1
|
Tong Y, Childs-Disney JL, Disney MD. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40. Br J Pharmacol 2024; 181:4152-4173. [PMID: 39224931 DOI: 10.1111/bph.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
RNA plays important roles in regulating both health and disease biology in all kingdoms of life. Notably, RNA can form intricate three-dimensional structures, and their biological functions are dependent on these structures. Targeting the structured regions of RNA with small molecules has gained increasing attention over the past decade, because it provides both chemical probes to study fundamental biology processes and lead medicines for diseases with unmet medical needs. Recent advances in RNA structure prediction and determination and RNA biology have accelerated the rational design and development of RNA-targeted small molecules to modulate disease pathology. However, challenges remain in advancing RNA-targeted small molecules towards clinical applications. This review summarizes strategies to study RNA structures, to identify small molecules recognizing these structures, and to augment the functionality of RNA-binding small molecules. We focus on recent advances in developing RNA-targeted small molecules as potential therapeutics in a variety of diseases, encompassing different modes of actions and targeting strategies. Furthermore, we present the current gaps between early-stage discovery of RNA-binding small molecules and their clinical applications, as well as a roadmap to overcome these challenges in the near future.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Jackson PA, Kisty E, Pradhan V, Swank C, Bohrer L, Nolan TL, Weerapana E, Lapinsky DJ. Appendage- and Scaffold-Diverse Electrophilic and Photoreactive Probes for Integrated Phenotypic Screening-Target Identification Campaigns via a Minimalist Bifunctional Isocyanide. ACS OMEGA 2024; 9:42557-42570. [PMID: 39431108 PMCID: PMC11483914 DOI: 10.1021/acsomega.4c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
One of the grand challenges in chemical biology is identifying a small-molecule modulator for all proteins within a proteome. To expand the variety and number of ligandable proteins for drug discovery, the objective of this study was to synthesize and evaluate the protein target profiles of electrophilic and photoreactive fully functionalized small-molecule probes (FFSMPs) featuring increased scaffold-, appendage-, and protein-reactive functional group (PRFG) diversity. FFSMPs contain: (1) a protein-binding motif, (2) an electrophilic or photoreactive PRFG for target protein capture, and (3) a terminal alkyne for click chemistry-based proteomic applications. These compounds can be directly applied in phenotypic screening programs to identify ligand-protein pairs in cells unbiasedly. Herein, we highlight 17 examples from 34 structurally diverse FFSMPs featuring five electrophiles, three photoreactive groups, and 15 chemical scaffolds. Essential to the synthesis of the FFSMPs was a new minimalist bifunctional isocyanide in an "isocyanide-based multicomponent reaction-Boc deprotection-arming" synthetic sequence. To the best of our knowledge, this is the first report concerning the preparation of appendage- and scaffold-diverse FFSMPs for integrated phenotypic screening-target identification campaigns with the ability to examine either electrophilic or photoreactive PRFGs. In contrast, the status quo for such studies has been appendage-diverse FFSMPs comprised of a single chemical scaffold and a single PRFG, which limits efficient target protein capture and/or chemical space sampling significantly in the quest for discovering new drug targets and/or compounds with novel mechanisms of action. Phenotypic screening of the electrophilic members of our library identified several FFSMPs with potent antiproliferative activity against MCF10CA1a breast cancer cells. One of these FFSMPs (Compound 4a) covalently targeted and potently inhibited protein disulfide isomerase A1 (PDIA1). This study supports the continued use of minimalist bifunctional isocyanides as valuable building blocks for preparing structurally diverse FFSMPs for integrated phenotypic screening-target identification campaigns.
Collapse
Affiliation(s)
- Paul A. Jackson
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eleni Kisty
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - Vandan Pradhan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Christopher Swank
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Luke Bohrer
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Tammy L. Nolan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eranthie Weerapana
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - David J. Lapinsky
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
3
|
Tong Y, Su X, Rouse W, Childs-Disney JL, Taghavi A, Zanon PRA, Kovachka S, Wang T, Moss WN, Disney MD. Transcriptome-Wide, Unbiased Profiling of Ribonuclease Targeting Chimeras. J Am Chem Soc 2024; 146:21525-21534. [PMID: 39047145 DOI: 10.1021/jacs.4c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Various approaches have been developed to target RNA and modulate its function with modes of action including binding and cleavage. Herein, we explored how small molecule binding is correlated with cleavage induced by heterobifunctional ribonuclease targeting chimeras (RiboTACs), where RNase L is recruited to cleave the bound RNA target, in a transcriptome-wide, unbiased fashion. Only a fraction of bound targets was cleaved by RNase L, induced by RiboTAC binding. Global analysis suggested that (i) cleaved targets generally form a region of stable structure that encompasses the small molecule binding site; (ii) cleaved targets have preferred RNase L cleavage sites nearby small molecule binding sites; (iii) RiboTACs facilitate a cellular interaction between cleaved targets and RNase L; and (iv) the expression level of the target influences the extent of cleavage observed. In one example, we converted a binder of LGALS1 (galectin-1) mRNA into a RiboTAC. In MDA-MB-231 cells, the binder had no effect on galectin-1 protein levels, while the RiboTAC cleaved LGALS1 mRNA, reduced galectin-1 protein abundance, and affected galectin-1-associated oncogenic cellular phenotypes. Using LGALS1, we further assessed additional factors including the length of the linker that tethers the two components of the RiboTAC, cellular uptake, and the RNase L-recruiting module on RiboTAC potency. Collectively, these studies may facilitate triangulation of factors to enable the design of RiboTACs.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Xiaoxuan Su
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Warren Rouse
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Patrick R A Zanon
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sandra Kovachka
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Tenghui Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
4
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Thangaraj M, Lialin K, Dandela R, Adepu R, David S, Mizrachi MS, Meijler MM. Four component Ugi reaction based small-molecule probes for integrated phenotypic screening. Bioorg Chem 2024; 146:107257. [PMID: 38493639 DOI: 10.1016/j.bioorg.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Quorum-sensing (QS) is a cell density-dependent signaling pathway regulated by gene expression for intra- and interspecies communication. We have targeted QS activity in Pseudomonas aeruginosa, an opportunistic human pathogen that causes disease in immunocompromised patients, with a set of probes containing a variety of functional groups, including photoreactive (diazirine) and affinity (alkyne) moieties, that were synthesized using a four-component Ugi reaction (Ugi-4CR).
Collapse
Affiliation(s)
- Manikandan Thangaraj
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Ksenia Lialin
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Industrial & Engineering Chemistry, Institute of Chemical Technology - Indian Oil Odisha Campus, India
| | - Raju Adepu
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Natural Products & Medicinal Chemistry CSIR, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Shimrit David
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Meital Shema Mizrachi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel.
| |
Collapse
|
6
|
Bathla P, Mujawar A, De A, Sandanaraj BS. Development of Noninvasive Activity-Based Protein Profiling-Bioluminescence Resonance Energy Transfer Platform Technology Enables Target Engagement Studies with Absolute Specificity in Living Systems. ACS Pharmacol Transl Sci 2024; 7:375-383. [PMID: 38357276 PMCID: PMC10863430 DOI: 10.1021/acsptsci.3c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024]
Abstract
Noninvasive, real-time, longitudinal imaging of protein functions in living systems with unprecedented specificity is one of the critical challenges of modern biomedical research. Toward that goal, here, we report a platform fusion technology called activity-based protein profiling-bioluminescence resonance energy transfer (ABPP-BRET). This method provides an opportunity to study the post-translational modification of a target protein in real time in living systems in a longitudinal manner. This semisynthetic BRET biosensor method is used for target engagement studies and further for inhibitor profiling in live cells. The simplicity of this method coupled with the critical physical distance-dependent BRET readout turned out to be a powerful method, thus pushing the activity-based protein profiling technology to the next level.
Collapse
Affiliation(s)
- Punita Bathla
- Department
of Biology, Department of Chemistry, Indian
Institute of Science Education and Research, Pune 411008, India
| | - Aaiyas Mujawar
- Molecular
Functional Imaging Lab, Advanced Centre
for Treatment Research Education in Cancer (ACTREC), Navi Mumbai 410210, India
- Homi
Bhabha National Institute, Mumbai 400094, India
| | - Abhijit De
- Molecular
Functional Imaging Lab, Advanced Centre
for Treatment Research Education in Cancer (ACTREC), Navi Mumbai 410210, India
- Homi
Bhabha National Institute, Mumbai 400094, India
| | - Britto S. Sandanaraj
- Department
of Biology, Department of Chemistry, Indian
Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
7
|
Wen Y, Liu WY, Wang JH, Yu YL, Chen S. Simultaneous Imaging of Multiple miRNAs in Mitochondria Controlled by Fluorescently Encoded Upconversion Optical Switches for Drug Resistance Studies. Anal Chem 2023; 95:12152-12160. [PMID: 37535000 DOI: 10.1021/acs.analchem.3c02403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.
Collapse
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Hang HC. Benjamin F. Cravatt III – Chemical Proteomics Trailblazer. Isr J Chem 2023. [DOI: 10.1002/ijch.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research La Jolla CA 92037
- Department of Chemistry, Scripps Research La Jolla CA 92037
| |
Collapse
|
9
|
Ngo C, Ekanayake A, Zhang C. Identification of Covalent Ligands – from Single Targets to Whole Proteome. Isr J Chem 2023. [DOI: 10.1002/ijch.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chau Ngo
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
| | - Arunika Ekanayake
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
- Current address: Department of Chemistry University of Alberta T6G 2G2 Edmonton AB Canada
| | - Chao Zhang
- Department of Chemistry Loker Hydrocarbon Research Institute University of Southern California 90089 Los Angeles California USA
| |
Collapse
|
10
|
Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis. Cells 2022; 11:cells11233739. [PMID: 36496998 PMCID: PMC9737320 DOI: 10.3390/cells11233739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.
Collapse
|
11
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| |
Collapse
|
12
|
Bhatt M, Shende P. Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures. J Mater Chem B 2022; 10:1176-1195. [PMID: 35119060 DOI: 10.1039/d1tb02455h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The surface patterning of protein using fabrication or the external functionalization of structures demonstrates various applications in the biomedical field for bioengineering, biosensing and antifouling. This review article offers an outline of the existing advances in protein patterning technology with a special emphasis on the current physical and physicochemical methods, including stencil patterning, trap- and droplet-based microfluidics, and chemical modification of surfaces via photolithography, microcontact printing and scanning probe nanolithography. Different approaches are applied for the biological studies of recent trends for single-protein patterning technology, such as robotic printing, stencil printing and colloidal lithography, wherein the concepts of physical confinement, electrostatic and capillary forces, as well as dielectrophoretics, are summarised to understand the design approaches. Photochemical alterations with diazirine, nitrobenzyl and aryl azide functional groups for the implication of modified substrates, such as self-assembled monolayers functionalized with amino silanes, organosilanes and alkanethiols on gold surfaces, as well as topographical effects of patterning techniques for protein functionalization and orientation, are discussed. Analytical methods for the evaluation of protein functionality are also mentioned. Regarding their selectivity, protein pattering methods will be readily used to fabricate modified surfaces and target-specific delivery systems for the transportation of macromolecules such as streptavidin, and albumin. Future applications of patterning techniques include high-throughput screening, the evaluation of intracellular interactions, accurate screening and personalized treatments.
Collapse
Affiliation(s)
- Maitri Bhatt
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
13
|
Knight S, Gianni D, Hendricks A. Fragment-based screening: A new paradigm for ligand and target discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:3-7. [PMID: 35058174 DOI: 10.1016/j.slasd.2021.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Significant advances in fragment-based screening, including the emergence of Fully Functionalised Fragments (FFFs) and innovations in Covalent Fragment screening are providing a new paradigm for ligand and target discovery. FFFs offer some key distinct advantages over other screening modalities such as small molecules and genetic screens, including 1) An ability to access diverse chemical space employing a relatively small compound set 2) Ease of screen optimisation given there is no requirement for genetic manipulation and 3) Built-in proteomics tools to facilitate rapid target deconvolution directly in cells. Covalent fragments enable exploration of novel druggable nodes through irreversible fragment-cysteine interactions, complementing their fully functionalized counterparts. Both FFFs and Covalent fragments present the phenotypic screening community with an additional and complementary approach for disease centric target identification.
Collapse
Affiliation(s)
- Sinéad Knight
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK; Bioscience, Sygnature Discovery Ltd, Alderley Park, Cheshire, UK.
| | - Davide Gianni
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Adam Hendricks
- Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, Boston, USA; Civetta Therapeutics, 10 Wilson Road, Cambridge, MA 02140
| |
Collapse
|
14
|
Ayotte Y, Bernet E, Bilodeau F, Cimino M, Gagnon D, Lebughe M, Mistretta M, Ogadinma P, Ouali SL, Sow AA, Chatel-Chaix L, Descoteaux A, Manina G, Richard D, Veyrier F, LaPlante SR. Fragment-Based Phenotypic Lead Discovery To Identify New Drug Seeds That Target Infectious Diseases. ACS Chem Biol 2021; 16:2158-2163. [PMID: 34699722 DOI: 10.1021/acschembio.1c00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragment-based lead discovery has emerged over the last decades as one of the most powerful techniques for identifying starting chemical matter to target specific proteins or nucleic acids in vitro. However, the use of such low-molecular-weight fragment molecules in cell-based phenotypic assays has been historically avoided because of concerns that bioassays would be insufficiently sensitive to detect the limited potency expected for such small molecules and that the high concentrations required would likely implicate undesirable artifacts. Herein, we applied phenotype cell-based screens using a curated fragment library to identify inhibitors against a range of pathogens including Leishmania, Plasmodium falciparum, Neisseria, Mycobacterium, and flaviviruses. This proof-of-concept shows that fragment-based phenotypic lead discovery (FPLD) can serve as a promising complementary approach for tackling infectious diseases and other drug-discovery programs.
Collapse
Affiliation(s)
- Yann Ayotte
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Eve Bernet
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Mena Cimino
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Dominic Gagnon
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Marthe Lebughe
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Maxime Mistretta
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Paul Ogadinma
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Sarah-Lisa Ouali
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Laurent Chatel-Chaix
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Giulia Manina
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Dave Richard
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Frédéric Veyrier
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Steven R. LaPlante
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
15
|
Hsu KL. Shining a Light on Phenotypic Drug Discovery. Cell Chem Biol 2021; 28:115-117. [PMID: 33607003 DOI: 10.1016/j.chembiol.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Cell Chemical Biology, Seneviratne et al. (2020) combine photoaffinity labeling and quantitative chemical proteomics to identify the molecular target of a lead compound discovered from a phenotypic drug screen. Their work showcase the power of coupling a photoreactive group to screening hits for rapid target deconvolution.
Collapse
Affiliation(s)
- Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
16
|
Craven GB, Briggs EL, Zammit CM, McDermott A, Greed S, Affron DP, Leinfellner C, Cudmore HR, Tweedy RR, Luisi R, Bull JA, Armstrong A. Synthesis and Configurational Assignment of Vinyl Sulfoximines and Sulfonimidamides. J Org Chem 2021; 86:7403-7424. [PMID: 34003635 DOI: 10.1021/acs.joc.1c00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vinyl sulfones and sulfonamides are valued for their use as electrophilic warheads in covalent protein inhibitors. Conversely, the S(VI) aza-isosteres thereof, vinyl sulfoximines and sulfonimidamides, are far less studied and have yet to be applied to the field of protein bioconjugation. Herein, we report a range of different synthetic methodologies for constructing vinyl sulfoximine and vinyl sulfonimidamide architectures that allows access to new areas of electrophilic chemical space. We demonstrate how late-stage functionalization can be applied to these motifs to incorporate alkyne tags, generating fully functionalized probes for future chemical biology applications. Finally, we establish a workflow for determining the absolute configuration of enantioenriched vinyl sulfoximines and sulfonimidamides by comparing experimentally and computationally determined electronic circular dichroism spectra, enabling access to configurationally assigned enantiomeric pairs by separation.
Collapse
Affiliation(s)
- Gregory B Craven
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K.,The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Edward L Briggs
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte M Zammit
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alexander McDermott
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Stephanie Greed
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Dominic P Affron
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Charlotte Leinfellner
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Hannah R Cudmore
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Ruth R Tweedy
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari, "A. Moro" Via E. Orabona 4, Bari 70125, Italy
| | - James A Bull
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Alan Armstrong
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
17
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Jörg M, Madden KS. The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Med Chem 2021; 12:646-665. [PMID: 34124668 PMCID: PMC8152813 DOI: 10.1039/d1md00022e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The reconnection of the scientific community with phenotypic drug discovery has created exciting new possibilities to develop therapies for diseases with highly complex biology. It promises to revolutionise fields such as neurodegenerative disease and regenerative medicine, where the development of new drugs has consistently proved elusive. Arguably, the greatest challenge in readopting the phenotypic drug discovery approach exists in establishing a crucial chain of translatability between phenotype and benefit to patients in the clinic. This remains a key stumbling block for the field which needs to be overcome in order to fully realise the potential of phenotypic drug discovery. Excellent quality chemical probes and chemistry-based target deconvolution techniques will be a crucial part of this process. In this review, we discuss the current capabilities of chemical probes and chemistry-based target deconvolution methods and evaluate the next advances necessary in order to fully support phenotypic screening approaches in drug discovery.
Collapse
Affiliation(s)
- Manuela Jörg
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
19
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Hussain N, Chhalodia AK, Ahmed A, Mukherjee D. Recent Advances in Metal‐Catalyzed Carbonylation Reactions by Using Formic Acid as CO Surrogate. ChemistrySelect 2020. [DOI: 10.1002/slct.202003395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nazar Hussain
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Anuj Kumar Chhalodia
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Ajaz Ahmed
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| |
Collapse
|
21
|
Tsukidate T, Li Q, Hang HC. Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells. ACS Chem Biol 2020; 15:2324-2330. [PMID: 32909738 DOI: 10.1021/acschembio.0c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The characterization of specific metabolite-protein interactions is important in chemical biology and drug discovery. For example, nuclear receptors (NRs) are a family of ligand-activated transcription factors that regulate diverse physiological processes in animals and are key targets for therapeutic development. However, the identification and characterization of physiological ligands for many NRs remains challenging, because of limitations in domain-specific analysis of ligand binding in cells. To address these limitations, we developed a domain-specific covalent chemical reporter for peroxisome proliferator-activated receptors (PPARs) and demonstrated its utility to screen and characterize the potency of candidate NR ligands in live cells. These studies demonstrate targeted and domain-specific chemical reporters provide excellent tools to evaluate endogenous and exogenous (diet, microbiota, therapeutics) ligands of PPARs in mammalian cells, as well as additional protein targets for further investigation.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Qiang Li
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
- Departments of Immunology and Microbiology, Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Castaldi MP, Hendricks JA, Zhang AX. 'Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development'. Curr Opin Chem Biol 2020; 56:91-97. [PMID: 32375076 DOI: 10.1016/j.cbpa.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Chemical probes are essential tools used to study and modulate biological systems. Here, we describe some of the recent scientific advancement in the field of chemical biology, as well as how the advent of new technologies is redefining the criteria of 'good' chemical probes and influencing the discovery of valuable drug leads. In this review, we report selected examples of the usage of linkered and linker-free chemical probes for target identification, biological discovery, and general mechanistic understanding. We also discuss the promises of chemogenomics libraries in phenotypic screens, as well as the limitation of their usage to identify the modulation of new targets and biology.
Collapse
Affiliation(s)
| | | | - Andrew X Zhang
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, USA
| |
Collapse
|
23
|
Madhusudhan N, Hu B, Mishra P, Calva-Moreno JF, Patel K, Boriack R, Ready JM, Nijhawan D. Target Discovery of Selective Non-Small-Cell Lung Cancer Toxins Reveals Inhibitors of Mitochondrial Complex I. ACS Chem Biol 2020; 15:158-170. [PMID: 31874028 DOI: 10.1021/acschembio.9b00734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective toxicity among cancer cells of the same lineage is a hallmark of targeted therapies. As such, identifying compounds that impair proliferation of a subset of non-small-cell lung cancer (NSCLC) cell lines represents one strategy to discover new drugs for lung cancer. Previously, phenotypic screens of 202 103 compounds led to the identification of 208 selective NSCLC toxins ( McMillan , E. A. , Cell , 2018 , 173 , 864 ). The mechanism of action for the majority of these compounds remains unknown. Here, we discovered the target for a series of quinazoline diones (QDC) that demonstrate selective toxicity among 96 NSCLC lines. Using photoreactive probes, we found that the QDC binds to both mitochondrial complex I of the electron transport chain and hydroxyacyl CoA dehydrogenase subunit alpha (HADHA), which catalyzes long-chain fatty acid oxidation. Inhibition of complex I is the on-target activity for QDC, while binding to HADHA is off-target. The sensitivity profile of the QDC across NSCLC lines correlated with the sensitivity profiles of six additional structurally distinct compounds. The antiproliferative activity of these compounds is also the consequence of binding to mitochondrial complex I, reflecting significant structural diversity among complex I inhibitors. Small molecules targeting complex I are currently in clinical development for the treatment of cancer. Our results highlight complex I as a target in NSCLC and report structurally diverse scaffolds that inhibit complex I.
Collapse
Affiliation(s)
- Nikhil Madhusudhan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bin Hu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Prashant Mishra
- Children’s Medical Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Josè F. Calva-Moreno
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Khushbu Patel
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Richard Boriack
- Department of Pathology and Laboratory Medicine, Children’s Health, Children’s Medical Center, Dallas, Texas 75235, United States
| | - Joseph M. Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Deepak Nijhawan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, United States
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
24
|
Hesp KD, Xiao J, West GM. Late-stage synthesis and application of photoreactive probes derived from direct benzoylation of heteroaromatic C–H bonds. Org Biomol Chem 2020; 18:3669-3673. [DOI: 10.1039/d0ob00336k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetically-driven, late-stage C–H benzoylation strategy for the expedited preparation and evaluation of heterocyclic alternatives to more classical benzophenone photoreactive probes is reported.
Collapse
Affiliation(s)
| | - Jun Xiao
- Pfizer
- Inc
- Medicine Design
- Groton
- USA
| | | |
Collapse
|
25
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
26
|
Choi HW, Wang L, Powell AF, Strickler SR, Wang D, Dempsey DA, Schroeder FC, Klessig DF. A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various diseases. Sci Rep 2019; 9:13084. [PMID: 31511554 PMCID: PMC6739329 DOI: 10.1038/s41598-019-49234-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Salicylic acid (SA) is the major metabolite and active ingredient of aspirin; both compounds reduce pain, fever, and inflammation. Despite over a century of research, aspirin/SA's mechanism(s) of action is still only partially understood. Here we report the results of a genome-wide, high-throughput screen to identify potential SA-binding proteins (SABPs) in human HEK293 cells. Following photo-affinity crosslinking to 4-azidoSA and immuno-selection with an anti-SA antibody, approximately 2,000 proteins were identified. Among these, 95 were enriched more than 10-fold. Pathway enrichment analysis with these 95 candidate SABPs (cSABPs) revealed possible involvement of SA in multiple biological pathways, including (i) glycolysis, (ii) cytoskeletal assembly and/or signaling, and (iii) NF-κB-mediated immune signaling. The two most enriched cSABPs, which corresponded to the glycolytic enzymes alpha-enolase (ENO1) and pyruvate kinase isozyme M2 (PKM2), were assessed for their ability to bind SA and SA's more potent derivative amorfrutin B1 (amoB1). SA and amoB1 bound recombinant ENO1 and PKM2 at low millimolar and micromolar concentrations, respectively, and inhibited their enzymatic activities in vitro. Consistent with these results, low millimolar concentrations of SA suppressed glycolytic activity in HEK293 cells. To provide insights into how SA might affect various human diseases, a cSABP-human disorder/disease network map was also generated.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Lei Wang
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | | | | | - Dekai Wang
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- College of life sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | |
Collapse
|
27
|
Jones LH. Expanding chemogenomic space using chemoproteomics. Bioorg Med Chem 2019; 27:3451-3453. [PMID: 31221609 DOI: 10.1016/j.bmc.2019.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/27/2023]
Abstract
Chemogenomics expedites the discovery of therapeutically-relevant targets from phenotypic screens. However, the vast majority of proteins in the proteome lack selective pharmacological modulators, necessitating the development of new technologies that significantly expand chemogenomic space. Chemoproteomics has emerged as a robust platform to map small molecule-protein interactions in cells using functionalized chemical probes in conjunction with mass spectrometry analysis. Exploration of the ligandable proteome in this manner has led to the development of new pharmacological modulators of diverse proteins. Opportunities to further enhance the impact of chemoproteomics using medicinal chemical biology are described.
Collapse
Affiliation(s)
- Lyn H Jones
- Jnana Therapeutics, 50 Northern Avenue, Boston 02210, USA
| |
Collapse
|
28
|
Zhao W, Cross AR, Crowe‐McAuliffe C, Weigert‐Munoz A, Csatary EE, Solinski AE, Krysiak J, Goldberg JB, Wilson DN, Medina E, Wuest WM, Sieber SA. Der Naturstoff Elegaphenon verstärkt antibiotische Effekte gegen
Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weining Zhao
- Fakultät für ChemieCenter for Integrated Protein Science Munich (CIPSM)Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Ashley R. Cross
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and SleepDepartment of PediatricsEmory University School of Medicine Atlanta GA USA
- Microbiology and Molecular Genetics ProgramGraduate Division of Biological and Biomedical SciencesEmory University Atlanta GA USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease ResearchEmory University School of Medicine Atlanta GA USA
| | | | - Angela Weigert‐Munoz
- Fakultät für ChemieCenter for Integrated Protein Science Munich (CIPSM)Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | | | | | - Joanna Krysiak
- Fakultät für ChemieCenter for Integrated Protein Science Munich (CIPSM)Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Joanna B. Goldberg
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and SleepDepartment of PediatricsEmory University School of Medicine Atlanta GA USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease ResearchEmory University School of Medicine Atlanta GA USA
- Emory Antibiotic Resistance CenterEmory University Atlanta GA USA
| | - Daniel N. Wilson
- Institut für Biochemie und MolekularbiologieUniversität Hamburg 20146 Hamburg Deutschland
| | - Eva Medina
- Helmholtz Zentrum für Infektionsforschung Inhoffenstraße 7 38124 Braunschweig Deutschland
| | - William M. Wuest
- Emory+Children's Center for Cystic Fibrosis and Airway Disease ResearchEmory University School of Medicine Atlanta GA USA
- Department of ChemistryEmory University Atlanta GA USA
- Emory Antibiotic Resistance CenterEmory University Atlanta GA USA
| | - Stephan A. Sieber
- Fakultät für ChemieCenter for Integrated Protein Science Munich (CIPSM)Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
29
|
Zhao W, Cross AR, Crowe-McAuliffe C, Weigert-Munoz A, Csatary EE, Solinski AE, Krysiak J, Goldberg JB, Wilson DN, Medina E, Wuest WM, Sieber SA. The Natural Product Elegaphenone Potentiates Antibiotic Effects against Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2019; 58:8581-8584. [PMID: 30969469 DOI: 10.1002/anie.201903472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Natural products represent a rich source of antibiotics that address versatile cellular targets. The deconvolution of their targets via chemical proteomics is often challenged by the introduction of large photocrosslinkers. Here we applied elegaphenone, a largely uncharacterized natural product antibiotic bearing a native benzophenone core scaffold, for affinity-based protein profiling (AfBPP) in Gram-positive and Gram-negative bacteria. This study utilizes the alkynylated natural product scaffold as a probe to uncover intriguing biological interactions with the transcriptional regulator AlgP. Furthermore, proteome profiling of a Pseudomonas aeruginosa AlgP transposon mutant provided unique insights into the mode of action. Elegaphenone enhanced the elimination of intracellular P. aeruginosa in macrophages exposed to sub-inhibitory concentrations of the fluoroquinolone antibiotic norfloxacin.
Collapse
Affiliation(s)
- Weining Zhao
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Ashley R Cross
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Angela Weigert-Munoz
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | | | - Amy E Solinski
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Joanna Krysiak
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Joanna B Goldberg
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146, Hamburg, Germany
| | - Eva Medina
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - William M Wuest
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.,Department of Chemistry, Emory University, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA
| | - Stephan A Sieber
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
30
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jing Guan
- School of Biological Science, Jining Medical University, Jining, China
| | - Shun Ge
- School of Biological Science, Jining Medical University, Jining, China.
| | - Mian-Bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li-Rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. Applications of sulfuryl fluoride (SO2F2) in chemical transformations. Org Chem Front 2019. [DOI: 10.1039/c9qo00747d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of novel methodologies concerning the chemical, biological and medicinal applications of sulfuryl fluoride (SO2F2) gas have dramatically improved year by year.
Collapse
Affiliation(s)
- Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
32
|
You S, Yan C, Zhang R, Cai M. A convenient and practical heterogeneous palladium‐catalyzed carbonylative Suzuki coupling of aryl iodides with formic acid as carbon monoxide source. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shengyong You
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences Nanchang 330029 China
| | - Chenyu Yan
- Affiliated Middle School of Jiangxi Normal University Nanchang 330022 China
| | - Rongli Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
| | - Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
| |
Collapse
|
33
|
Zha GF, Fang WY, Li YG, Leng J, Chen X, Qin HL. SO2F2-Mediated Oxidative Dehydrogenation and Dehydration of Alcohols to Alkynes. J Am Chem Soc 2018; 140:17666-17673. [DOI: 10.1021/jacs.8b10069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, P.R. China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Xing Chen
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| |
Collapse
|
34
|
Jackson P, Lapinsky DJ. Appendage and Scaffold Diverse Fully Functionalized Small-Molecule Probes via a Minimalist Terminal Alkyne-Aliphatic Diazirine Isocyanide. J Org Chem 2018; 83:11245-11253. [DOI: 10.1021/acs.joc.8b01831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Jackson
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - David J. Lapinsky
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
35
|
Galmozzi A, Parker CG, Kok BP, Cravatt BF, Saez E. Discovery of Modulators of Adipocyte Physiology Using Fully Functionalized Fragments. Methods Mol Biol 2018; 1787:115-127. [PMID: 29736714 PMCID: PMC6010189 DOI: 10.1007/978-1-4939-7847-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Defects in adipocyte function associated with obesity drive the development of systemic insulin resistance and type 2 diabetes. Agents that correct obesity-linked adipocyte dysfunction serve as useful insulin sensitizers in humans, as is exemplified by the thiazolidinediones (TZDs). We have developed a new platform that integrates advanced chemoproteomics with phenotypic screening to identify small molecules that promote differentiation and lipid storage in adipocytes, and, in tandem, their molecular target(s). These molecules mimic the activity of TZDs in culture and thus may also serve as insulin sensitizers in vivo. Central to this platform is the use of fully functionalized fragment (FFF) probes that consist of a variable, fragment-like recognition element linked to an alkyne-diazirine group that enables the photoactivated capture of probe-bound proteins directly in living cells and subsequent copper-catalyzed azide-alkyne cycloaddition to reporter tags for enrichment and identification of these probe-bound proteins by mass spectrometry. This platform, which can be adapted to diverse screens and cell types beyond adipocytes, has the potential to uncover new biological pathways amenable to pharmacological modulation that may impact human disease.
Collapse
Affiliation(s)
- Andrea Galmozzi
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Christopher G Parker
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bernard P Kok
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
36
|
Cheng K, Lee JS, Hao P, Yao SQ, Ding K, Li Z. Tetrazole-Based Probes for Integrated Phenotypic Screening, Affinity-Based Proteome Profiling, and Sensitive Detection of a Cancer Biomarker. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke Cheng
- School of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology (KIST); Department of Biological Chemistry; University of Science & Technology; Republic of Korea
| | - Piliang Hao
- School of Life Science and Technology; ShanghaiTech University; China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; Singapore
| | - Ke Ding
- School of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhengqiu Li
- School of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
37
|
Cheng K, Lee JS, Hao P, Yao SQ, Ding K, Li Z. Tetrazole-Based Probes for Integrated Phenotypic Screening, Affinity-Based Proteome Profiling, and Sensitive Detection of a Cancer Biomarker. Angew Chem Int Ed Engl 2017; 56:15044-15048. [PMID: 28967196 DOI: 10.1002/anie.201709584] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Indexed: 01/10/2023]
Abstract
Target-identification phenotypic screening has been a powerful approach in drug discovery; however, it is hindered by difficulties in identifying the underlying cellular targets. To address this challenge, we have combined phenotypic screening of a fully functionalized small-molecule library with competitive affinity-based proteome profiling to map and functionally characterize the targets of screening hits. Using this approach, we identified ANXA2, PDIA3/4, FLAD1, and NOS2 as primary cellular targets of two bioactive molecules that inhibit cancer cell proliferation. We further demonstrated that a panel of probes can label and/or image annexin A2 (a cancer biomarker) from different cancer cell lines, thus providing opportunities for potential cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Cheng
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Department of Biological Chemistry, University of Science & Technology, Republic of Korea
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
38
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
39
|
Wang DY, Cao Y, Zheng LY, Chen LD, Chen XF, Hong ZY, Zhu ZY, Li X, Chai YF. Target Identification of Kinase Inhibitor Alisertib (MLN8237) by Using DNA-Programmed Affinity Labeling. Chemistry 2017; 23:10906-10914. [DOI: 10.1002/chem.201702033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Dong-Yao Wang
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Yan Cao
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Le-Yi Zheng
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Lang-Dong Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiao-Fei Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhan-Ying Hong
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhen-Yu Zhu
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiaoyu Li
- Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Yi-Feng Chai
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| |
Collapse
|
40
|
Hsu WS, Tsai MH, Barve IJ, Yellol GS, Sun CM. Synthesis of Aminofuran-Linked Benzimidazoles and Cyanopyrrole-Fused Benzimidazoles by Condition-Based Skeletal Divergence. ACS COMBINATORIAL SCIENCE 2017; 19:492-499. [PMID: 28445030 DOI: 10.1021/acscombsci.7b00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A condition-based skeletal divergent synthesis was explored to achieve skeletal diversity in two component condensation reaction. Cyanomethyl benzimidazole was reacted with α-bromoketone under thermal conditions to furnish 2-aminofuranyl-benzimidazoles, while the same reaction afforded 3-cyano-benzopyrrolo-imidazoles under microwave irradiation. Two nonequivalent nucleophilic centers on benzimidazole moiety were manipulated elegantly by different reaction conditions to achieve the skeletal diversity.
Collapse
Affiliation(s)
- Wei-Shun Hsu
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Min-Huan Tsai
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Indrajeet J. Barve
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Gorakh S. Yellol
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department
of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao-Tung University, Hsinchu 300-10, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
41
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 791] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
42
|
Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy. Chem Sci 2017; 8:5606-5615. [PMID: 30155229 PMCID: PMC6103005 DOI: 10.1039/c7sc01837a] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
Stimulated Raman scattering (SRS) microscopy in tandem with bioorthogonal Raman labelling enables intracellular drug concentrations, distribution and therapeutic response to be measured in living cells.
Stimulated Raman scattering (SRS) microscopy in tandem with bioorthogonal Raman labelling strategies is set to revolutionise the direct visualisation of intracellular drug uptake. Rational evaluation of a series of Raman-active labels has allowed the identification of highly active labels which have minimal perturbation on the biological efficacy of the parent drug. Drug uptake has been correlated with markers of cellular composition and cell cycle status, and mapped across intracellular structures using dual-colour and multi-modal imaging. The minimal phototoxicity and low photobleaching associated with SRS microscopy has enabled real-time imaging in live cells. These studies demonstrate the potential for SRS microscopy in the drug development process.
Collapse
Affiliation(s)
- William J Tipping
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh , EH9 3FJ , UK . .,Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK .
| | - Martin Lee
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK .
| | - Alan Serrels
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK .
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre , Institute of Genetics and Molecular Medicine , The University of Edinburgh , Crewe Road South , Edinburgh , EH4 2XR , UK .
| | - Alison N Hulme
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh , EH9 3FJ , UK .
| |
Collapse
|
43
|
Parker CG, Galmozzi A, Wang Y, Correia BE, Sasaki K, Joslyn CM, Kim AS, Cavallaro CL, Lawrence RM, Johnson SR, Narvaiza I, Saez E, Cravatt BF. Ligand and Target Discovery by Fragment-Based Screening in Human Cells. Cell 2017; 168:527-541.e29. [PMID: 28111073 DOI: 10.1016/j.cell.2016.12.029] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 01/28/2023]
Abstract
Advances in the synthesis and screening of small-molecule libraries have accelerated the discovery of chemical probes for studying biological processes. Still, only a small fraction of the human proteome has chemical ligands. Here, we describe a platform that marries fragment-based ligand discovery with quantitative chemical proteomics to map thousands of reversible small molecule-protein interactions directly in human cells, many of which can be site-specifically determined. We show that fragment hits can be advanced to furnish selective ligands that affect the activity of proteins heretofore lacking chemical probes. We further combine fragment-based chemical proteomics with phenotypic screening to identify small molecules that promote adipocyte differentiation by engaging the poorly characterized membrane protein PGRMC2. Fragment-based screening in human cells thus provides an extensive proteome-wide map of protein ligandability and facilitates the coordinated discovery of bioactive small molecules and their molecular targets.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Andrea Galmozzi
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yujia Wang
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno E Correia
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kenji Sasaki
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher M Joslyn
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Arthur S Kim
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cullen L Cavallaro
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08648, USA
| | - R Michael Lawrence
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08648, USA
| | - Stephen R Johnson
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08648, USA
| | - Iñigo Narvaiza
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Enrique Saez
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
45
|
Horning BD, Suciu RM, Ghadiri DA, Ulanovskaya OA, Matthews ML, Lum KM, Backus KM, Brown SJ, Rosen H, Cravatt BF. Chemical Proteomic Profiling of Human Methyltransferases. J Am Chem Soc 2016; 138:13335-13343. [PMID: 27689866 DOI: 10.1021/jacs.6b07830] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.
Collapse
Affiliation(s)
- Benjamin D Horning
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Radu M Suciu
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Darian A Ghadiri
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Olesya A Ulanovskaya
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Megan L Matthews
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Kenneth M Lum
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Keriann M Backus
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Steven J Brown
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Hugh Rosen
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| | - Benjamin F Cravatt
- Departments of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92307, United States
| |
Collapse
|
46
|
Crump CJ, Murrey HE, Ballard TE, am Ende CW, Wu X, Gertsik N, Johnson DS, Li YM. Development of Sulfonamide Photoaffinity Inhibitors for Probing Cellular γ-Secretase. ACS Chem Neurosci 2016; 7:1166-73. [PMID: 27253220 DOI: 10.1021/acschemneuro.6b00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
γ-Secretase is a multiprotein complex that catalyzes intramembrane proteolysis associated with Alzheimer's disease and cancer. Here, we have developed potent sulfonamide clickable photoaffinity probes that target γ-secretase in vitro and in cells by incorporating various photoreactive groups and walking the clickable alkyne handle to different positions around the molecule. We found that benzophenone is preferred over diazirine as a photoreactive group within the sulfonamide scaffold for labeling γ-secretase. Intriguingly, the placement of the alkyne at different positions has little effect on probe potency but has a significant impact on the efficiency of labeling of γ-secretase. Moreover, the optimized clickable photoprobe, 163-BP3, was utilized as a cellular probe to effectively assess the target engagement of inhibitors with γ-secretase in primary neuronal cells. In addition, biotinylated 163-BP3 probes were developed and used to capture the native γ-secretase complex in the 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) solubilized state. Taken together, these next generation clickable and biotinylated sulfonamide probes offer new tools to study γ-secretase in biochemical and cellular systems. Finally, the data provide insights into structural features of the sulfonamide inhibitor binding site in relation to the active site and into the design of clickable photoaffinity probes.
Collapse
Affiliation(s)
- Christina J. Crump
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Heather E. Murrey
- Pfizer Worldwide Research and Development, Worldwide Medicinal Chemistry, Cambridge, Massachusetts 02139, United States
| | - T. Eric Ballard
- Pfizer Worldwide Research and Development, Worldwide
Medicinal Chemistry Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Worldwide
Medicinal Chemistry Groton, Connecticut 06340, United States
| | - Xianzhong Wu
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Natalya Gertsik
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development, Worldwide Medicinal Chemistry, Cambridge, Massachusetts 02139, United States
| | - Yue-Ming Li
- Chemical
Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
47
|
Hao W, Liu H, Yin L, Cai M. Phosphine-Free, Heterogeneous Palladium-Catalyzed Atom-Efficient Carbonylative Cross-Coupling of Triarylbismuths with Aryl Iodides: Synthesis of Biaryl Ketones. J Org Chem 2016; 81:4244-51. [DOI: 10.1021/acs.joc.6b00570] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenyan Hao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Haiyi Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Lin Yin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
48
|
Shrimp JH, Sorum AW, Garlick JM, Guasch L, Nicklaus MC, Meier JL. Characterizing the Covalent Targets of a Small Molecule Inhibitor of the Lysine Acetyltransferase P300. ACS Med Chem Lett 2016; 7:151-5. [PMID: 26985290 DOI: 10.1021/acsmedchemlett.5b00385] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
C646 inhibits the lysine acetyltransferases (KATs) p300 and CBP and represents the most potent and selective small molecule KAT inhibitor identified to date. To gain insights into the cellular activity of this epigenetic probe, we applied chemoproteomics to identify covalent targets of the C646 chemotype. Modeling and synthetic derivatization was used to develop a clickable analogue (C646-yne) that inhibits p300 similarly to the parent compound and enables enrichment of bound proteins. LC-MS/MS identified the major covalent targets of C646-yne as highly abundant cysteine-containing proteins, and follow-up studies found that C646 can inhibit tubulin polymerization in vitro. Finally, we provide evidence that thiol reactivity of C646 may limit its ability to antagonize acetylation in cells. These findings should enable a more precise interpretation of studies utilizing C646 as a chemical probe of KAT activity and suggest that an underappreciated liability of electrophile-containing inhibitors is a reduction in their cellular potency due to consumption by abundant protein and metabolite thiol sinks.
Collapse
Affiliation(s)
- Jonathan H. Shrimp
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexander W. Sorum
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Julie M. Garlick
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Laura Guasch
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marc C. Nicklaus
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jordan L. Meier
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
49
|
Kirmeier T, Gopalakrishnan R, Gormanns V, Werner AM, Cuboni S, Rudolf GC, Höfner G, Wanner KT, Sieber SA, Schmidt U, Holsboer F, Rein T, Hausch F. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores. PLoS One 2016; 11:e0148608. [PMID: 26863431 PMCID: PMC4749225 DOI: 10.1371/journal.pone.0148608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes.
Collapse
Affiliation(s)
- Thomas Kirmeier
- Max Planck Institute of Psychiatry, Clinical Department, Munich, Germany
| | - Ranganath Gopalakrishnan
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Vanessa Gormanns
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Anna M. Werner
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Serena Cuboni
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Georg C. Rudolf
- Technical University Munich, IAS, CIPSM, Department of Chemistry, Garching, Germany
| | - Georg Höfner
- Department Pharmazie Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus T. Wanner
- Department Pharmazie Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan A. Sieber
- Technical University Munich, IAS, CIPSM, Department of Chemistry, Garching, Germany
| | - Ulrike Schmidt
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Clinical Department, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
- * E-mail: (TR); (F. Hausch)
| | - Felix Hausch
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
- * E-mail: (TR); (F. Hausch)
| |
Collapse
|
50
|
Park J, Koh M, Koo JY, Lee S, Park SB. Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein. ACS Chem Biol 2016; 11:44-52. [PMID: 26502221 DOI: 10.1021/acschembio.5b00671] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photoaffinity-based target identification has received recent attention as an efficient research tool for chemical biology and drug discovery. The major obstacle of photoaffinity-based target identification is the nonspecific interaction between target identification probes and nontarget proteins. Consequently, the rational design of photoaffinity linkers has been spotlighted for successful target identification. These nonspecific interactions have been considered as random events, and therefore no systematic investigation has been conducted regarding nonspecific interactions between proteins and photoaffinity linkers. Herein, we report the protein-labeling analysis of photoaffinity linkers containing three photoactivatable moieties: benzophenone, diazirine, and arylazide. Each photoaffinity linker binds to a different set of proteins in a structure-dependent manner, in contrast to the previous conception. The list of proteins labeled by each photoaffinity linker was successfully used to eliminate the nonspecific binding proteins from target candidates, thereby increasing the success rate of target identification.
Collapse
Affiliation(s)
- Jongmin Park
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, Korea
| | - Minseob Koh
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, Korea
| | - Ja Young Koo
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, Korea
| | - Sanghee Lee
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, Korea
| | - Seung Bum Park
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, Korea
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|