid discharge for separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Du J, Jing C. One-step fabrication of dopamine-inspired Au for SERS sensing of Cd2+ and polycyclic aromatic hydrocarbons. Anal Chim Acta 2019; 1062:131-139. [DOI: 10.1016/j.aca.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 11/26/2022]
|
46
|
Echeverri M, Patil A, Xiao M, Li W, Shawkey MD, Dhinojwala A. Developing Noniridescent Structural Color on Flexible Substrates with High Bending Resistance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21159-21165. [PMID: 31094502 DOI: 10.1021/acsami.9b04560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanostructured materials producing structural colors have great potential in replacing toxic metals or organic pigments. Electrophoretic deposition (EPD) is a promising method for producing these materials on a large scale, but it requires improvements in brightness, saturation, and mechanical stability. Herein, we use EPD assembly to codeposit silica (SiO2) particles with precursors of synthetic melanin, polydopamine (PDA), to produce mechanically robust, wide-angle structurally colored coatings. We use spectrophotometry to show that PDA precursors enhance the saturation of structural colors and nanoscratch testing to demonstrate that they stabilize particles within the EPD coatings. Stabilization by PDA precursors allows us to coat flexible substrates that can sustain bending stresses, opening an avenue for electroprinting on flexible materials.
Collapse
Affiliation(s)
- Mario Echeverri
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Anvay Patil
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Ming Xiao
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Weiyao Li
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Biology Department , University of Ghent , 9000 Ghent , Belgium
| | - Ali Dhinojwala
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
47
|
Wang Z, Li T, Yu J, Hu Z, Zhu J, Wang Y. General Bioinspired, Innovative Method for Fabrication of Surface-Nickeled Meta-aramid Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zengxiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ting Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
48
|
Zhang M, Li L, Li B, Tian N, Yang M, Zhang H, You C, Zhang J. Adsorption of DNA by using polydopamine modified magnetic nanoparticles based on solid-phase extraction. Anal Biochem 2019; 579:9-17. [PMID: 31078490 DOI: 10.1016/j.ab.2019.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
A polydopamine magnetic composite (PDA@Fe3O4) was prepared for the extraction of human genomic DNA and characterized by transmission electron microscopy, X-ray diffraction, FT-IR spectrometer, zeta potential and vibrating sample magnetometry. PDA@Fe3O4 based on magnetic solid phase extraction (MSPE) method have highly efficient capture of genomic deoxyribonucleic acid (DNA)and gene fragments ranging from about 100 bp to 200 bp. Compared with commercial beads (Shenggong, China) and spin column nucleic acid extraction kit (Tiangen, China), the PDA coated magnetic nanoparticles display superior genomic DNA extraction capacity (116 mg/g) and yield (90.2%). The isolation protocol used the solutions (composed of PEG and NaCl) with a specific pH for the binding and release of DNA. The procedure can be attributed to the charge switch of amino and hydroxyl groups on surface of the magnetic particle. The extracted DNA with high quality (A260/A280 = 1.82 ± 0.04) can be directly used as template for polymerase chain reaction (PCR) followed by agarose gel electrophoresis. The results showed the new composite to be an ideal adsorbent for separation of DNA which had the advantage of its low cost, high extraction capacity and yield.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory Medicine Center, Lanzhou University Second Hospital, 730030, Lanzhou, China
| | - Lingxiao Li
- Center of Eco-material and Green Chemistry, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Bucheng Li
- Center of Eco-material and Green Chemistry, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Ning Tian
- Center of Eco-material and Green Chemistry, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Meijuan Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, 730030, Lanzhou, China
| | - Hui Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, 730030, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, 730030, Lanzhou, China.
| | - Junping Zhang
- Center of Eco-material and Green Chemistry, Chinese Academy of Sciences, Lanzhou, 730000, PR China.
| |
Collapse
|
49
|
Wang H, Lin Q, Yin L, Yang Y, Qiu Y, Lu C, Yang H. Biomimetic Design of Hollow Flower-Like g-C3N4@PDA Organic Framework Nanospheres for Realizing an Efficient Photoreactivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900011. [PMID: 30913378 DOI: 10.1002/smll.201900011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Organic framework polymers have attracted much interest due to the enormous potential design space offered by the atomically precise spatial assembly of organic molecular building blocks. The morphology control of organic frameworks is a complex issue that hinders the development of organic frameworks for practical applications. Biomimetic self-assembly is a promising approach for designing and fabricating multiple-functional nanoarchitectures. A bioinspired hollow flower-like organic framework nanosphere heterostructure comprised of carbon nitride and polydopamine (g-C3N4@PDA) is successfully synthesized via a mild and green method. This heterostructure can effectively avoid the agglomeration of nanosheets to better access the hollow nanospheres with high open-up specific surface area. The electron delocalization of g-C3N4 and PDA under visible light can largely promote photoelectron transfer and enhance the photocatalytic activity of the g-C3N4@PDA. Furthermore, the g-C3N4@PDA can effectively enhance the generation of reactive oxygen species under irradiation, which can lead to cell apoptosis and enhance the performance for cancer therapy. Therefore, the as-prepared g-C3N4@PDA provides a paradigm of highly efficient photocatalyst that can be used as nanomedicine toward cancer therapy. This study could open up a new avenue for exploiting more other potential hollow nanosphere organic frameworks.
Collapse
Affiliation(s)
- Haihui Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qianying Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Litian Yin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuling Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuan Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
50
|
Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|