1
|
Dai SY, Xiao Z, Shen F, Lim I, Rao J. Light-Controlled Intracellular Synthesis of Poly(luciferin) Polymers Induces Cell Paraptosis. J Am Chem Soc 2025; 147:2037-2048. [PMID: 39757486 DOI: 10.1021/jacs.4c15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Accumulation of misfolded proteins challenges cellular proteostasis and is implicated in aging and chronic disorders. Cancer cells, moreover, face an elevated level of basal proteotoxic stress; hence, exacerbating endoplasmic reticulum (ER) stress has been shown to induce programmed cell death while enhancing anticancer immunogenicity. We hypothesize that hydrophobic abiotic macromolecules can trigger a similar stress response. Most polymers and nanoparticles, however, are sequestered in endo/lysosomes after endocytosis, which prevents their interaction with the proteostasis machinery. We adopted an in situ polymerization approach to synthesize polymers in cells with cell-permeable monomers. Specifically, we developed a biocompatible polycondensation between l-cysteine and 2-cyanobenzothiazole (CBT) with photochemical control to form insoluble poly(luciferin) aggregates. We identified that in situ polymerization activates the BiP-PERK-CHOP pathway of the unfolded protein response and that the unresolved ER stress initiates a form of regulated cell death consistent with paraptosis. In addition, the dying cells emit damage-associated molecular patterns (DAMPs), indicating an immunogenic cell death that could potentiate antitumor immunity. Our results show that in situ polymerization mimics misfolded protein aggregates to induce proteotoxic stress and cancer cell death, offering a novel therapeutic strategy to exploit cancer vulnerability.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Zhen Xiao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Fangfang Shen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Irene Lim
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Yuan Z, Jiang Q, Liang G. Inspired by nature: Bioluminescent systems for bioimaging applications. Talanta 2025; 281:126821. [PMID: 39255622 DOI: 10.1016/j.talanta.2024.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Bioluminescence is a natural process where biological organisms produce light through chemical reactions. These reactions predominantly occur between small-molecule substrates and luciferase within bioluminescent organisms. Bioluminescence imaging (BLI) has shown significant potential in biomedical research owing to its non-invasive, real-time observation and quantification. In this review, we introduced the chemical mechanism of bioluminescent systems and categorized several strategies that successfully addressed the native limitations, including improvements on the chemical structures of luciferase-luciferin bioluminescence system and bioluminescence resonance energy transfer (BRET) methods. In addition, we also reviewed and summarized recent advances in bioimaging applications. We hope that this review can provide effective guidance for the development and application of bioluminescent systems in the field of bioimaging.
Collapse
Affiliation(s)
- Zihan Yuan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Handan Norman Technology Co., Ltd., Guantao, 057750, China.
| |
Collapse
|
4
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
5
|
Geaneotes PJ, Janosko CP, Afeke C, Deiters A, Floreancig PE. Potent and Selective Oxidatively Labile Ether-Based Prodrugs through Late-Stage Boronate Incorporation. Angew Chem Int Ed Engl 2024; 63:e202409229. [PMID: 38986017 DOI: 10.1002/anie.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
This manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols. We report the preparation of prodrug analogues of the natural products camptothecin and pederin from acetal precursors that serve as protecting groups in their synthetic sequences. The BAO acetal groups cleave in the presence of hydrogen peroxide to release the cytotoxic agents. The pederin-based prodrug shows dramatically greater cytotoxicity than negative controls and outstanding selectivity and potency toward cancer cell lines in comparison to non-cancerous cell lines. This late-stage functionalization approach to prodrug synthesis should be applicable to numerous systems that can be accessed through chemoselective processes.
Collapse
Affiliation(s)
- Paul J Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Cephas Afeke
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
6
|
Peng Z, Cui M, Chu J, Chen J, Wang P. A novel AIE fluorescent probe for the detection and imaging of hydrogen peroxide in living tumor cells and in vivo. Bioorg Chem 2024; 150:107592. [PMID: 38986419 DOI: 10.1016/j.bioorg.2024.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Hydrogen peroxide (H2O2), a key reactive oxygen species (ROS), plays crucial roles in redox signaling pathways and immune responses associated with cell proliferation, differentiation, migration, and disease progression. The selective monitoring of overproduced H2O2 is important for understanding the diagnosis and pathogenesis of diseases such as cardiovascular disease, cancers, diabetes, Parkinson's disease, Alzheimer's disease, and inflammation. In this paper, an AIE fluorescent probe BQM-H2O2 was developed by connecting phenyl borate with the fluorophore BQM-PNH for selective detection of H2O2. In the presence of H2O2 at fw = 99% (pH = 7.4, 1% DMSO), the probe BQM-H2O2 could generate strong fluorescent signals due to the oxidation of the borate ester. The probe exhibited high selectivity and a low detection limit toward H2O2 with the calculated LOD of 112.6 nM. Importantly, it was employed in the detection of exogenous and endogenous hydrogen peroxide in 4T1 cells with low cytotoxicity. This probe has also been successfully applied to imaging of H2O2 in Blab/c mice bearing 4T1 graft tumors.
Collapse
Affiliation(s)
- Zihao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Mengyuan Cui
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, PR China
| | - Junling Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Junqing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| | - Peng Wang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
7
|
Wang L, Lin H, Yang B, Jiang X, Chen J, Chowdhury SR, Cheng N, Nakata PA, Lonard DM, Wang MC, Wang J. Development of a Novel Amplifiable System to Quantify Hydrogen Peroxide in Living Cells. J Am Chem Soc 2024; 146:22396-22404. [PMID: 39079063 PMCID: PMC11722959 DOI: 10.1021/jacs.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Although many redox signaling molecules are present at low concentrations, typically ranging from micromolar to submicromolar levels, they often play essential roles in a wide range of biological pathways and disease mechanisms. However, accurately measuring low-abundant analytes has been a significant challenge due to the lack of sensitivity and quantitative capability of existing measurement methods. In this study, we introduced a novel chemically induced amplifiable system for quantifying low-abundance redox signaling molecules in living cells. We utilized H2O2 as a proof-of-concept analyte and developed a probe that quantifies cellular peroxide levels by combining the NanoBiT system with androgen receptor dimerization as a reporting mechanism. Our system demonstrated a highly sensitive response to cellular peroxide changes induced both endogenously and exogenously. Furthermore, the system can be adapted for the quantification of other signaling molecules if provided with suitable probing chemistry.
Collapse
Affiliation(s)
- Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Bin Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xiqian Jiang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jianwei Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sandipan Roy Chowdhury
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ninghui Cheng
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Paul A. Nakata
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Meng. C. Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
8
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
9
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
10
|
Dash R, Holsinger KA, Chordia MD, Gh. MS, Pires MM. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. ACS Infect Dis 2024; 10:1602-1611. [PMID: 38592927 PMCID: PMC11091882 DOI: 10.1021/acsinfecdis.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.
Collapse
Affiliation(s)
- Rachita Dash
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kadie A. Holsinger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mohammad Sharifian Gh.
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
11
|
Milićević D, Hlaváč J. Novel Peptide-Based Fluorescent Probe for Simultaneous Sensing of Chymotrypsin and Hydrogen Peroxide. ACS OMEGA 2024; 9:17481-17490. [PMID: 38645371 PMCID: PMC11024966 DOI: 10.1021/acsomega.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
The developed multifunctional fluorescent probe enables the simultaneous detection of chymotrypsin as a model protease and hydrogen peroxide as a representative of reactive oxygen species (ROS) in biologically relevant concentration ranges. The chymotrypsin sensing is based on the cleavage of its selectively recognizable peptide sequence and the consequent disruption of FRET between coumarin (DEAC) and fluorescein (FL). Analogously, the presence of hydrogen peroxide causes the gradual degradation of the H2O2-labile benzopyrylium-coumarin (BC) dye. Considering the fluorescence emission responses of individual chymotrypsin-peroxide probe-attached fluorophores after their excitation at 425 nm, the sole presence of either chymotrypsin (50-1000 ng/mL) or hydrogen peroxide (10-200 μM) in a sample could be unambiguously confirmed or refuted. In addition, reliable simultaneous detection and approximate quantification of both studied species in the concentration ranges of 100-1000 ng/mL and 20-200 μM for chymotrypsin and H2O2, respectively, could be performed as well. The obtained results are summarized and visualized in the graphical models.
Collapse
Affiliation(s)
- David Milićević
- Department of Organic Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry,
Faculty of Science, Palacký University
Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
12
|
Redy Keisar O, Pevzner A, Fridkin G, Shelef O, Shabat D, Ashkenazi N. Highly sensitive chemiluminescence sensors for the detection and differentiation of chemical warfare agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1736-1740. [PMID: 38456247 DOI: 10.1039/d3ay02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Highly sensitive chemiluminescence-based probes that effectively detect and differentiate between the extremely toxic real G- and V-type organophosphorus chemical warfare agents (OPCWAs) are presented. This straightforward approach does not require any instrumentation or light source; hence, it appears ideal for the future development of field colorimetric detectors.
Collapse
Affiliation(s)
- Orit Redy Keisar
- Department of Organic Chemistry, Israel Institute for Biological Research, P. O. Box 19, Ness Ziona, 7410001, Israel.
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, P. O. Box 19, Ness Ziona, 7410001, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, P. O. Box 19, Ness Ziona, 7410001, Israel.
| | - Omri Shelef
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Doron Shabat
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Nissan Ashkenazi
- Department of Organic Chemistry, Israel Institute for Biological Research, P. O. Box 19, Ness Ziona, 7410001, Israel.
- Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel
| |
Collapse
|
13
|
Fan G, Zhang B, Wang J, Wang N, Qin S, Zhao W, Zhang J. Accurate construction of NIR probe for visualizing HClO fluctuations in type I, type II diabetes and diabetic liver disease assisted by theoretical calculation. Talanta 2024; 268:125298. [PMID: 37832452 DOI: 10.1016/j.talanta.2023.125298] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Hypochlorous acid (HClO) is a key signaling molecule which involved in various pathological and physiological processes and the immune system. It had been proved that excess HClO in the organisms was closely associated with diabetes. In this paper, we constructed a series of BODIPY-based fluorophores modified with olefinic bond. With the assistance of theoretical calculations, the optimized near-infrared (NIR) dye BDP-ENE-S-Me, which possessed the longest wavelength (690 nm) and the best stability, was screened and synthesized. Based on BDP-ENE-S-Me, we further introduced N, N-dimethylcarbamate group to construct a NIR fluorescent probe BDP-ENE-ClO. BDP-ENE-ClO displayed excellent selectivity and sensitivity with a low detection limit (49 nM) towards HClO. Besides, the probe was successfully applied in monitoring concentration fluctuations of HClO in vitro and in vivo caused by various stimuli. Most importantly, the over-production of HClO in the type I, type II diabetes and diabetic liver disease mice models could be visualized and assessed precisely with the assistance of BDP-ENE-ClO. By comparing fluorescent intensity of diabetic mice models with that of diabetic liver disease mice models, the probe was competent to assess the progression of diabetes.
Collapse
Affiliation(s)
- Guanwen Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Shuchun Qin
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
14
|
He H, Yin J, Li M, Dessai CVP, Yi M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat Methods 2024; 21:342-352. [PMID: 38191931 PMCID: PMC11165695 DOI: 10.1038/s41592-023-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Chinmayee Vallabh Prabhu Dessai
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
15
|
Cheng X, Xia T, Sun X, Liang G, Liu X, Liang G. Atg4B and Cathepsin B-Triggered in Situ Luciferin Formation for Precise Cancer Autophagy Bioluminescence Imaging. ACS CENTRAL SCIENCE 2023; 9:2251-2256. [PMID: 38161373 PMCID: PMC10755845 DOI: 10.1021/acscentsci.3c00696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Autophagy plays a crucial role in tumorigenesis and progression, but current approaches to visualize it in vivo show limited precision due to their single-analyte-responsive mode. Hence, by simultaneously employing dual autophagy enzymes Atg4B and cathepsin B to trigger the in situ formation of luciferin, we herein propose a strategy for precise autophagy bioluminescence imaging. An Atg4B-responsive peptide Ac-Thr-Phe-Gly-d-Cys (TFGC) and a cathepsin B-activatable compound Ac-Lys-Gly-Arg-Arg-CBT (KGRR-CBT) were rationally designed. During tumor autophagy, these two compounds were uptaken by cancer cells and cleaved by their corresponding enzymes to yield d-cysteine and 2-cyano-6-aminobenzothiazole, respectively, which underwent a CBT-Cys click reaction to yield d-aminoluciferin, turning the bioluminescence "on". The responsiveness of these two compounds toward the two enzymes was tested in vitro, and the ability to turn bioluminescence "on" was validated in living cancer cells and in vivo. We anticipate that our precise autophagy imaging strategy could be further applied for the diagnosis of autophagy-related diseases in the near future.
Collapse
Affiliation(s)
| | | | - Xianbao Sun
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guowei Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Dash R, Holsinger KA, Chordia MD, Sharifian Gh M, Pires MM. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570448. [PMID: 38106213 PMCID: PMC10723488 DOI: 10.1101/2023.12.06.570448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate into cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules into the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotics accumulation in live bacterial cells in real time.
Collapse
|
17
|
Xu L, Ma M, Li J, Gao D, Ma P, Zhang F, Song D. Leucine Aminopeptidase-Mediated Multifunctional Molecular Imaging Tool for Diagnosis, Drug Evaluation, and Surgical Guidance of Liver-Related Diseases. Anal Chem 2023; 95:12089-12096. [PMID: 37525359 DOI: 10.1021/acs.analchem.3c02130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Traditional molecular imaging tools used for detecting liver diseases own several drawbacks, such as poor optical performance and limited applicability. Monitoring the concentration of leucine aminopeptidase (LAP), which is closely related to liver diseases such as liver cancer and liver injury, and analyzing it in diagnosis, drug evaluation, and surgical treatment is still a challenging task. Herein, we construct an intramolecular charge-transfer mechanism-based, ultrasensitive, near-infrared fluorescent probe (LAN-lap) for dynamic monitoring of LAP fluctuations in living systems. LAN-lap, with high specificity, stability, sensitivity, and water solubility, can achieve in vitro monitoring of LAP through both fluorescence and colorimetric methods. Moreover, LAN-lap can successfully be used for the localization imaging of endogenous LAP, confirming the upregulation of LAP expression in liver cancer and liver injury cells. In addition, LAN-lap can realize the imaging of liver tumors in living organisms. Meanwhile, it can intuitively present the degree of drug-induced liver injury, achieving semi-quantitative imaging evaluation of the hepatotoxicity of two drugs. Furthermore, LAN-lap can track liver cancer tumors in mice with peritoneal metastasis and can assist in fluorescence-guided surgical resection of liver cancer tumors. This multifunctional LAN-lap probe could play an important role in facilitating simultaneous diagnoses, imaging, and synergistic surgical navigation to achieve better point-of-care therapeutic efficacy.
Collapse
Affiliation(s)
- Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Fangmei Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
18
|
Klootwyk B, Ryan AE, Lopez A, McCloskey MJR, Janosko CP, Deiters A, Floreancig PE. Peroxide-Mediated Release of Organophosphates from Boron-Containing Phosphotriesters: A New Class of Organophosphate Prodrugs. Org Lett 2023; 25:5530-5535. [PMID: 37463277 PMCID: PMC10391626 DOI: 10.1021/acs.orglett.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Phosphate mono- and diesters can be liberated efficiently from boryl allyloxy (BAO) and related phosphotriesters by H2O2. This protocol was applied to the release of a phosphorylated serine derivative and the nucleotide analogue AZT monophosphate. Nucleotide release in the presence of ATP and a kinase provides a diphosphate, demonstrating that this method can be applied to biological processes.
Collapse
Affiliation(s)
- Brittany
M. Klootwyk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Amy E. Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Arbil Lopez
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mitchell J. R. McCloskey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E. Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Li ZJ, Wang CY, Xu L, Zhang ZY, Tang YH, Qin TY, Wang YL. Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase. BIOSENSORS 2023; 13:752. [PMID: 37504150 PMCID: PMC10377407 DOI: 10.3390/bios13070752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.
Collapse
Affiliation(s)
- Ze-Jun Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Liang Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian-Yi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
20
|
Yadav AK, Chan J. Activity-based bioluminescence probes for in vivo sensing applications. Curr Opin Chem Biol 2023; 74:102310. [PMID: 37119771 PMCID: PMC10225331 DOI: 10.1016/j.cbpa.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
Bioluminescence imaging is a highly sensitive technique commonly used for various in vivo applications. Recent efforts to expand the utility of this modality have led to the development of a suite of activity-based sensing (ABS) probes for bioluminescence imaging by 'caging' of luciferin and its structural analogs. The ability to selectively detect a given biomarker has presented researchers with many exciting opportunities to study both health and disease states in animal models. Here, we highlight recent (2021-2023) bioluminescence-based ABS probes with an emphasis on probe design and in vivo validation experiments.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|
21
|
Dai T, Xie J, Buonomo JA, Moreno A, Banaei N, Bertozzi CR, Rao J. Bioluminogenic Probe for Rapid, Ultrasensitive Detection of β-Lactam-Resistant Bacteria. Anal Chem 2023; 95:7329-7335. [PMID: 37083185 PMCID: PMC10175212 DOI: 10.1021/acs.analchem.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Increasingly difficult-to-treat infections by antibiotic-resistant bacteria have become a major public health challenge. Rapid detection of common resistance mechanisms before empiric antibiotic usage is essential for optimizing therapeutic outcomes and containing further spread of resistance to antibiotics among other bacteria. Herein, we present a bioluminogenic probe, D-Bluco, for rapid detection of β-lactamase activity in viable pathogenic bacteria. D-Bluco is a pro-luciferin caged by a β-lactamase-responsive cephalosporin structure and further conjugated with a dabcyl quencher. The caging and quenching significantly decreased the initial background emission and increased the signal-to-background ratio by more than 1200-fold. D-Bluco was shown to detect a broad range of β-lactamases at the femtomolar level. An ultrasensitive RAPID bioluminescence assay using D-Bluco can detect 102 to 103 colony forming unit per milliliter (cfu/mL) of β-lactamase-producing Enterobacterales in urine samples within 30 min. The high sensitivity and rapid detection make the assay attractive for the use of point-of-care diagnostics for lactam-resistant pathogens.
Collapse
Affiliation(s)
- Tingting Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Joseph A Buonomo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Angel Moreno
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California 94304, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Yang X, Li C, Li P, Fu Q. Ratiometric optical probes for biosensing. Theranostics 2023; 13:2632-2656. [PMID: 37215562 PMCID: PMC10196834 DOI: 10.7150/thno.82323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Biosensing by optical probes is bringing about a revolution in our understanding of physiological and pathological states. Conventional optical probes for biosensing are prone to inaccurate detection results due to various analyte-independent factors that can lead to fluctuations in the absolute signal intensity. Ratiometric optical probes provide built-in self-calibration signal correction for more sensitive and reliable detection. Probes specifically developed for ratiometric optical detection have been shown to significantly improve the sensitivity and accuracy of biosensing. In this review, we focus on the advancements and sensing mechanism of ratiometric optical probes including photoacoustic (PA) probes, fluorescence (FL) probes, bioluminescence (BL) probes, chemiluminescence (CL) probes and afterglow probes. The versatile design strategies of these ratiometric optical probes are discussed along with a broad range of applications for biosensing such as sensing of pH, enzymes, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), metal ions, gas molecules and hypoxia factors, as well as the fluorescence resonance energy transfer (FRET)-based ratiometric probes for immunoassay biosensing. Finally, challenges and perspectives are discussed.
Collapse
|
23
|
Prabaharan R, Rengan R, Thangavel SK, Małecki JG. Exploration of Antiproliferative Activity and Apoptosis Induction of New Nickel(II) Complexes Encompassing Carbazole Ligands. ACS OMEGA 2023; 8:12584-12591. [PMID: 37033823 PMCID: PMC10077545 DOI: 10.1021/acsomega.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
To attest the effectiveness of nickel complexes as anticancer drug candidates with minimum side effects, the present investigation describes the facile synthesis and anticancer activities of nickel(II) complexes enriched with three derivatives of carbazolone-based benzhydrazone ligands(L) having a [Ni(L)2] composition. Analytical and spectral techniques were used to characterize the synthesized Ni(II) complexes. The single-crystal X-ray diffraction performed for complex 4 confirmed the square planar geometry with a [Ni(κ2-N,O-L)2] arrangement. The MTT assay was carried out for the complexes to determine in vitro cytotoxicity against cancerous human-cervical carcinoma, human-colon carcinoma, and non-cancerous L929 (fibroblast) cells. All three complexes exhibited good toxicity against the cancer cells with a low IC50 concentration. Complex 4, containing -OCH3 fragment, exhibits high lipophilicity and revealed exceptional cytotoxicity against cancer cells. AO-EB fluorescent staining indicated apoptosis-associated cell morphological changes after exposure to complex 4. The apoptosis induction was further confirmed by a HOECHST-33342 fluorescent staining technique via chromosomal condensation and nuclear fragmentation. Further, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) mechanistic studies revealed that complex 4 can raise ROS levels and reduce MMP and promote mitochondrial dysfunction-mediated apoptotic cell death. Further, stimulation of late apoptosis by complex 4 in cervical cancer cells was quantitatively differentiated through the staining of phosphatidylserine externalization by flow cytometry. Furthermore, the ELISA analysis confirmed that complex 4 induced apoptosis through caspase activation.
Collapse
Affiliation(s)
- Ramya Prabaharan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramesh Rengan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Sathiya Kamatchi Thangavel
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Jan Grzegorz Małecki
- Department
of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
24
|
Hu X, Tang R, Bai L, Liu S, Liang G, Sun X. CBT‐Cys click reaction for optical bioimaging in vivo. VIEW 2023. [DOI: 10.1002/viw.20220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
25
|
Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application. Chem Commun (Camb) 2023; 59:2056-2071. [PMID: 36723346 DOI: 10.1039/d2cc06556h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomarkers are essential in biology, physiology, and pharmacology; thus, their detection is of extensive importance. Fluorescent probes provide effective tools for detecting biomarkers exactly. Excited state intramolecular proton transfer (ESIPT), one of the significant photophysical processes that possesses specific photoisomerization between Keto and Enol forms, can effectively avoid annoying interference from the background with a large Stokes shift. Hence, ESIPT is an excellent choice for biomarker monitoring. Based on the ESIPT process, abundant probes were designed and synthesized using three major design methods. In this review, we conclude probes for 14 kinds of biomarkers based on ESIPT explored in the past five years, summarize these general design methods, and highlight their application for biomarker detection in vitro or in vivo.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Maolin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yongrong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yanjun Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
26
|
O'Sullivan JJ, Lee VJ, Heffern MC. Copper-mediated oxidation of imidazopyrazinones inhibits marine luciferase activity. LUMINESCENCE 2023; 38:216-220. [PMID: 36409206 PMCID: PMC10281456 DOI: 10.1002/bio.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The development of bioluminescence-based tools has seen steady growth in the field of chemical biology over the past few decades ranging in uses from reporter genes to assay development and targeted imaging. More recently, coelenterazine-utilizing luciferases such as Gaussia, Renilla, and the engineered nano-luciferases have been utilized due to their intense luminescence relative to firefly luciferin/luciferase. The emerging importance of these systems warrants investigations into the components that affect their light production. Previous work has reported that one marine luciferase, Gaussia, is potently inhibited by copper salt. The mechanism for inhibition was not elucidated but was hypothesized to occur via binding to the enzyme. In this study, we provide the first report of a group of nonhomologous marine luciferases also exhibiting marked decreases in light emission in the presence of copper (II). We investigate the mechanism of action behind this inhibition and demonstrate that the observed copper inhibition does not stem from a luciferase interaction but rather the chemical oxidation of imidazopyrazinone luciferins generating inert, dehydrated luciferins.
Collapse
Affiliation(s)
- Justin J O'Sullivan
- Department of Chemistry, UC Davis, One Shields Avenue, Davis, CA, United States
| | - Vanessa J Lee
- Department of Chemistry, UC Davis, One Shields Avenue, Davis, CA, United States
| | - Marie C Heffern
- Department of Chemistry, UC Davis, One Shields Avenue, Davis, CA, United States
| |
Collapse
|
27
|
Yadav AK, Zhao Z, Weng Y, Gardner SH, Brady CJ, Pichardo Peguero OD, Chan J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J Am Chem Soc 2023; 145:1460-1469. [PMID: 36603103 PMCID: PMC10120059 DOI: 10.1021/jacs.2c12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yourong Weng
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catharine J Brady
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Oliver D Pichardo Peguero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Zhang H, Li LL, Shi L, Chen SY, Li K, Yu XQ. An 'AND'-based ratiometric fluorescence probe for the sequential detection of biothiols and hypochlorous acid. Chem Commun (Camb) 2022; 58:13720-13723. [PMID: 36420678 DOI: 10.1039/d2cc05782d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An 'AND'-based ratiometric fluorescence probe for the sequential detection of biothiols and hypochlorous acid was developed. FRET was observed only when RSHClO reacted with biothiols before reacting with hypochlorous acid, a phenomenon that has been confirmed in aqueous solutions and cells. This feature enables the probe to mimic biological processes and is particularly suitable for imaging oxidizing and reducing substances that cannot coexist.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Shang-Yong Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
30
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Zhang L, Ying W, Sheng Z, Lv L, Gao J, Xue Y, Liu L. Bioluminescence imaging of fibroblast activation protein-alpha in vivo and human plasma with highly sensitive probe. Anal Biochem 2022; 655:114859. [PMID: 35988797 DOI: 10.1016/j.ab.2022.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Fibroblast activation protein-alpha (FAPα) has emerged as a biomarker of tumor stromal fibroblasts. FAP was overexpressed in stromal fibroblasts of human malignancies and positively correlated with the depth of tumor invasion, lymphatic metastasis, distant metastases, high TNM stage and poor prognosis. However, the circulating FAP levels in the plasma of gastric cancer patients and the relationship between FAP levels and gastric cancer remain unknown. Moreover, probes with super selectivity, extremely high sensitivity, and excellent performance in quantitative detection are still lacking. Herein, we developed the bioluminescent probe BL-FAP for sensitive detection and imaging of endogenous FAP in gastric cancer cells and tissues and plasma from gastric cancer patients. The probe exhibited the high signal-to-noise ratio (15000∼fold), the excellent selectivity (FAP/DPP IV ratio and FAP/PREP ratio = 50000∼ fold), and the high sensitivity (18.1 pg/mL). BL-FAP facilitates monitoring of endogenous FAP in living cells and nude mice bearing MGC-803-luc tumors. More importantly, this probe was successfully applied to the measurement of FAP activity levels in plasma from gastric cancer patients for the first time. A significant enhancement in FAP levels was observed in patients with gastric cancer, suggesting that the FAP level may be a potential diagnostic parameter for gastric cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China.
| | - Weiwu Ying
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Li Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| |
Collapse
|
32
|
Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorg Med Chem 2022; 68:116881. [PMID: 35716587 DOI: 10.1016/j.bmc.2022.116881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Click chemistry is a hot topic in many research fields. A biocompatible reaction from fireflies has attracted increasing attention since 2009. Herein, we focus on the firefly-sourced click reaction between cysteine (Cys) and 2-cyanobenzothiazole (2-CBT). This reaction has many excellent properties, such as rapidity, simplicity and high selectivity, which make it successfully applied in protein labeling, molecular imaging, drug discovery and other fields. Meanwhile, its unique ability to form nanoparticles expands its applications in biological systems. We review its principle, development, and latest applications in the past 5 years and hope this review provides more profound and comprehensive insights to its further application.
Collapse
Affiliation(s)
- Yuechao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Li Q, Chen Z, Su L, Wu Y, Du W, Song J. Constructing turn-on bioluminescent probes for real-time imaging of reactive oxygen species during cisplatin chemotherapy. Biosens Bioelectron 2022; 216:114632. [PMID: 35988429 DOI: 10.1016/j.bios.2022.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Real-time imaging of reactive oxygen species (ROS) during cisplatin chemotherapy of cancer is imperative to fully reveal their functions in the biological response to cisplatin. Currently, using a bioluminescent probe for real-time imaging of a specific ROS in vivo during cisplatin chemotherapy has not been achieved. Herein, three bioluminescent probes, F Probe, N Probe and P Probe were synthesized for real-time imaging of the primary ROS, O2•-. They all consisted of a bioluminescent emitter D-luciferin (D-LH2) and an O2•--recognition group, and their bioluminescent signal could be turned on in response to O2•-. In vitro results indicated that P Probe was the most suitable one among the three probes for detection of O2•-, with high sensitivity, excellent selectivity and stability. P Probe was then successfully applied for real-time imaging of O2•- in both cancer cells and tumors during cisplatin chemotherapy. The imaging results demonstrated that O2•- amount in cancer cells increased with the increasing dose of cisplatin, and that cisplatin-induced upregulation of O2•- level in cancer cells was upstream of the cancer-killing pathway of cisplatin. We envision that P Probe may serve as an elucidative tool to further explore the role of O2•- in cisplatin chemotherapy.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Zhongxiang Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
34
|
O'Sullivan JJ, Heffern MC. Development of an ATP-independent bioluminescent probe for detection of extracellular hydrogen peroxide. Org Biomol Chem 2022; 20:6231-6238. [PMID: 35548907 PMCID: PMC9378503 DOI: 10.1039/d2ob00436d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a new ATP-independent bioluminescent probe (bor-DTZ) for detecting hydrogen peroxide that is compatible with the Nanoluciferase enzyme. The probe is designed with an arylboronate ester protecting group appended to a diphenylterazine core via a self-immolative phenolate linker. Reaction with hydrogen peroxide reveals diphenylterazine, which can then react with Nanoluciferase to produce a detectable bioluminescent signal. Bor-DTZ shows a dose-dependent response to hydrogen peroxide and selectivity over other biologically relevant reactive oxygen species and can be applied to detect either intra- or extracellular species. We further demonstrate the ability of this platform to monitor fluxes in extracellular hydrogen peroxide in a breast cancer cell line in response to the anticancer treatment, cisplatin.
Collapse
Affiliation(s)
- Justin J O'Sullivan
- Department of Chemistry, University of California Davis, One Shields Drive, Davis, CA 95616, USA.
| | - Marie C Heffern
- Department of Chemistry, University of California Davis, One Shields Drive, Davis, CA 95616, USA.
| |
Collapse
|
35
|
A puromycin-dependent activity-based sensing probe for histochemical staining of hydrogen peroxide in cells and animal tissues. Nat Protoc 2022; 17:1691-1710. [PMID: 35562423 DOI: 10.1038/s41596-022-00694-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2) is a key member of the reactive oxygen species family of transient small molecules that has broad contributions to oxidative stress and redox signaling. The development of selective and sensitive chemical probes can enable the study of H2O2 biology in cell, tissue and animal models. Peroxymycin-1 is a histochemical activity-based sensing probe that responds to H2O2 via chemoselective boronate oxidation to release puromycin, which is then covalently incorporated into nascent proteins by the ribosome and can be detected by antibody staining. Here, we describe an optimized two-step, one-pot protocol for synthesizing Peroxymycin-1 with improved yields over our originally reported procedure. We also present detailed procedures for applying Peroxymycin-1 to a broad range of biological samples spanning cells to animal tissues for profiling H2O2 levels through histochemical detection by using commercially available anti-puromycin antibodies. The preparation of Peroxymycin-1 takes 9 h, the confocal imaging experiments of endogenous H2O2 levels across different cancer cell lines take 1 d, the dot blot analysis of mouse liver tissues takes 1 d and the confocal imaging of mouse liver tissues takes 3-4 d.
Collapse
|
36
|
Yadav AK, Lee MC, Lucero MY, Su S, Reinhardt CJ, Chan J. Activity-Based NIR Bioluminescence Probe Enables Discovery of Diet-Induced Modulation of the Tumor Microenvironment via Nitric Oxide. ACS CENTRAL SCIENCE 2022; 8:461-472. [PMID: 35505872 PMCID: PMC9052803 DOI: 10.1021/acscentsci.1c00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO's contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO's impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed in vivo, and fewer yet are practical in cancer models where the NO concentration is <200 nM. To overcome this outstanding challenge, we have developed BL660-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL660-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated two dietary studies which examine the impact of fat intake on NO and the TME. BL660-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet, which became obese with larger tumors, compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of inducible nitric oxide synthase which in turn can drive tumor progression.
Collapse
|
37
|
Lin J, Gao D, Wang S, Lv G, Wang X, Lu C, Peng Y, Qiu L. Stimuli-Responsive Macrocyclization Scaffold Allows In Situ Self-Assembly of Radioactive Tracers for Positron Emission Tomography Imaging of Enzyme Activity. J Am Chem Soc 2022; 144:7667-7675. [PMID: 35452229 DOI: 10.1021/jacs.1c12935] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Target-enabled bioorthogonal reaction and self-assembly of a small-molecule probe into supramolecules have shown promise for molecular imaging. In this paper, we report a new stimuli-responsive bioorthogonal reaction scaffold (SF) for controlling in situ self-assembly by engineering the condensation reaction between 2-cyanobenzothiazole and cysteine. For probes with the SF scaffold, intramolecular cyclization took place soon after activation, which could efficiently outcompete free cysteine even at a low concentration and result in efficient aggregation in the target. Through integration with different enzyme-responsive substrates and an ammoniomethyl-trifluoroborate moiety (AmBF3), two radioactive positron emission tomography (PET) tracers, [18F]SF-DEVD and [18F]SF-Glu, were designed, which showed high stability under physiological conditions and could produce clear PET signal in tumors to detect enzyme activity (e.g., caspase-3, γ-glutamyltranspeptidase) timely and accurately. Our results demonstrated that the scaffold SF could serve as a general molecular scaffold in the development of smart PET tracers for noninvasive imaging of enzyme activity, which could contribute to tumor detection and treatment efficacy evaluation.
Collapse
Affiliation(s)
- Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dingyao Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shijie Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiuting Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunmei Lu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
38
|
Chen W, Zhang Y, Li Q, Jiang Y, Zhou H, Liu Y, Miao Q, Gao M. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive In Vivo Imaging. J Am Chem Soc 2022; 144:6719-6726. [PMID: 35380810 DOI: 10.1021/jacs.1c10168] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Afterglow imaging holds great potential for ultrasensitive biomedical imaging. As it detects photons after the cessation of real-time light excitation, autofluorescence can therefore be effectively eliminated. However, afterglow imaging is still in its infant stage due to the lack of afterglow agents with satisfactory lifetime, biocompatibility, and high luminescence brightness, particularly afterglow in the near-infrared region for in vivo applications. To address these issues, this study for the first time reports chlorin nanoparticles (Ch-NPs) emitting afterglow luminescence peaking at 680 nm with a half-life of up to 1.5 h, which is almost 1 order of magnitude longer than those of other reported organic afterglow probes. In-depth experimental and theoretical studies revealed that the brightness of the afterglow luminescence is strongly correlated with the singlet oxygen (1O2) capacity and the oxidizability of the chlorins. Benefitting from the ultralong half-life and the minimized imaging background, small metastatic tumor foci of 3 mm3 were successfully resected under the guidance of the afterglow luminescence generated upon a single shot of activation prior to the injection, which was impossible for conventional near-infrared fluorescence imaging due to tissue autofluorescence.
Collapse
Affiliation(s)
- Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Hui Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yinghua Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
39
|
Leng J, Nie W, Yuan L, Liu S, Liu T, Cheng J, Liu Z. A BODIPY‐Diaminomaleonitrile Based Water‐Soluble Fluorescent Probe for Selective “Off‐On” Detection of Hypochlorite**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junqiang Leng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Wen Nie
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Linying Yuan
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Shuang Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Tianxin Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Jianbo Cheng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| | - Zhenbo Liu
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 China
| |
Collapse
|
40
|
Abstract
We have developed a turn-on photoluminescence protocol to detect hydrogen peroxide (H2O2) utilizing a supramolecular hydrogel as a sensing platform. Hydrogen peroxide is widely used in formulations, starting from healthcare products to explosives. It is also known to induce deleterious health effects at its irregular physiological concentration and considered as a biomarker in various disease conditions. We designed molecule 2, which releases the Tb3+ sensitizer biphenyl-4-carboxylic acid (1) upon unmasking by hydrogen peroxide. This chemistry led us to develop a sensitive photoluminescence assay for H2O2 through the 1-induced photoluminescence of terbium (Tb3+) in a hydrogel matrix. Paper discs (0.45 cm) were coated with the soft hydrogel to make the sensing process simple and cost-effective. The green luminescence from the paper discs, observed under a UV lamp, allowed naked-eye detection of H2O2 in the micromolar level without any sophisticated instrumentation. Image processing software or a plate reader can be used for the accurate quantification of the analyte in micromolar and nanomolar ranges. Several commercial hand sanitizers containing hydrogen peroxide were tested by this method. The results indicated that this low-cost system could be practically adopted, especially in resource-limited areas, to quantify/detect H2O2 for quality control purposes or other applications.
Collapse
Affiliation(s)
- Arnab Dutta
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
41
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
42
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
43
|
Jiang S, Mao W, Mao D, Li ZT, Ma D. AND molecular logic gates based on host-guest complexation operational in live cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Wang X, Gao D, Lu C, Xie M, Lin J, Qiu L. Optimized molecular design of PET probe for the visualization of γ-glutamyltranspeptidase activity in tumors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01688e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorine-18 labeled probe [18F]JM-10 was rationally designed and optimized, which can self-assemble to generate more rigid and hydrophobic dimers upon response to γ-glutamyltranspeptidase (GGT) and glutathione (GSH) in tumor cells.
Collapse
Affiliation(s)
- Xiuting Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dingyao Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunmei Lu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Yang Y, Zhang M, Zhang W, Chen Y, Zhang T, Chen S, Yuan Y, Liang G, Zhang S. Sensitive sensing of alkaline phosphatase and γ-glutamyltranspeptidase activity for tumor imaging. Analyst 2022; 147:1544-1550. [DOI: 10.1039/d2an00163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism of bioluminescence phenomenon of the probe P-Bz-Luc in the presence of ALP or GGT.
Collapse
Affiliation(s)
- Yanyun Yang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Miaomiao Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Wenting Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Yinglu Chen
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tong Zhang
- School of Life Sciences, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Gaolin Liang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
46
|
Huvelle S, Le Saux T, Jullien L, Schmidt F. A double-triggered self-immolative spacer for increased selectivity of molecular release. Org Biomol Chem 2021; 20:240-246. [PMID: 34897358 DOI: 10.1039/d1ob02124a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A self-immolative spacer based on dissymmetrical N,N'-bis-carbamate aniline is introduced to liberate a substrate from a precursor after dual activation. The proof of principle of its exclusive selectivity for substrate liberation has been conducted on a profluorophore.
Collapse
Affiliation(s)
- Steve Huvelle
- i-CleHS, UMR 8060, Chimie ParisTech - PSL, Paris, Île-de-France, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005 Paris, France.
| | - Frédéric Schmidt
- Institut Curie, PSL University, CNRS UMR 3666 - INSERM U1143, 26 rue d'Ulm, 75248 PARIS CEDEX 05, FRANCE.
| |
Collapse
|
47
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
48
|
Wang C, Shu W, Chen Q, Yang C, Su S, Gao M, Zhang R, Jing J, Zhang X. A simple dual-response fluorescent probe for imaging of viscosity and ONOO - through different fluorescence signals in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119990. [PMID: 34082351 DOI: 10.1016/j.saa.2021.119990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Cellular viscosity is a prominent micro-environmental parameter and peroxynitrite is an essential reactive oxygen special, both of which are involved in various pathological and physiological processes. When the intracellular viscosity is abnormal or the ONOO- concentration is irregular, the normal function of cells will be disturbed. Herein, we rationally designed and synthesized a novel multichannel fluorescent probe (probe 1) for multichannel imaging of viscosity and peroxynitrite. Probe 1 displayed about 108-fold enhancement as the viscosity increased from 1.005 cP to 1090 cP. Moreover, the fluorescence intensity at 540 nm was quickly increased after adding ONOO-. It should be noted that probe 1 has high sensitivity, selectivity and low cytotoxicity, which can be successfully employed for the visualization of exogenous and endogenous ONOO- and imaging viscosity changes in HeLa cells by different fluorescent signals. Furthermore, probe 1 could monitor the change of ONOO- induced by LPS (lipopolysaccharide) and IFN-γ (interferon-γ) in zebrafish. This result reveals that probe 1 may inspire more diagnostic and therapeutic programs for viscosity-peroxynitrite related diseases shortly.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qianqian Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Sa Su
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
49
|
Xu W, Wang J, Xu C, Hua J, Wang Y. A diketopyrrolopyrrole-based ratiometric fluorescent probe for endogenous leucine aminopeptidase detecting and imaging with specific phototoxicity in tumor cells. J Mater Chem B 2021; 9:8842-8850. [PMID: 34647119 DOI: 10.1039/d1tb01480c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leucine aminopeptidase (LAP) is a vital proteolytic enzyme, and its overexpression is often associated with many physiological diseases, such as liver dysfunction and breast cancer. Therefore, the accurate measurement of LAP concentrations in cells is critical for the diagnosis and prevention of related diseases. Herein, a new ratiometric fluorescent probe, DPP-Leu, based on diketopyrrolopyrrole (DPP) was designed and synthesized for LAP detection based on the specific enzymatic cleavage of the N-terminal leucine residue. The fluorescence intensity ratio of DPP-Leu (I548/I651) showed a remarkable change in the presence of LAP, with a limit of detection of 0.011 U L-1, and DPP-Leu was successfully applied to detect LAP in fetal bovine serum (FBS) and artificial urine. Cell imaging experiments revealed that DPP-Leu could target mitochondria and distinguish tumor cells with high LAP content from normal cells. Importantly, benefiting from the structural transformation of DPP-Leu to the photosensitizer 4 under LAP catalysis, the probe could kill tumor cells under light irradiation without damaging normal cells.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Yixueyuan Road 138, Shanghai 200032, P. R. China. .,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Jian Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China. .,The Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, P. R. China
| | - Chenyang Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Jianli Hua
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| | - Yu Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Yixueyuan Road 138, Shanghai 200032, P. R. China. .,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| |
Collapse
|
50
|
Yeh CM, Chen MC, Wu TC, Chen JW, Lai CH. Lectin-Triggered Aggregation of Glyco-Gold Nanoprobes for Activity-based Sensing of Hydrogen Peroxide by the Naked Eye. Chem Asian J 2021; 16:3462-3468. [PMID: 34520131 DOI: 10.1002/asia.202100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to develop a colorimetric assay for detecting hydrogen peroxide (H2 O2 ) through a combination of using an aryl boronate (AB) derivative and gold nanoparticles (AuNPs). The unique optical property of AuNPs is applied to design a detection probe. The aggregation of AuNPs could be directly observed as a color change by the naked eye. A mannoside-boronate-sulfide (MBS) ligand was designed that contains an arylboronate (AB), a mannoside, and a thiol group. The thiol group bonds covalently with the surface of AuNPs to obtain MBS@AuNPs. The mannoside moiety recognizes concanavalin A (Con A), a lectin with four carbohydrate recognition sites that can specifically recognize the non-reducing end of an α-D-mannoside or α-D-glucoside structure. The AB structure on MBS first reacts with H2 O2 and then inserts an oxygen atom in the B-H bond, which triggers intramolecular electron rearrangement to cleave the covalent bond, resulting in a MBSt mixture. The MBS or MBSt is then modified to citrate-coated AuNPs (c-AuNPs) to have MBS@AuNPs or MBSt@AuNPs. When the MBS@AuNPs are incubated with Con A, the Con A recognizes multiple mannosides on the surface of the MBS@AuNPs. Subsequently, the MBS@AuNPs aggregate and the solution's color changes from red to purple, but this color change does not occur in the case of MBSt@AuNPs. The phenomenon can be observed by the naked eye.
Collapse
Affiliation(s)
- Che-Ming Yeh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ming-Chun Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jyun-Wei Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|