1
|
Yang D, Sun R, Sun H, Li Q, Zhang H, Zhang X, Shi L, Yao L, Tang Y. A FRET biosensor constructed using pH sensitive G-quadruplex DNA for detecting mitochondrial autophagy. Talanta 2025; 281:126885. [PMID: 39277929 DOI: 10.1016/j.talanta.2024.126885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
Mitochondria are crucial powerhouses and central organelles for maintaining normal physiological activities in eukaryotic cells. The use of highly specific optical biosensors to monitor mitochondrial autophagy (mitophagy) is an important way for detecting mitochondrial abnormalities. Herein, we report a pH responsive G-quadruplex (G4) structure folded by the oligonucleotide named P24. P24 is composed of four GGCCTG repeating units, and the high guanine content allows it to form an antiparallel G4 topology at pH 4.5 (lysosomal pH). However, when pH increases to around 7.4 (mitochondrial pH), P24 further transforms into a double-stranded structure. Unlike most oligonucleotides that enter lysosomes, P24 highly targets mitochondria in live cells. These characteristics enable P24 to construct a pH responsive optical biosensor by linking a pair of fluorescence resonance energy transfer (FRET) fluorophores. The P24 based biosensor demonstrates reliable applications in detecting mitophagy in live cells.
Collapse
Affiliation(s)
- Dawei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Zhang
- College of Chemistry Engineering, North China University of Science and Technology, Tangshan, China
| | - Lei Shi
- College of Chemistry Engineering, North China University of Science and Technology, Tangshan, China
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
3
|
Wang F, Bao C, Cui S, Han G, Yang W, Yu Y. Enzyme-free fluorescent DNA detection based on nucleic acid-templated click reaction via controllable synthesis of Cu 2O as heterogeneous nanocatalyst. Talanta 2024; 280:126692. [PMID: 39128313 DOI: 10.1016/j.talanta.2024.126692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
In the field of nucleic acid amplification assays, developing enzyme-free, easy-to-use, and highly sensitive amplification approaches remains a challenge. In this work, we synthesized a heterogeneous Cu2O nanocatalyst (hnCu2O) with different particle sizes and shapes, which was used for developing enzyme- and label-free nucleic acid amplification methods based on the nucleic acid-templated azide-alkyne cycloaddition (AAC) reaction catalyzed by hnCu2O. The hnCu2O exhibited size- and shape-dependent catalytic activity, with smaller sizes and spherical-like shapes exhibiting superior activity. Spherical-like hnCu2O (61 ± 8 nm) not only achieved a ligation yield of up to 84.2 ± 3.9 % in 3 min but also exhibited faster kinetics in the nucleic acid-templated hnCu2O-catalyzed AAC reaction, with a high reaction rate of 0.65 min-1 and a half-life of 1.07 ± 0.09 min. Based on this result, we developed nucleic acid-templated click ligation linear amplification reaction (NA-CLLAR) and nucleic acid-templated click ligation exponential amplification reaction (NA-CLEAR) approach. By combining the recognition (complementary to the target sequence) and signal output (split G-quadruplex sequence) elements into a DNA probe, the NA-CLLAR and NA-CLEAR fluorescence assays achieved highly specific detection of target nucleic acids, with a detection limit of 2.8 aM based on G-quadruplex-enhanced fluorescence. This work is a valuable reference and will inspire researchers to design enzyme-free nucleic acid signal amplification strategies by developing different types of Cu(I) catalysts with improved catalytic activity.
Collapse
Affiliation(s)
- Fan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Chenglong Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Susu Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Guanghui Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
4
|
Yang F, Zhang Y, Huang T, Qin Z, Xu S, Weng L, Huang H, Li S, Zhang D. G-quadruplex embedded in semi-CHA reaction combined with invasive reaction for label-free detection of single nucleotide polymorphisms. Talanta 2024; 280:126686. [PMID: 39128314 DOI: 10.1016/j.talanta.2024.126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs). The invasive reaction enabled specific recognition of single-base mutations in DNA sequences as well as preliminary signal cycle amplification. Then, magnetic separation was used to shield the false positive signals. Finally, the G4-SCHA was created for secondary amplification and label-free output of the signal. This dual-signal amplified label-free biosensor has been shown to detect mutant targets as low as 78.54 fM. What's more, this biosensor could distinguish 0.01 % of the mutant targets from a mixed sample containing a large number of wild-type targets. In addition, the detection of real and complex biological samples also verified the practical application value of this biosensor in the field of molecular design breeding. Therefore, this study improves a label-free fluorescent light-emitting element, and then proposes a simple, efficient and universal label-free SNP biosensing strategy, which also provides an important reference for the development of other G4/THT based biosensors.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tuo Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Pérez-Soto M, Ramos-Soriano J, Peñalver P, Belmonte-Reche E, O'Hagan MP, Cucchiarini A, Mergny JL, Galán MC, López López MC, Thomas MDC, Morales JC. DNA G-quadruplexes in the genome of Trypanosoma cruzi as potential therapeutic targets for Chagas disease: Dithienylethene ligands as effective antiparasitic agents. Eur J Med Chem 2024; 276:116641. [PMID: 38971047 DOI: 10.1016/j.ejmech.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 μM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | | | - Pablo Peñalver
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | - Efres Belmonte-Reche
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada / Andalusian Regional Government, PTS Granada, Av. de La Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Anne Cucchiarini
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | - Manuel Carlos López López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - María Del Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - Juan Carlos Morales
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
6
|
Liu J, Cao L, Wang Z, Chen Q, Zhao H, Guo X, Yuan Y. Hydration effect and molecular geometry conformation as critical factors affecting the longevity stability of G 4-structure-based supramolecular hydrogels. J Mater Chem B 2024; 12:9713-9726. [PMID: 39221483 DOI: 10.1039/d4tb01145g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nucleoside-derived supramolecular hydrogels based on G4-structures have been extensively developed in the biomedical sector and recognized for superior excellent biocompatibility and biodegradability. However, limited longevity and stability present a significant challenge. Chemical modifications in the molecular structure have been shown to enhance the longevity stability of G4-structure-based supramolecular hydrogels, but the precise way in which the molecular structure impacts the stability of the G4-structures and consequently affects the properties of the hydrogel remains to be elucidated. This issue represents a notable challenge in the field, which restricts their further applications to some extent. In this study, single crystals of Gd, αGd and αGd* were cultivated and compared with G. Notably, before this study, the single crystal structures of all natural nucleosides, with the exception of Gd, had been determined. The investigation into the molecular structure and supramolecular self-assembly properties of four guanosine analogs at the atomic scale revealed that the formation of G-quartets is critical for their ability to form hydrogels. The stability of the sugar ring geometry conformation (an intrinsic factor) and the disorder and strength of the hydration effect (extrinsic factors) are vital for maintaining the stability of the G4-structures. The rapid cooling changes the molecular geometry conformation, and the organic solvent changes the hydration effect, which can improve the longevity stability of G4-structure-based supramolecular hydrogels instead of chemical modifications. Consequently, the lifespan of the hydrogels was extended from 2 h to over one week. This advancement is expected to offer significant insights for future research in designing and developing G4-structure-based supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lideng Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Sharma P, Sweta Jha N. Curcumin Knoevenagel's Schiff Base as a Promising Stabilizer of G-Quadruplex Structure. Chem Biodivers 2024; 21:e202400797. [PMID: 38946104 DOI: 10.1002/cbdv.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
G-quadruplex DNA sequences present in the promoter and telomere regions of the genomic sequence are considered therapeutic targets for the treatment of cancer. Curcumin, derived from Curcuma longa, has been known as a quadruplex binder and has a potential role in the apoptosis of cancer cells. Here, we have reported the Schiff base ligand of curcumin synthesized through the condensation of the amino acid L-tryptophan and the knoevenagel derivative of curcumin (4-nitrobenzylidene curcumin (NBC)) as a potential G-quadruplex binder. Thus, spectroscopic and biophysical studies reveal a higher binding affinity of the ligand Sb-NBC towards the promoter and telomere G-quadruplex sequence as compared to the parent NBC. The ligand Sb-NBC highly stabilizes the parallel and hybrid G-quadruplex topologies to 10.5 °C-6.4 °C. Interestingly, the ligands also exhibit selective cytotoxicity toward cancer cells over normal cells. Taken together, this work provides evidence of the possibility of applying curcumin Schiff base in cancer therapy to regulate oncogene expression in cancer cells.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| |
Collapse
|
8
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Zu S, Long Z, Zhang X, Sheng J, Xu Y, Sun H, Liu X, Shangguan D. A Comparative Study on the DNA Interactions and Biological Activities of Benzophenanthridine and Protoberberine Alkaloids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2170-2179. [PMID: 39213483 DOI: 10.1021/acs.jnatprod.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Numerous small molecules exert antitumor effects by interacting with DNA, thereby influencing processes, such as DNA replication, transcription, meiosis, and gene recombination. Benzophenanthridine and protoberberine alkaloids are known to bind DNA and exhibit many pharmacological activities. In this study, we conducted a comparative analysis of the interactions between these two classes of alkaloids with G-quadruplex (G4) DNA and double-stranded DNA (dsDNA). Protoberberine alkaloids showed a greater affinity for binding with G4s than with dsDNA, while benzophenanthridine alkaloids exhibited a significantly stronger binding capacity for dsDNA, especially in regions that are rich in AT base pairs. Benzophenanthridine alkaloids also exhibited much stronger toxicity to various cancer cells. Compared with protoberberine alkaloids, benzophenanthridine alkaloids displayed much stronger activity in inhibiting cellular DNA and RNA synthesis, arresting the cell cycle in the G2/M phase, inducing cell apoptosis, and leading to intracellular DNA damage. Given that dsDNA constitutes the predominant form of DNA within cells for the majority of the cell cycle, the significant antiproliferative activity of benzophenanthridine alkaloids could be attributed, in part, to their higher binding affinity for dsDNA, thereby exerting a more significant impact on cellular proliferation. These findings have valuable implications for understanding the biological activities of isoquinoline alkaloids and their antitumor applications.
Collapse
Affiliation(s)
- Shuang Zu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Haojun Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| |
Collapse
|
10
|
Bisoi A, Majumdar T, Singh PC. Ionic Liquids-Induced Recovery of the G-Quadruplex DNA Destabilized by Dodine Fungicide. J Phys Chem B 2024; 128:9111-9119. [PMID: 39283898 DOI: 10.1021/acs.jpcb.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Dodine is an important surfactant-based chemical fungicide used widely to kill fungi associated with black spot and foliar diseases on several fruit plants, such as apples, pears, peaches, and strawberries. However, the extensive use of dodine depicts the genotoxic effect, which may cause gene-associated diseases. Dodine can destabilize G-quadruplex (G4) DNA, which is one of the key targets for cancer therapy. Hence, finding an eco-friendly medium that can reduce or reverse the destabilization effect of dodine on G4 is important. This study investigates the efficacy of ionic liquids (ILs) containing a 1,1,3,3-tetramethyl guanidinium (TMG) cation with various anions (chloride, acetate, trifluoroacetate, octanoate, and perfluorooctanoate) in restoring the structure and stability of G4 induced by dodine. Our findings demonstrate that all ILs effectively reverse dodine-induced destabilization of G4, with the required concentration varying based on the lipophilicity of IL's anions. Specifically, higher concentrations of TMG-chloride and TMG-acetate are needed compared to TMG-perfluorooctanoate for the same effect. The IL anions remove dodine from G4 binding sites, while the TMG cation's interaction with G4 mitigates the destabilizing effect of dodine. This study indicates that ILs can be an eco-friendly medium for the storage of dodine to reverse the effect of dodine on G4.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Trideep Majumdar
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Science, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Zhang Y, Yang F, Huang T, Xu S, Ye J, Weng L, Hu Y, Huang H, Li S, Zhang D. Entropy-Driven Catalytic G-Quadruple Cycle Amplification Integrated with Ligases for Label-Free Detection of Single Nucleotide Polymorphisms. Anal Chem 2024; 96:14971-14979. [PMID: 39213531 DOI: 10.1021/acs.analchem.4c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs). First, the positive strand LCR enabled specific transduction and preliminary signal amplification from single-base mutation information to single-strand information. Subsequently, the EDC-G4 cycle amplification reaction was activated, accompanied by the production of a large number of G4/THT luminophores to output fluorescent signals. The EDC-G4 system was proposed to address the weak fluorescence of G4/THT and obtain a label-free fluorescence signal amplification. The dual-signal amplification effect enabled the LCR-EDC-G4 detection system to accurately detect mutant target (MT) at concentrations as low as 22.39 fM and specifically identify 0.01% MT in a mixed detection pool. Moreover, the LCR-EDC-G4 system was further demonstrated for its potential application in real biological samples. Therefore, this study not only contributes ideas for the development of label-free fluorescent biosensing strategies but also provides a high-performance and practical SNP detection tool in parallel.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tuo Huang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
12
|
Razavi Z, Soltani M, Souri M, Pazoki-Toroudi H. CRISPR-Driven Biosensors: A New Frontier in Rapid and Accurate Disease Detection. Crit Rev Anal Chem 2024:1-25. [PMID: 39288095 DOI: 10.1080/10408347.2024.2400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This comprehensive review delves into the advancements and challenges in biosensing, with a strong emphasis on the transformative potential of CRISPR technology for early and rapid detection of infectious diseases. It underscores the versatility of CRISPR/Cas systems, highlighting their ability to detect both nucleic acids and non-nucleic acid targets, and their seamless integration with isothermal amplification techniques. The review provides a thorough examination of the latest developments in CRISPR-based biosensors, detailing the unique properties of CRISPR systems, such as their high specificity and programmability, which make them particularly effective for detecting disease-associated nucleic acids. While the review focuses on nucleic acid detection due to its critical role in diagnosing infectious diseases, it also explores the broader applications of CRISPR technology in detecting non-nucleic acid targets, thereby acknowledging the technology's broader potential. Additionally, the review identifies existing challenges, such as the need for improved signal amplification and real-world applicability, and offers future perspectives aimed at overcoming these hurdles. The ultimate goal is to advance the development of highly sensitive and specific CRISPR-based biosensors that can be used widely for improving human health, particularly in point-of-care settings and resource-limited environments.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
13
|
Liu S, Wang Y, Xiang F, Chen Y, Li J, Lin J, Ruan Z. Fluorescent and polarity-switchable photoelectrochemical dual-mode homogeneous sensing platform for ultrasensitive kanamycin detection based on EXO III-driven signal amplification. Mikrochim Acta 2024; 191:602. [PMID: 39284945 DOI: 10.1007/s00604-024-06679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/13/2024]
Abstract
A fluorescent and photoelectrochemical (PEC) dual-mode biosensor based on target biorecognition-triggered cyclic amplification was constructed for Kana detection. With the assistance of the catalyzed reaction of exonuclease III, a Kana-aptamer DNA duplex was designed for conducting the cyclic release of G-rich DNA sequence as well as output DNA S2. The released G-rich sequence triggers the fluorescence (FL) of thioflavin T (ThT), the intensity of which is positively correlated with the Kana concentration. The linear range is 0.2 to 30 nM, and the detection limit reaches 0.07 nM. Simultaneously, the released output DNA S2 was captured by Fe3O4@CdTe-probe ssDNA and then combined with methylene blue to realize the transduction of polarity-reversed PEC signal, leading to the sensitive detection of Kana with a linear range of 0.2 to 40 nM and a calculated detection limit of 0.2 nM. The outstanding performance endows the dual-mode biosensor a promising prospect for practical application.
Collapse
Affiliation(s)
- Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yiran Wang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Fan Xiang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yanmei Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
14
|
He Z, Wu J, Li W, Du Y, Lu L. Investigation of G-Quadruplex DNA-Mediated Charge Transport for Exploring DNA Oxidative Damage in Telomeres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18950-18960. [PMID: 39177475 DOI: 10.1021/acs.langmuir.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The human telomeric DNA 3' single-stranded overhang comprises tandem repeats of the sequence d(TTAGGG), which can fold into the stable secondary structure G-quadruplex (G4) and is susceptible to oxidative damage due to the enrichment of G bases. 8-Oxoguanine (8-oxoG) formed in telomeric DNA destabilizes G4 secondary structures and then inhibits telomere functions such as the binding of G4 proteins and the regulation of the length of telomeres. In this work, we developed a G4-DNA self-assembled monolayer electrochemical sensing interface using copper-free click chemistry based on the reaction of dibenzocyclooctyl with azide, resulting in a high yield of DNA tethers with order and homogeneity surfaces, that is more suitable for G-quadruplex DNA charge transport (CT) research. At high DNA coverage density surfaces, G-quadruplex DNA is 4 times more conductive than double-stranded DNA owing to the well-stacked aromatic rings of G-quartets acting as good charge transfer channels. The effect of telomeric oxidative damage on G-quadruplex-mediated CT is investigated. The accommodation of 8-oxoG at G sites originally in the syn or anti conformation around the glycosyl bond in the nonsubstituted hTel G-quadruplex causes structural perturbation and a conformational shift, which disrupts the π-stack, affecting the charge transfer and attenuating the electrochemical signal. The current intensity was found to correlate with the amount of 8-oxodG, and the detection limit was estimated to be approximately one lesion in 286 DNA bases, which can be converted into 64.7 fmol on the basis of the total surface DNA coverage. The improved G4-DNA order and homogeneity sensing interface represent a major step forward in this regard, providing a reliable and controlled electrochemical platform for the accurate measurement and diagnosis of G4-DNA oxidative damage.
Collapse
Affiliation(s)
- Zhangjin He
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Wei Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yuying Du
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
15
|
Bhowmik S, Rit T, Sanghvi YS, Das AK. Enzyme Fueled Dissipative Self-assembly of Guanine Functionalized Molecules and Their Cellular Behaviour. Chemistry 2024:e202402687. [PMID: 39158121 DOI: 10.1002/chem.202402687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Generally, an esterase lipase enzyme can hydrolyze specific substrates called esters in an aqueous solution. Herein, we investigate how a G-quadruplex self-assembly affects the hydrolysis equilibrium in reverse. The biocatalyst, lipase, activates the individual building-blocks through fuel consumption, causing them to undergo a higher degree of self-organization into nanofibers within spheres. We have synthesized five peptide-lipid-conjugated guanine base functionalized molecules to explore how the equilibrium can be shifted through reverse hydrolysis. Among these, NAC5 self-assembled into a G-quadruplex structure which has been confirmed by various spectroscopic techniques. The wide-angle powder XRD, ThT dye binding assay and circular dichroism study is carried out to support the presence of the G-quadruplex structure. The biocatalytic formation of nanofibers enclosed spheres is analyzed using CLSM, FE-SEM and HR-TEM experiments. Additionally, we assess the biocompatibility of the enzyme fueled dissipative self-assembled fibers enclosed spheres, as they have potential applications as a biomaterial in protocells. MTT assay is performed to check the cytotoxicity of G-quadruplex hydrogel, using HEK 293 and McCoy cell lines for viability assessment. Finally, the utility of the novel NAC5 hydrogel as a wound repairing biomaterial is demonstrated by cell migration experiment in a scratch assay.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, 92024-6615, Encinitas, California, United States
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| |
Collapse
|
16
|
Sun H, Sun R, Yang D, Li Q, Jiang W, Zhou T, Bai R, Zhong F, Zhang B, Xiang J, Liu J, Tang Y, Yao L. A Cyanine Dye for Highly Specific Recognition of Parallel G-Quadruplex Topology and Its Application in Clinical RNA Detection for Cancer Diagnosis. J Am Chem Soc 2024; 146:22736-22746. [PMID: 39078265 DOI: 10.1021/jacs.4c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
G-quadruplex (G4), an unconventional nucleic acid structure, shows polymorphism in its topological morphology. The parallel G4 topology is the most prevalent form in organisms and plays a regulatory role in many biological processes. Designing fluorescent probes with high specificity for parallel G4s is important but challenging. Herein, a supramolecular assembly of the anionic cyanine dye SCY-5 is reported, which selectively identifies parallel G4 topology. SCY-5 can clearly distinguish parallel G4s from other G4s and non-G4s, even including hybrid-type G4s with parallel characteristics. The high specificity mechanism of SCY-5 involves a delicate balance between electrostatic repulsion and π-π interaction between SCY-5 and G4s. Using SCY-5, cellular RNA extracted from peripheral venous blood was quantitatively detected, and a remarkable increase in RNA G4 content in cancer patients compared to healthy volunteers was confirmed for the first time. This study provides new insights for designing specific probes for parallel G4 topology and opens a new path for clinical cancer diagnosis using RNA G4 as a biomarker.
Collapse
Affiliation(s)
- Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tianxing Zhou
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Fanru Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Xiang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Yao L, Wang L, Liu S, Qu H, Mao Y, Li Y, Zheng L. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition. Chem Sci 2024; 15:13011-13020. [PMID: 39148786 PMCID: PMC11323322 DOI: 10.1039/d4sc02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
IL-6 (interleukin-6) is an essential cytokine that participates in many inflammatory and immune responses, and disrupting the interaction between IL-6 and its receptor sIL-6R (soluble form of IL-6 receptor) represents a promising treatment strategy for inflammation and related diseases. Herein we report the first-ever effort of evolving a bispecific circular aptamer, named CIL-6A6-1, that is capable of binding both IL-6 and sIL-6R with nanomolar affinities and is stable in serum for more than 48 hours. CIL-6A6-1 can effectively block the IL-6/sIL-6R interaction and significantly inhibit cell inflammation. Most importantly, this bispecific aptamer is much more effective than aptamers that bind IL-6 and sIL-6R alone as well as tocilizumab, a commercially available humanized monoclonal antibody against sIL-6R, highlighting the advantage of selecting bispecific circular aptamers as molecular tools for anti-inflammation therapy. Interestingly, CIL-6A6-1 is predicted to adopt a unique structural fold with two G-quadruplex motifs capped by a long single-stranded region, which differs from all known DNA aptamers. This unique structural fold may also contribute to its excellent functionality and high stability in biological complex media. We anticipate that our study will represent a significant step forward towards demonstrating the practical utility of bispecific DNA aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton L8S4K1 Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
18
|
Seo SB, Lee J, Kim E, Lim J, Jang S, Son SU, Jeong Y, Kang T, Jung J, Lee KG, Lee SW, Kim K, Lim EK. On-site detection of methicillin-resistant Staphylococcus aureus (MRSA) utilizing G-quadruplex based isothermal exponential amplification reaction (GQ-EXPAR). Talanta 2024; 275:126073. [PMID: 38688085 DOI: 10.1016/j.talanta.2024.126073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has a high incidence in infectious hospitals and communities, highlighting the need for early on-site detection due to its resistance to methicillin antibiotics. The present study introduces a highly sensitive detection system for mecA, a crucial methicillin marker, utilizing an RCA-based isothermal exponential amplification reaction. The G-quadruplex-based isothermal exponential amplification reaction (GQ-EXPAR) method designs probes to establish G-quadruplex secondary structures incorporating thioflavin T for fluorescence. The system, unlike conventional genetic detection methods, works with portable isothermal PCR devices (isoQuark), facilitating on-site detection. A detection limit of 0.1 fmol was demonstrated using synthetic DNA, and effective detection was proven using thermal lysis. The study also validated the detection of targets swabbed from surfaces within bacterial 3D nanostructures using the GQ-EXPAR method. After applying complementary sequences to the padlock probe for the target, the GQ-EXPAR method can be used on various targets. The developed method could facilitate rapid and accurate diagnostics within MRSA strains.
Collapse
Affiliation(s)
- Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Taejeoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyoung G Lee
- Center for Nanobio Develpment, National NanoFab Center (NNFC), Daejeon, 34141, Republic of Korea
| | | | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan, 46241, Republic of Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Hirata Y, Takemori H, Furuta K, Kamatari YO, Sawada M. Ferroptosis induces nucleolar stress as revealed by live-cell imaging using thioflavin T. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100196. [PMID: 39077682 PMCID: PMC11284673 DOI: 10.1016/j.crphar.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
Nucleolar stress induced by stressors like hypoxia, UV irradiation, and heat shock downregulates ribosomal RNA transcription, thereby impairing protein synthesis capacity and potentially contributing to cell senescence and various human diseases such as neurodegenerative disorders and cancer. Live-cell imaging of the nucleolus may be a feasible strategy for investigating nucleolar stress, but currently available nucleolar stains are limited for this application. In this study using mouse hippocampal HT22 cells, we demonstrate that thioflavin T (ThT), a benzothiazole dye that binds RNA with high affinity, is useful for nucleolar imaging in cells where RNAs predominate over protein aggregates. Nucleoli were stained with high intensity simply by adding ThT to the cell culture medium, making it suitable for use even in damaged cells. Further, ThT staining overlapped with specific nucleolar stains in both live and fixed cells, but did not overlap with markers for mitochondria, lysosomes, endoplasmic reticulum, and double-stranded DNA. Ferroptosis, an iron-dependent nonapoptotic cell death pathway characterized by lipid peroxide accumulation, reduced the number of ThT-positive puncta while endoplasmic reticulum stress did not. These findings suggest that ferroptosis is associated with oxidative damage to nucleolar RNA molecules and ensuing loss of nucleolar function.
Collapse
Affiliation(s)
- Yoko Hirata
- Life Science Research Center, Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1193, Japan
| | | | - Yuji O. Kamatari
- Life Science Research Center, Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| |
Collapse
|
20
|
Zhou W, Wan W, Miao W, Bao Y, Liu Y, Jia G, Li C. K +-Specification with Flavone P0 Probe in a G-Quadruplex DNA. Anal Chem 2024; 96:10835-10840. [PMID: 38889097 DOI: 10.1021/acs.analchem.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.
Collapse
Affiliation(s)
- Wenqin Zhou
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wang Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Bao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
21
|
Peng Y, Xue P, Chen W, Xu J. Engineering of a DNAzyme-Based dimeric G-quadruplex rolling circle amplification for robust analysis of lead ion. Talanta 2024; 274:126029. [PMID: 38599120 DOI: 10.1016/j.talanta.2024.126029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Detecting heavy metal pollution, particularly lead ion (Pb2⁺) contamination, is imperative for safeguarding public health. In this study, we introduced an innovative approach by integrating DNAzyme with rolling circle amplification (RCA) to propose an amplification sensing method termed DNAzyme-based dimeric-G-quadruplex (dimer-G4) RCA. This sensing approach allows for precise and high-fidelity Pb2⁺ detection. Strategically, in the presence of Pb2⁺, the DNAzyme undergoes substrate strand (S-DNA) cleavage, liberating its enzyme strand (E-DNA) to prime isothermal amplification. This initiates the RCA process, producing numerous dimer-G-Quadruplexes (dimer-G4) as the signal reporting transducers. Compared to conventional strategies using monomeric G-quadruplex (mono-G4) as the reporting transducers, these dimer-G4 structures exhibit significantly enhanced fluorescence when bound with Thioflavin T (ThT), offering superior target signaling ability for even detection of Pb2⁺ at low concentration. Conversely, in the absence of Pb2⁺, the DNAzyme structure remains intact so that no primers can be produced to cause the RCA initiation. This nucleic acid amplification-based Pb2⁺ detection method combing with the high specificity of DNAzymes for Pb2⁺ recognition ensures highly sensitive detection of Pb2+ with a detection limit of 0.058 nM, providing a robust tool for food safety analysis and environmental monitoring.
Collapse
Affiliation(s)
- Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, Jiaxing, 314001, China.
| |
Collapse
|
22
|
Wariishi T, Kataoka Y, Nakamura T, Kasahara Y, Kuroda M, Obika S, Kuwahara M. Lantern-type G-quadruplex fluorescent sensors for detecting divalent metal ions. Anal Biochem 2024; 690:115525. [PMID: 38554995 DOI: 10.1016/j.ab.2024.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Three thioflavin T (ThT) derivatives, namely ThT/ethylenediaminetetraacetic acid conjugates (E1T, E2T, and E1T1P), were designed and synthesized as sensing components for divalent metal ion detection. Furthermore, these ThT derivatives were used to design lantern-type G-quadruplex (G4) fluorescent sensors. The fluorescence intensities of the ThT derivatives decreased by 1.2- to 5.6-folds in the presence of Ni2+ and Cu2+, respectively, regardless of the topology of the utilized G4. Conversely, when Mn2+ and Zn2+ coexisted in antiparallel G4, the fluorescence intensities of E2T increased to approximately 3.3- and 2.3-folds, respectively, depending on the concentration of the divalent metal ion, allowing for quantitative analyses. The Job plot analysis revealed that the binding ratio of G4 and E2T changed from 2:1 to 1:2 with the increasing concentration of the divalent metal ions. These results indicated that the basic principle of such a lantern-type G4 sensor can be applied to the detection of divalent metal ions and other types of targets, such as proteins, and small molecules via ThT derivatization.
Collapse
Affiliation(s)
- Tomoko Wariishi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Tomoaki Nakamura
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masataka Kuroda
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
23
|
Zhang D, Tian B, Ling Y, Ye L, Xiao M, Yuan K, Zhang X, Zheng G, Li X, Zheng J, Liao Y, Shu B, Gu B. CRISPR/Cas12a-Powered Amplification-Free RNA Diagnostics by Integrating T7 Exonuclease-Assisted Target Recycling and Split G-Quadruplex Catalytic Signal Output. Anal Chem 2024; 96:10451-10458. [PMID: 38860917 DOI: 10.1021/acs.analchem.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Decai Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Meng Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinqiang Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Guansheng Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinying Li
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Judun Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Gu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| |
Collapse
|
24
|
Bednarz A, Rosendal RT, Lund LM, Birkedal V. Probing G-quadruplex-ligand binding using DNA intrinsic fluorescence. Biochimie 2024:S0300-9084(24)00145-7. [PMID: 38936685 DOI: 10.1016/j.biochi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
G-quadruplexes (G4s) are helical four-stranded nucleic acid structures that can form in guanine-rich sequences, which are mostly found in functional cellular regions, such as telomeres, promoters, and DNA replication origins. Great efforts are being made to target these structures towards the development of specific small molecule G4 binders for novel anti-cancer, neurological, and viral therapies. Here, we introduce an optical assay based on quenching of the intrinsic fluorescence of DNA G-quadruplexes for assessing and comparing the G4 binding affinity of various small molecule ligands in solutions. We show that the approach allows direct quantification of ligand binding to distinctive G4 topologies. We believe that this method will facilitate quick and reliable evaluation of small molecule G4 ligands and support their development.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Rebecca Torp Rosendal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark.
| |
Collapse
|
25
|
Wang Q, Jin D, Liu C, Shi L, Li T. A Tumor-Specific Cascade-Activating Smart Prodrug System for Enhanced Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309482. [PMID: 38150668 DOI: 10.1002/smll.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Developing intelligently targeted drugs with low side effects is urgent for cancer treatment. Toward this goal, a tumor-specific cascade-activating smart prodrug system consisting of a G-quadruplex(G4)-modulated tumor-targeted DNA vehicle and a well-designed cellular stimuli-responsive ligand-drug conjugates (LDCs) is proposed. An original "donor-acceptor" binary fluorescent ligand, with ultrahigh affinity, brightness, and photostability, is engineered to tightly bind G4 structures and significantly improve the nuclease resistance of the DNA vehicle, which serves as a bridge contributing to the construction of the prodrug system, named ApG4/LDCs. Sodium nitroprusside and doxorubicin are loaded into ApG4/LDCs in one pot and generate nitric oxide and superoxide anion in response to cancer cellular environments, which in cascade generates peroxynitrite to cause DNA damage while promoting the self-monitored drug release to achieve enhanced targeted therapy. Such a cascade activation and self-reinforcement process is executed only when the prodrug system targets the tumor tissue followed by cell uptake, showing significant antitumor efficacy and greatly weakening the damage to normal tissues. Given the unique features, the innovative strategy for prodrug design may open a new door to precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Duo Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
26
|
Wang X, Xu N, Zhu L, Yang H, Li C, Tian H, Xu W. Structural Antagonism-Aided Conformational Regulation Enables an Aptamer-Loop G-Quadruplex Modular Sensor of β-Lactoglobulin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307995. [PMID: 38212277 DOI: 10.1002/smll.202307995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Indexed: 01/13/2024]
Abstract
A simple, reliable method for identifying β-lactoglobulin (β-LG) in dairy products is needed to protect those with β-LG allergies. A common, practical strategy for target detection is designing simplified nucleic acid nanodevices by integrating functional components. This work presents a label-free modular β-LG aptasensor consisting of an aptamer-loop G-quadruplex (G4), the working conformation of which is regulated by conformational antagonism to ensure respective module functionality and the related signal transduction. The polymorphic conformations of the module-fused sequence are systematically characterized, and the cause is revealed as shifting antagonistic equilibrium. Combined with conformational folding dynamics, this helped regulate functional conformations by fine-tuning the sequences. Furthermore, the principle of specific β-LG detection by parallel G4 topology is examined as binding on the G4 aptamer loop by β-LG to reinforce the G4 topology and fluorescence. Finally, a label-free, assembly-free, succinct, and turn-on fluorescent aptasensor is established, achieving excellent sensitivity across five orders of magnitude, rapidly detecting β-LG within 22-min. This study provides a generalizable approach for the conformational regulation of module-fused G4 sequences and a reference model for creating simplified sensing devices for a variety of targets.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
- College of Life Science and Engineering, Handan University, Handan, 056005, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Ning Xu
- School of Life Science, Tsinghua University, Beijing, 100091, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - He Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
27
|
Kong D, Chen Y, Gu Y, Ding C, Liu C, Shen W, Kee Lee H, Tang S. Sensitive fluorescence detection based on dimeric G-quadruplex combined with enzyme-assisted solid-phase microextraction of streptomycin in honey. Food Chem 2024; 442:138505. [PMID: 38266408 DOI: 10.1016/j.foodchem.2024.138505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Streptomycin (STR), an aminoglycoside antibiotic with the potential to persist in honey and other food products, may induce allergy, toxicity and antibiotic resistance in humans. In this study, we developed a solid-phase microextraction (SPME) biosensor based on a quartz rod that was modified with double-stranded DNA structures consisting of partially complementary G-rich base DNA strand and STR aptamer. The STR isolated by SPME initially bound to the aptamer. Then the remaining double-stranded DNA structures were cleaved by the Nt.BstNBI enzyme, resulting in release of G-quadruplex dimers. The latter formed a complex with thioflain T fluorescent dye, resulting in an amplified fluorescence response. The method exhibited high sensitivity (a limit of detection of 10.84 pM), wide linear range (0.05 nM ∼ 500 nM (with determination coefficient > 0.99)), and simple operation, making it suitable and convenient for STR detection. Successful STR determination in genuine honey samples was demonstrated.
Collapse
Affiliation(s)
- Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yitong Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yidan Gu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
28
|
Roy S, Majee P, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Structural elucidation of HIV-1 G-quadruplexes in a cellular environment and their ligand binding using responsive 19F-labeled nucleoside probes. Chem Sci 2024; 15:7982-7991. [PMID: 38817587 PMCID: PMC11134374 DOI: 10.1039/d4sc01755b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the structure and recognition of highly conserved regulatory segments of the integrated viral DNA genome that forms unique topologies can greatly aid in devising novel therapeutic strategies to counter chronic infections. In this study, we configured a probe system using highly environment-sensitive nucleoside analogs, 5-fluoro-2'-deoxyuridine (FdU) and 5-fluorobenzofuran-2'-deoxyuridine (FBFdU), to investigate the structural polymorphism of HIV-1 long terminal repeat (LTR) G-quadruplexes (GQs) by fluorescence and 19F NMR. FdU and FBFdU, serving as hairpin and GQ sensors, produced distinct spectral signatures for different GQ topologies adopted by LTR G-rich oligonucleotides. Importantly, systematic 19F NMR analysis in Xenopus laevis oocytes gave unprecedented information on the structure adopted by the LTR G-rich region in the cellular environment. The results indicate that it forms a unique GQ-hairpin hybrid architecture, a potent hotspot for selective targeting. Furthermore, structural models generated using MD simulations provided insights on how the probe system senses different GQs. Using the responsiveness of the probes and Taq DNA polymerase stop assay, we monitored GQ- and hairpin-specific ligand interactions and their synergistic inhibitory effect on the replication process. Our findings suggest that targeting GQ and hairpin motifs simultaneously using bimodal ligands could be a new strategy to selectively block the viral replication.
Collapse
Affiliation(s)
- Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| | - Priyasha Majee
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
29
|
Zhao LL, Gu YX, Dong JH, Li XT, Pan HY, Xue CY, Liu Y, Zhou YL, Zhang XX. New G-Triplex DNA Dramatically Activates the Fluorescence of Thioflavin T and Acts as a Turn-On Fluorescent Sensor for Uracil-DNA Glycosylase Activity Detection. Anal Chem 2024; 96:8458-8466. [PMID: 38710075 DOI: 10.1021/acs.analchem.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.
Collapse
Affiliation(s)
- Ling-Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Xuan Gu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jia-Hui Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui-Yu Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100191, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Wei Y, Yang L, Ye Y, Liao L, Dai H, Wei Z, Lin Y, Zheng C. A simple aptamer-dye fluorescence sensor for detecting Δ9-tetrahydrocannabinol and its metabolite in urban sewage. Chem Commun (Camb) 2024; 60:5205-5208. [PMID: 38652014 DOI: 10.1039/d4cc00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This work developed an aptamer-dye complex as a label-free ratiometric fluorescence sensor for rapid analysis of THC and its metabolite in sewage samples. Integrated with a portable fluorescence capture device, this sensor exhibited excellent sensitivity with visualization of as low as 0.6 μM THC via naked-eye observation, and THC analysis can be accomplished within 4 min, which would be a complementary tool for quantifying THC in sewage samples to estimate cannabis consumption.
Collapse
Affiliation(s)
- Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Lin Yang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Ye
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Linchuan Liao
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hao Dai
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zeliang Wei
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Lin
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
31
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Zhao NN, Wang Q, Yang DM, Li DL, Han Y, Zhao S, Zou X, Zhang CY. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA. Anal Chem 2024; 96:5323-5330. [PMID: 38501982 DOI: 10.1021/acs.analchem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
33
|
Doğan K, Ünal Taş D, Persil Çetinkol Ö, Forough M. Fluorometric and colorimetric platforms for rapid and sensitive hydroxychloroquine detection in aqueous samples. Talanta 2024; 270:125523. [PMID: 38101033 DOI: 10.1016/j.talanta.2023.125523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The detection of pharmaceuticals has been an active area of research with numerous application areas ranging from therapeutic and environmental monitoring to pharmaceutical manufacturing and diagnostics. And, the emergence of COVID-19 pandemic has increased the demand for detection of certain active pharmaceutical ingredients such as Hydroxychloroquine (HCQ) mainly due to their increased manufacturing and usage. In this study, we present two optical, fluorometric and colorimetric, detection platforms for the rapid and sensitive detection of HCQ. These platforms take advantage of the interactions between the highly fluorescent dye Thioflavin T (ThT) and Tel24 G-quadruplex (G4) DNA structure, as well as the salt-induced aggregation behavior of negatively charged citrate-capped silver nanoparticles (Cit-AgNPs) in the presence of HCQ. In the fluorometric method, the addition of HCQ led to a significant and rapid decrease in the fluorescence signal of the ThT + Tel24 probe. In the colorimetric method, HCQ induced the aggregation of Cit-AgNPs in the presence of NaCl, resulting in a noticeable color change from yellowish-gray to colorless. Under the optimized conditions, the colorimetric platform exhibited a linear range of 18.0-240.0 nM and a detection limit of 9.2 nM, while the fluorometric platform showed a linear range of 0.24-5.17 μM and a detection limit of 120 nM. The selectivity of the proposed optical methods towards the target analyte was demonstrated by evaluating the response to other structurally similar small molecules. Finally, the practical applicability of both detection systems was confirmed by analyzing HCQ-spiked human urine samples that yielded average recoveries ranging from 75.4 to 110.2 % for the fluorometric platform and 86.9-98.2 % for the colorimetric platform. These results indicate the potential of the developed methods for HCQ detection in complex matrices.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Dilek Ünal Taş
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
34
|
Kudo K, Hori K, Asamitsu S, Maeda K, Aida Y, Hokimoto M, Matsuo K, Yabuki Y, Shioda N. Structural polymorphism of the nucleic acids in pentanucleotide repeats associated with the neurological disorder CANVAS. J Biol Chem 2024; 300:107138. [PMID: 38447794 PMCID: PMC10999818 DOI: 10.1016/j.jbc.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Short tandem repeats are inherently unstable during DNA replication depending on repeat length, and the expansion of the repeat length in the human genome is responsible for repeat expansion disorders. Pentanucleotide AAGGG and ACAGG repeat expansions in intron 2 of the gene encoding replication factor C subunit 1 (RFC1) cause cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and other phenotypes of late-onset cerebellar ataxia. Herein, we reveal the structural polymorphism of the RFC1 repeats associated with CANVAS in vitro. Single-stranded AAGGG repeat DNA formed a hybrid-type G-quadruplex, whereas its RNA formed a parallel-type G-quadruplex with three layers. The RNA of the ACAGG repeat formed hairpin structure comprising C-G and G-C base pairs with A:A and GA:AG mismatched repeats. Furthermore, both pathogenic repeat RNAs formed more rigid structures than those of the nonpathogenic repeat RNAs. These findings provide novel insights into the structural polymorphism of the RFC1 repeats, which may be closely related to the disease mechanism of CANVAS.
Collapse
Affiliation(s)
- Kenta Kudo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Sefan Asamitsu
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kohei Maeda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukari Aida
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mei Hokimoto
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
35
|
Edwards A, Iannucci AN, VanDenBerg J, Kesti A, Rice T, Sethi S, Dhakal S, Yangyuoru PM. G-Quadruplex Structure in the ATP-Binding DNA Aptamer Strongly Modulates Ligand Binding Activity. ACS OMEGA 2024; 9:14343-14350. [PMID: 38560010 PMCID: PMC10976393 DOI: 10.1021/acsomega.3c10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Secondary structures formed by single-stranded DNA aptamers can allow for the binding of small-molecule ligands. Some of these secondary structures are highly stable in solution and are great candidates for use in the development of molecular tools for biomarker detection, environmental monitoring, and others. In this paper, we explored adenosine triphosphate (ATP)-binding aptamers for the simultaneous detection of two small-molecule ligands: adenosine triphosphate (ATP) and thioflavin T (ThT). The aptamer can form a G-quadruplex (G4) structure with two G-quartets, and our results show that each of these quartets is equally involved in binding. Using fluorescently labeled and label-free methods, we further explored the role of the G4 motif in modulating the ligand binding property of the aptamer by making two extended variants that can form three or four G-quartet G4 structures. Through equilibrium binding and electrospray ionization mass spectrometry (ESI-MS) analysis, we observed a stronger affinity of aptamers to ATP by the variant G4 constructs relative to the native aptamer (Kd range of 0.040-0.042 μM for variants as compared to 0.15 μM for the native ATP aptamer). Additionally, we observed a dual binding of ThT and ATP to the G4 constructs in the label-free and ESI-MS analyses. These findings together suggest that the G4 motif in the ATP aptamer is a critical structural element that is required for optimum ATP binding and can be modulated for the binding of multiple ligands. These findings are instrumental for designing smart molecular tools for a wide range of applications, including biomarker monitoring and ligand binding studies.
Collapse
Affiliation(s)
- Aleah
N. Edwards
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Alexandria N. Iannucci
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Jacob VanDenBerg
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Annastiina Kesti
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Tommie Rice
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Srishty Sethi
- Virginia
Commonwealth University, 1001 W Main St., Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Virginia
Commonwealth University, 1001 W Main St., Richmond, Virginia 23284, United States
| | - Philip M. Yangyuoru
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| |
Collapse
|
36
|
Lv M, Ren J, Wang E. Topological effect of an intramolecular split G-quadruplex on thioflavin T binding and fluorescence light-up. Chem Sci 2024; 15:4519-4528. [PMID: 38516084 PMCID: PMC10952102 DOI: 10.1039/d3sc06862e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
In this work, the topological effect on binding interaction between a G-quadruplex and thioflavin T (ThT) ligand was systematically investigated on a platform of an intramolecular split G-quadruplex (Intra-SG). Distinct fluorescence changes from ThT were presented in the presence of distinct split modes of Intra-SG structures and an intriguing phenomenon of target-induced fluorescence light-up occurred for split modes 2 : 10, 5 : 7 and 8 : 4. It was validated that hybridization between the Intra-SG spacer and target did not unfold the G-quadruplex, but facilitated the ThT binding. Moreover, the 3' guanine-rich fragment of Intra-SG was very susceptible to topology variation produced by the bound target strand. Additionally, a bioanalytical method was developed for ultrasensitive gene detection, confirming the utility of the ThT/Intra-SG complex as a universal signal transducer. It is believed that the results and disclosed rules will inspire researchers to develop many new DNA-based signal transducers in the future.
Collapse
Affiliation(s)
- Mengmeng Lv
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Erkang Wang
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
37
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
38
|
Huang R, Li M, Qu Z, Liu Y, Lu X, Li R, Zou L. Label-free fluorescence detection of mercury ions based on thymine-mercury-thymine structure and CRISPR-Cas12a. Food Res Int 2024; 180:114058. [PMID: 38395579 DOI: 10.1016/j.foodres.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.
Collapse
Affiliation(s)
- Ruoying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zenglin Qu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoxing Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China.
| |
Collapse
|
39
|
Jiang H, Lv X, Lu S, Yu Y, Li A, Li X, Deng Y. Microfluidic chip immunoassay based on rolling circle amplification and G-quadruplex/Thioflavin T for multiplex detection of CTX I. Mikrochim Acta 2024; 191:165. [PMID: 38416241 DOI: 10.1007/s00604-024-06240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
A label-free immunoassay based on rolling circle amplification (RCA) and G-quadruplex/Thioflavin T (G4/ThT) is proposed to realize the sensitive detection of carboxy-terminal cross-linked fragment of type I collagen (CTX I) for bone loss. Under the optimal conditions, as low as 38.02 pg/mL of CTX I can be detected. To improve the detecting throughput and simplify the operation, a microfluidic chip was designed, fabricated, and used for CTX I detection based on the proposed assay. The detection can be completed with only a single on-chip magnetic separation step, which was easy to operate, less time-consuming, and has only low reagent consumption. The limit of detection was 131.83 pg/mL by observing with fluorescence microscope. With further improvement of detection equipment, the sensitivity of on-chip detection can be improved. It can be expected that the proposed RCA/G4/ThT immunoassay for sensitive and high-throughput automated detection of CTX I might be chosen as a potential analytical tool for clinical osteoporosis diagnosis and in-orbit bone loss detection.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shuyu Lu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
40
|
Han X, Xu S, Wang L, Bi Z, Wang D, Bu H, Da J, Liu Y, Tan W. Artificial DNA Framework Channel Modulates Antiapoptotic Behavior in Ischemia-Stressed Cells via Destabilizing Promoter G-Quadruplex. ACS NANO 2024; 18:6147-6161. [PMID: 38372229 DOI: 10.1021/acsnano.3c06563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regulating folding/unfolding of gene promoter G-quadruplexes (G4s) is important for understanding the topological changes in genomic DNAs and the biological effects of such changes on important cellular events. Although many G4-stabilizing ligands have been screened out, effective G4-destabilizing ligands are extremely rare, posing a great challenge for illustrating how G4 destabilization affects gene function in living cells under stress, a long-standing question in neuroscience. Herein, we report a distinct methodology able to destabilize gene promoter G4s in ischemia-stressed neural cells by mitigating the ischemia-induced accumulation of intracellular K+ with an artificial membrane-spanning DNA framework channel (DFC). We also show that ischemia-triggered K+ influx is positively correlated to anomalous stabilization of promoter G4s and downregulation of Bcl-2, an antiapoptotic gene with neuroprotective effects against ischemic injury. Intriguingly, the DFC enables rapid transmembrane transport of excessive K+ mediated by the internal G4 filter, leading to the destabilization of endogenous promoter G4 in Bcl-2 and subsequent turnover of gene expression at both transcription and translation levels under ischemia. Consequently, this work enriches our understanding of the biological roles of endogenous G4s and may offer important clues to study the cellular behaviors in response to stress.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Huitong Bu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Chen Z, Xie C, Chen K, Hu Y, Xu F, Pan L. Multimode adaptive logic gates based on temperature-responsive DNA strand displacement. NANOSCALE 2024; 16:3107-3112. [PMID: 38250822 DOI: 10.1039/d3nr05980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Living organisms switch their intrinsic biological states to survive environmental turbulence, in which temperature changes are prevalent in nature. Most artificial temperature-responsive DNA nanosystems work as switch modules that transit between "ON-OFF" states, making it difficult to construct nanosystems with diverse functions. In this study, we present a general strategy to build multimode nanosystems based on a temperature-responsive DNA strand displacement reaction. The temperature-responsive DNA strand displacement was controlled by tuning the sequence of the substrate hairpin strands and the invading strands. The nanosystems were demonstrated as logic gates that performed a set of Boolean logical functions at specific temperatures. In addition, an adaptive logic gate was fabricated that could exhibit different logic functions when placed in different temperatures. Specifically, upon the same input strands, the logic gate worked as an XOR gate at 10 °C, an OR gate at 35 °C, an AND gate at 46 °C, and was reset at 55 °C. The design and fabrication of the multifunctional nanosystems would help construct advanced temperature-responsive systems that may be used for temperature-controlled multi-stage drug delivery and thermally-controlled multi-step assembly of nanostructures.
Collapse
Affiliation(s)
- Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
42
|
Gu L, Ding Y, Zhou Y, Zhang Y, Wang D, Liu J. Selective Hemin Binding by a Non-G-quadruplex Aptamer with Higher Affinity and Better Peroxidase-like Activity. Angew Chem Int Ed Engl 2024; 63:e202314450. [PMID: 38150561 DOI: 10.1002/anie.202314450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.
Collapse
Affiliation(s)
- Lide Gu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yang Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
43
|
Metangle S, Ranjan N. Preferential Binding of a Red Emissive Julolidine Derivative to a Promoter G-Quadruplex. Chembiochem 2024; 25:e202300527. [PMID: 37926689 DOI: 10.1002/cbic.202300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The therapeutic potential of G-quadruplexes has increased significantly with the growing understanding of their functional roles in pathogens apart from human diseases such as cancer. Here, we report the synthesis of three julolidine-based molecules and their binding to nucleic acids. Among the synthesized molecules, compound 1 exhibited red emissive fluorescence with a distinct preference for Pu22 G-quadruplex. The binding of compound 1 to Pu22 G-quadruplex, initially identified through a fluorescence-based screening, was further confirmed by UV-vis, fluorescence spectroscopy, and circular dichroism-based experiments. Thermal denaturation of compound 1 in the presence of Pu22 G-quadruplex revealed a concentration-dependent stabilization (~10.0 °C at 1 : 3 stoichiometry). Fluorescence-based experiments revealed 1 : 1 stoichiometry of the interaction and an association constant (Ka ) of 5.67×106 M-1 . CD experiments displayed that the parallel conformation of the G-quadruplex was retained on compound 1's binding and signs of higher order binding/complex formation were observed at high compound 1 to DNA ratio. Molecular docking studies revealed the dominance of stacking and van der Waals interactions in the molecular recognition which was aided by some close-distance interactions involving the quinolinium nitrogen atom.
Collapse
Affiliation(s)
- Sachin Metangle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India
| |
Collapse
|
44
|
Singh S, Sharma AK, Gade HM, Agarwal V, Nasani R, Verma N, Sharma B. Stimuli-responsive and self-healing supramolecular Zn(II)-guanosine metal-organic gel for Schottky barrier diode application. SOFT MATTER 2024; 20:1025-1035. [PMID: 38197513 DOI: 10.1039/d3sm01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spontaneous formation of a supramolecular metal-organic hydrogel using unsubstituted guanosine as a ligand and Zn2+ ions is reported. Guanosine, in the presence of NaOH, self-assembled into a stable G-quadruplex structure, which underwent crosslinking through Zn2+ ions to afford a stable hydrogel. The gel has been characterized using several spectroscopic as well as microscopic studies. The hydrogel demonstrated excellent stimuli responsiveness towards various chemicals and pH. Furthermore, the gel exhibited intrinsic thixotropic behavior and showed self-healing and injectable properties. The optical properties of the Zn-guanosine metallo-hydrogel suggested a semiconducting nature of the gel, which has been exploited for fabricating a thin film device based on a Schottky diode interface between metal and a semiconductor. The fabricated device shows excellent charge transport characteristics and linear rectifying behavior. The findings are likely to pave the way for newer research in the area of soft electronic devices fabricated using materials synthesized by employing simple biomolecules.
Collapse
Affiliation(s)
- Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Atul Kumar Sharma
- Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Hrushikesh M Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rajendar Nasani
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Verma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| |
Collapse
|
45
|
Zhang Y, Gong B, Lin Y, Zhu Y, Su G, Yu Y. Split G-quadruplex based PfAgo sensing platform for nucleotide mutation discrimination and human genotyping. Analyst 2024; 149:707-711. [PMID: 38230655 DOI: 10.1039/d3an02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A PfAgo-G4 sensing platform exploiting G4 as a signal reporter was proposed, validated, and optimized. By introducing two mismatches at the Link strand, a universal nucleotide design rule was established for accurate single nucleotide polymorphism discrimination with PfAgo-G4. The FUT2 gene was then successfully and accurately genotyped using human buccal swab samples.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Bin Gong
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanan Lin
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yuedong Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
46
|
Sun M, Chen X, Chen X, Zhou Q, Huang T, Li T, Xie B, Li C, Chen JX, Dai Z, Chen J. Label-free fluorescence detection of human 8-oxoguanine DNA glycosylase activity amplified by target-induced rolling circle amplification. Anal Chim Acta 2024; 1287:342084. [PMID: 38182379 DOI: 10.1016/j.aca.2023.342084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Human 8-oxoG DNA glycosylase 1 (hOGG1) is one of the important members of DNA glycosylase for Base excision repair (BER), the abnormal activity of which can lead to the failure of BER and the appearance of various diseases, such as breast cancer, bladder cancer, Parkinson's disease and lung cancer. Therefore, it is important to detect the activity of hOGG1. However, traditional detection methods suffer from time consuming, complicated operation, high false positive results and low sensitivity. Thus, it remains a challenge to develop simple and sensitive hOGG1 analysis strategies to facilitate early diagnosis and treatment of the relative disease. RESULTS A target-induced rolling circle amplification (TIRCA) strategy for label-free fluorescence detection of hOGG1 activity was proposed with high sensitivity and specificity. The TIRCA strategy was constructed by a hairpin probe (HP) containing 8-oxoG site and a primer probe (PP). In the presence of hOGG1, the HP transformed into dumbbell DNA probe (DDP) after the 8-oxoG site of which was removed. Then the DDP formed closed circular dumbbell probe (CCDP) by ligase. CCDP could be used as amplification template of RCA to trigger RCA. The RCA products containing repeated G4 sequences could combine with ThT to produce enhanced fluorescence, achieving label-free fluorescence sensing of hOGG1. Given the high amplification efficiency of RCA and the high fluorescence quantum yield of the G4/ThT, the proposed TIRCA achieved highly sensitive measurement of hOGG1 activity with a detection limit of 0.00143 U/mL. The TIRCA strategy also exhibited excellent specificity for hOGG1 analysis over other interference enzymes. SIGNIFICANCE This novel TIRCA strategy demonstrates high sensitivity and high specificity for the detection of hOGG1, which has also been successfully used for the screening of inhibitors and the analysis of hOGG1 in real samples. We believe that this TIRCA strategy provides new insight into the use of the isothermal nucleic acid amplification as a useful tool for hOGG1 detection and will play an important role in disease early diagnosis and treatment.
Collapse
Affiliation(s)
- Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Chen
- Neurology Division, Department of Obstetrics and Gynecology, The First People's Hospital of Tianmen in Hubei Province, Tianmen, 431700, China
| | - Xiang Chen
- Neurology Division, Department of Obstetrics and Gynecology, The First People's Hospital of Tianmen in Hubei Province, Tianmen, 431700, China
| | - Qianying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baoping Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
47
|
Wang X, Zheng D, Wang C, Xue D, Wang Q, Xia J. Harnessing intermolecular G-quadruplex-based spatial confinement effect for accelerated activation of CRISPR/Cas12a empowers ultra-sensitive detection of PML/RARA fusion genes. Anal Chim Acta 2024; 1287:342108. [PMID: 38182385 DOI: 10.1016/j.aca.2023.342108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/07/2024]
Abstract
Accurate detection and classification of the three isoforms of PML/RARA genomic fragments are crucial for predicting disease progression, stratifying risk, and administering precise drug therapies in acute promyelocytic leukemia (APL). In this study, we have developed a highly specific nucleic acid detection platform capable of quantifying the long isoform of the three main PML-RARA isoforms at a constant temperature. This platform integrates the strengths of the CRISPR/Cas12a nuclease-based method and the rolling circle amplification (RCA) technique. Notably, the RCA-assisted CRISPR/Cas12a trans-cleavage system incorporates a spatial confinement effect by utilizing intermolecular G-quadruplex structures. This innovative design effectively enhances the local concentration of CRISPR/Cas12a, thereby accelerating its cleaving efficiency towards reporter nucleic acids and enabling the detection of PML/RARA fusion gene expression through spectroscopy. The robust detection of PML/RARA fusion gene from human serum samples validates the reliability and potential of this platform in the screening, diagnosis, and prognosis of APL cases. Our findings present an approach that holds significant potential for the further development of the robust CRISPR/Cas sensor system, offering a rapid and adaptable paradigm for APL diagnosis.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, PR China; NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian, 350000, PR China.
| | - Dan Zheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Chengyi Wang
- Department of Hematology & Oncology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), Fuzhou, Fujian, 350011, PR China
| | - Danni Xue
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Qi Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Juan Xia
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| |
Collapse
|
48
|
Tang Q, Li Z, Li J, Chen H, Yan H, Deng J, Liu L. PCR-Free, Label-Free, and Centrifugation-Free Diagnosis of Multiplex Antibiotic Resistance Genes by Combining mDNA-Au@Fe 3O 4 from Heating Dry and DNA Concatamers with G-Triplex. Anal Chem 2024; 96:292-300. [PMID: 38141016 DOI: 10.1021/acs.analchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.
Collapse
Affiliation(s)
- Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
49
|
Yang H, Xu P, Pan F, Gao J, Yuan L, Lu K. Recent Advances in Fluorescent Probes for G-quadruplex DNAs / RNAs. Mini Rev Med Chem 2024; 24:1940-1952. [PMID: 38798221 DOI: 10.2174/0113895575301818240510151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Guanine-quadruplexes (G4s) are high-level structures formed by the folding of guaninerich nucleic acid sequences. G4s play important roles in various physiological processes, such as gene transcription, replication, recombination, and maintenance of chromosomal stability. Specific and sensitive monitoring of G4s lays the foundation for further understanding the structure, content, distribution, and function of G4s in organisms, which is important for the treatment and diagnosis of diseases. Moreover, visualization of G4s will provide new ideas for developing antitumor strategies targeting G4s. The design and development of G4-specific ligands are challenging due to the subtle differences in the structure of G4s. This review focuses on the progress of research on G4 fluorescent probes and their binding mechanisms to G4s. Finally, the challenges and future prospects for better detection and targeting of G4s in different organisms are discussed. This paper provides ideas for the development of novel G4 fluorescent probes.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044, China
| | - Ping Xu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Libo Yuan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044, China
| |
Collapse
|
50
|
Bhowmik S, Ghosh T, Sanghvi YS, Das AK. Synthesis and Structural Studies of Nucleobase Functionalized Hydrogels for Controlled Release of Vitamins. ACS APPLIED BIO MATERIALS 2023; 6:5301-5309. [PMID: 37971725 DOI: 10.1021/acsabm.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of biomolecule-derived biocompatible scaffolds for drug delivery applications is an emerging research area. Herein, we have synthesized a series of nucleobase guanine (G) functionalized amino acid conjugates having different chain lengths to study their molecular self-assembly in the hydrogel state. The gelation properties have been induced by the correct choice of chain lengths of fatty acids present in nucleobase functionalized molecules. The effect of alkali metal cations, pH, and the concentration of nucleobase functionalized amino acid conjugates in the molecular self-assembly process has been explored. The presence of Hoogsteen hydrogen bonding interaction drives the formation of a G-quadruplex functionalized hydrogel. The DOSY nuclear magnetic resonance is also performed to evaluate the self-assembling behavior of the newly formed nucleobase functionalized hydrogel. The nanofibrillar morphology is responsible for the formation of a hydrogel, which has been confirmed by various microscopic experiments. The mechanical behaviors of the hydrogel were evaluated by rheological experiments. The in vitro biostability of the synthesized nucleobase amino acid conjugate is also investigated in the presence of hydrolytic enzymes proteinase K and chymotrypsin. Finally, the nucleobase functionalized hydrogel has been used as a drug delivery platform for the control and sustained pH-responsive release of vitamins B2 and B12. This synthesized nucleobase functionalized hydrogel also exhibits noncytotoxic behavior, which has been evaluated by their in vitro cell viability experiment using HEK 293 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|