1
|
Ham G, Kim Y, Jang WD, Kim S. An Isolable Triarylphosphine Radical Cation Electronically Stabilized by Through-Space Radical Delocalization. J Am Chem Soc 2024. [PMID: 39508349 DOI: 10.1021/jacs.4c13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Synthesis and characterization of a thermally stable triarylphosphine radical cation, [P(8-Br-C10H6)3][BArF24] ([1][BArF24], BArF24 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate), enabled by stabilization through peri-bromo-substituted naphthalenes, are described. Unlike previously reported phosphine radical cations that rely on sterically bulky substituents for stabilization, our approach leverages electronic stabilization via "through-space" radical delocalization. Single-crystal X-ray diffraction of [1][BArF24] reveals a tricapped tetrahedral geometry, resulting from the spatial proximity of the three bromine atoms to the phosphorus center, differentiated from the trigonal planar geometry observed in the previously reported triarylphosphine radical cations with sterically bulky substituents. EPR spectroscopy shows an isotropic signal with hyperfine couplings to both the phosphorus and the three bromine atoms, indicating spin delocalization over these four atoms and consequent formation of a four-center, seven-electron (4c-7e) bond. DFT computational studies further support the through-space radical delocalization mechanism, revealing that the HOMO of 1 exhibits antibonding character between the phosphorus center and the three adjacent Br atoms, distinct from common triarylphosphines.
Collapse
Affiliation(s)
- Gyeongho Ham
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sangmin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
van der Zee LJC, Hofman J, van Gaalen JM, Slootweg JC. Mechanistic studies on single-electron transfer in frustrated Lewis pairs and its application to main-group chemistry. Chem Soc Rev 2024; 53:4862-4876. [PMID: 38623621 PMCID: PMC11104263 DOI: 10.1039/d4cs00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Advances in the field of frustrated Lewis pair (FLP) chemistry have led to the discovery of radical pairs, obtained by a single-electron transfer (SET) from the Lewis base to the Lewis acid. Radical pairs are intriguing for their potential to enable cooperative activation of challenging substrates (e.g., CH4, N2) in a homolytic fashion, as well as the exploration of novel radical reactions. In this review, we will cover the two known mechanisms of SET in FLPs-thermal and photoinduced-along with methods (i.e., CV, DFT, UV-vis) to predict the mechanism and to characterise the involved electron donors and acceptors. Furthermore, the available techniques (i.e., EPR, UV-vis, transient absorption spectroscopy) for studying the corresponding radical pairs will be discussed. Initially, two model systems (PMes3/CPh3+ and PMes3/B(C6F5)3) will be reviewed to highlight the difference between a thermal and a photoinduced SET mechanism. Additionally, three cases are analysed to provide further tools and insights into characterizing electron donors and acceptors, and the associated radical pairs. Firstly, a thermal SET process between LiHMDS and [TEMPO][BF4] is discussed. Next, the influence of Lewis acid complexation on the electron acceptor will be highlighted to facilitate a SET between (pBrPh)3N and TCNQ. Finally, an analysis of sulfonium salts as electron acceptors will demonstrate how to manage systems with rapidly decomposing radical species. This framework equips the reader with an expanded array of tools for both predicting and characterizing SET events within FLP chemistry, thereby enabling its extension and application to the broader domain of main-group (photo)redox chemistry.
Collapse
Affiliation(s)
- Lars J C van der Zee
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Jelle Hofman
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Joost M van Gaalen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
4
|
Xie ZZ, Liao ZH, Zheng Y, Yuan CP, Guan JP, Li MZ, Deng KY, Xiang HY, Chen K, Yang H. Photoredox-Catalyzed Selective α-Scission of PR 3-OH Radicals to Access Hydroalkylation of Alkenes. Org Lett 2023; 25:9014-9019. [PMID: 38063439 DOI: 10.1021/acs.orglett.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Photoinduced generation of phosphoranyl radicals offers a versatile strategy to access a variety of synthetically valuable radicals. A long-standing challenge remains in the regulation of phosphoranyl radical to undergo α-scission pathway, although the β-scission mode has been intensively studied. We herein developed an unprecedented protocol for selective α-scission of the P(OH)R3 radical intermediate under photocatalytic conditions. This efficient P-C bond cleavage via α-scission of the P(OH)R3 radicals has been successfully utilized in the alkylation/fluoroalkylation of alkenes.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zi-Hao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
5
|
Helling C, van der Zee LJC, Hofman J, de Zwart FJ, Mathew S, Nieger M, Slootweg JC. Homolytic C-H Bond Activation by Phosphine-Quinone-Based Radical Ion Pairs. Angew Chem Int Ed Engl 2023; 62:e202313397. [PMID: 37831966 DOI: 10.1002/anie.202313397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine-quinone systems and explore their potential for the activation of C-H bonds. PMes3 (Mes=2,4,6-Me3 C6 H2 ) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P-O bonded zwitterionic adduct Mes3 P-DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3 C6 H2 ) afforded C-H bond activation product Tip2 P(H)(2-[CMe2 (DDQ)]-4,6-iPr2 -C6 H2 ) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3 ]⋅+ [DDQ]⋅- , and subsequent homolytic C-H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2 P(H)(2-[CMe2 {TCQ-B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2 P(H)(2-[CMe2 {oQtBu -B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (8, oQtBu =3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ-B(C6 F5 )3 and oQtBu -B(C6 F5 )3 , respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C-H bond activation by the synergistic action of radical ion pairs.
Collapse
Affiliation(s)
- Christoph Helling
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| | - Lars J C van der Zee
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| | - Jelle Hofman
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| | - Felix J de Zwart
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, FIN-00014, Helsinki, Finland
| | - J Chris Slootweg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sharma MK, Weinert HM, Li B, Wölper C, Henthorn JT, Cutsail GE, Haberhauer G, Schulz S. Syntheses and Structures of 5-Membered Heterocycles Featuring 1,2-Diphospha-1,3-Butadiene and Its Radical Anion. Angew Chem Int Ed Engl 2023; 62:e202309466. [PMID: 37582227 DOI: 10.1002/anie.202309466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Bin Li
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
7
|
Chu G, Wang W, Zhao J, Zhou D. Transformation of phosphorus species during phosphoric acid-assisted pyrolysis of lignocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161010. [PMID: 36549532 DOI: 10.1016/j.scitotenv.2022.161010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Phosphoric acid-assisted pyrolysis (PAAP) is a pyrolysis technique with potential for the engineered and environmental application. Nevertheless, the volatilisation, immobilisation, and dissolution of phosphorus (P) species have been neglected during PAAP of lignocellulose. Therefore, we compared the transformation of P species with direct-pyrolysis and PAAP system, using multiple techniques including gas chromatography tandem mass spectrometry (GCMS) and 31P nuclear magnetic resonance (NMR). It was also investigated that the properties of pyrogenic and modified carbons obtained from lignocellulose pyrolysis at 200-650 °C. As the temperature increased, volatile P species evolved into gas-phase during PAAP, inhibiting the formation of the macromolecular volatile components. Compared with pyrogenic carbons, modified carbons with more aromatic structures experienced a higher degree of dehydration and cyclisation via catalytic crosslinking reaction. PAAP system facilitated more generation of persistent free radical (PFR) below 500 °C and the attenuation of PFR signals was observed at 500-650 °C, which may be associated with the sequestration and elimination of P species between carbon matrix. Notably, three configurations of C3PO, CPO, and COP were the major combinations of P and C elements on modified carbons. Increased gaseous P and decreased soluble P were observed with elevated temperatures in PAAP system. The species proportion of immobilised P clearly demonstrated the transformation of partial P species from inorganic to organic through pyrolysis. The immobilised P could serve as a potential sustained-release source participating in P biogeochemical cycles. These findings are fundamental for the technical design of lignocellulose pyrolysis.
Collapse
Affiliation(s)
- Gang Chu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wangmin Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jing Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Dandan Zhou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
8
|
Song H, Lee E. Revisiting the Reaction of IPr with Tritylium: An Alternative Mechanistic Pathway. Chemistry 2023; 29:e202203364. [PMID: 36445754 DOI: 10.1002/chem.202203364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Despite a recent proposal on the mechanism of a single-electron transfer (SET) process between tritylium and 2,6-bis(diisopropylphenyl)imidazol-2-ylidene (IPr) based on evidence of transient IPr radical cation intermediate ([IPr]⋅+ ) formation, such oxidation is still contentious because of the high oxidation potential of N-heterocyclic carbenes. Our experimental analysis indicates that the appearance of deep purple color, previously considered to be from transient [IPr]⋅+ , originates from a zwitterionic intermediate (3 a), not a radical cation. Here, we propose an alternative mechanism for the reaction involving tritylium and IPr. This mechanism is noteworthy for explaining how [NHC-H]+ can be generated without the formation of transient [NHC]⋅+ , which has been frequently proposed as an intermediate for the reaction between NHC and oxidants. These results also show that a transient strong single-electron donor (3 a) could be generated by the alternative mechanism for oxidants using NHCs, which is a more feasible explanation for the reactivity of NHCs with oxidants.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Tang C, Song L, Zhou K, Ren P, Zhao E, He Z. Manipulating D-A interaction to achieve stable photoinduced organic radicals in triphenylphosphine crystals. Chem Sci 2023; 14:1871-1877. [PMID: 36819874 PMCID: PMC9930928 DOI: 10.1039/d2sc05753k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
New strategies for the design and synthesis of stable organic radicals without additives are highly desirable. Herein, we design a series of donor-acceptor structured triarylphosphines and disclose the fast color change triggered by UV-irradiation in the crystalline state. Photoinduced organic radicals are undoubtedly verified and proved to be the reason for the color change by time-dependent and quantitative electron paramagnetic resonance analysis, X-ray crystallographic analysis, and theoretical calculations. It is revealed that the intrinsic symmetry breaking of peripheral architecture helps to form continuous molecular chains by donor-acceptor counterpart pairing. Intermolecular electron-transfer occurs among molecular chains and results in radical ion pairs upon photoirradiation.
Collapse
Affiliation(s)
- Chunlin Tang
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic Shenzhen Guangdong 518055 China
| | - Peng Ren
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
- School of Chemical Engineering and Technology, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| |
Collapse
|
10
|
Shi Y, Tian H, Xia Y, Sun Y, Zhou Z, Ren Y, Shi T, Liu Z, Ma G. Deciphering the reaction mechanism and the reactivity of the TCEP species towards reduction of hexachloroiridate(IV). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
12
|
Budnikova YH. Phosphorus-Centered Radicals: Synthesis, Properties, and Applications. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Roberts NJ, Johnson ER, Chitnis SS. Dispersion Stabilizes Metal–Metal Bonds in the 1,8-Bis(silylamido)naphthalene Ligand Environment. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas J. Roberts
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| | - Saurabh S. Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
14
|
Feng Z, Tang S, Su Y, Wang X. Recent advances in stable main group element radicals: preparation and characterization. Chem Soc Rev 2022; 51:5930-5973. [PMID: 35770612 DOI: 10.1039/d2cs00288d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical species are significant in modern chemistry. Their unique chemical bonding and novel physicochemical properties play significant roles not only in fundamental chemistry, but also in materials science. Main group element radicals are usually transient due to their high reactivity. Highly stable radicals are often stabilized by π-delocalization, sterically demanding ligands, carbenes and weakly coordinating anions in recent years. This review presents the recent advances in the synthesis, characterization, reactivity and physical properties of isolable main group element radicals.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Sasaki S. Theoretical consideration on phosphorus–oxygen bond formation of sterically crowded triarylphosphines and their radical cations. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2013218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shigeru Sasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
17
|
Kundu S, Das B, Makol A. Phosphorus radicals and radical ions. Dalton Trans 2022; 51:12404-12426. [DOI: 10.1039/d2dt01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of isolable radicals of main-group elements have been a long-pursued quest. Although there has been considerable progress in this area, particularly in isolating carbon- radicals, the isolation...
Collapse
|
18
|
Gildenast H, Garg F, Englert U. Sterically Crowded Tris(2-(trimethylsilyl)phenyl)phosphine - Is it Still a Ligand? Chemistry 2021; 28:e202103555. [PMID: 34856017 PMCID: PMC9303349 DOI: 10.1002/chem.202103555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/05/2022]
Abstract
Tris(2-(trimethylsilyl)phenyl)phosphine, P( o -TMSC 6 H 4 ) 3 , was synthesised and characterised in solution and in the solid state. The large steric bulk prevents most reactions of the phosphorus donor and makes the compound air stable both in the solid state as well as in solution. This shielded phosphine can still undergo three reactions, namely protonation, oxidation to the phosphine oxide under harsh conditions and complexation to Au I , thus forming a complex with linear coordination. Unexpectedly, complexation was unsuccessful with a range of other metal cations. Neither Pd II , Pt II , Zn II nor Hg II reacted and even the remaining coinage metal cations Cu I and Ag I could not be coordinated. Both the parent molecule as well as the reaction products were structurally characterised by single crystal X-ray di raction, and the conformational change of geometry required to accommodate the additional atoms was analysed in detail. Apart from chemical oxidation with H 2 O 2 , P( o -TMSC 6 H 4 ) 3 displays reversible electrochemical oxidation with a potential not unlike the one of sterically unencumbered phosphines for which the oxidation is usually not reversible. P( o -TMSC 6 H 4 ) 3 can thus be considered a model compound for the investigation of the electronic properties of sterically unencumbered phosphines.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Felix Garg
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Ulli Englert
- RWTH Aachen, Institute for Inorganic Chemistry, Landoltweg 1, 52074, Aachen, GERMANY
| |
Collapse
|
19
|
Chen Y, Chen Z, Jiang L, Li J, Zhao Y, Zhu H, Roesky HW. One- and Two-Electron Transfer Oxidation of 1,4-Disilabenzene with Formation of Stable Radical Cations and Dications. Chemistry 2021; 28:e202103715. [PMID: 34837718 PMCID: PMC9299862 DOI: 10.1002/chem.202103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Electron‐transferable oxidants such as B(C6F5)3/nBuLi, B(C6F5)3/LiB(C6F5)4, B(C6F5)3/LiHBEt3, Al(C6F5)3/(o‐RC6H4)AlH2 (R=N(CMe2CH2)2CH2), B(C6F5)3/AlEt3, Al(C6F5)3, Al(C6F5)3/nBuLi, Al(C6F5)3/AlMe3, (CuC6F5)4, and Ag2SO4, respectively were employed for reactions with (L)2Si2C4(SiMe3)2(C2SiMe3)2 (L=PhC(NtBu)2, 1). The stable radical cation [1]+. was formed and paired with the anions [nBuB(C6F5)3]− (in 2), [B(C6F5)4]− (in 3), [HB(C6F5)3]− (in 4), [EtB(C6F5)3]− (in 5), {[(C6F5)3Al]2(μ‐F)]− (in 6), [nBuAl(C6F5)3]− (in 7), and [Cu(C6F5)2]− (in 8), respectively. The stable dication [1]2+ was also generated with the anions [EtB(C6F5)3]− (9) and [MeAl(C6F5)3]− (10), respectively. In addition, the neutral compound [(L)2Si2C4(SiMe3)2(C2SiMe3)2][μ‐O2S(O)2] (11) was obtained. Compounds 2–11 are characterized by UV‐vis absorption spectroscopy, X‐ray crystallography, and elemental analysis. Compounds 2–8 are analyzed by EPR spectroscopy and compounds 9–11 by NMR spectroscopy. The structure features are discussed on the central Si2C4‐rings of 1, [1]+., [1]2+, and 11, respectively.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhikang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liuyin Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiancheng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yiling Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität, 37077, Göttingen, Germany
| |
Collapse
|
20
|
Mao L, Zhou M, Shi X, Yang HB. Triphenylamine (TPA) radical cations and related macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Herrera-Luna J, Díaz DD, Jiménez MC, Pérez-Ruiz R. Highly Efficient Production of Heteroarene Phosphonates by Dichromatic Photoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48784-48794. [PMID: 34615352 PMCID: PMC8630706 DOI: 10.1021/acsami.1c14497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A new strategy to achieve efficient aerobic phosphorylation of five-membered heteraroenes with excellent yields using dichromatic photoredox catalysis in a gel-based nanoreactor is described here. The procedure involves visible aerobic irradiation (cold white LEDs) of a mixture containing the heteroarene halide, trisubstituted phospite, N,N-diisopropylethylamine (DIPEA) as sacrificial agent, and catalytic amounts of 9,10-dicyanoanthracene (DCA) in the presence of an adequate gelator, which permits a faster process than at the homogeneous phase. The methodology, which operates by a consecutive photoinduced electron transfer (ConPET) mechanism, has been successfully applied to the straightforward and clean synthesis of a number of different heteroarene (furan, thiophene, selenophene, pyrrole, oxazole, or thioxazole) phosphonates, extending to the late-stage phosphonylation of the anticoagulant rivaroxaban. Strategically, employment of cold white light is critical since it provides both selective wavelengths for exciting first DCA (blue region) and subsequently its corresponding radical anion DCA•- (green region). The resultant strongly reducing excited agent DCA•-* is capable of even activate five-membered heteroarene halides (Br, Cl) with high reduction potentials (∼-2.7 V) to effect the C(sp2)-P bond formation. Spectroscopic and thermodynamic studies have supported the proposed reaction mechanism. Interestingly, the rate of product formation has been clearly enhanced in gel media because reactants can be presumably localized not only in the solvent pools but also through to the fibers of the viscoelastic gel network. This has been confirmed by field-emission scanning electron microscopy images where a marked densification of the network has been observed, modifying its fibrillary morphology. Finally, rheological measurements have shown the resistance of the gel network to the incorporation of the reactants and the formation of the desired products.
Collapse
Affiliation(s)
- Jorge
C. Herrera-Luna
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera S/N, 46022 Valencia, Spain
| | - David Díaz Díaz
- Departamento
de Química Orgánica and Instituto de Bio-Orgánica
Antonio González, Universidad de
La Laguna, Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Spain
- Institut
für Organische Chemie, Universität
Regensburg, 93053 Regensburg, Germany
| | - M. Consuelo Jiménez
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera S/N, 46022 Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera S/N, 46022 Valencia, Spain
| |
Collapse
|
22
|
Yang W, Wang W, Zhang L, Zhang L, Ruan H, Feng Z, Fang Y, Wang X. Persistent 2 c-3 e σ-bonded heteronuclear radical cations centered on S/Se and P/As atoms. Chem Commun (Camb) 2021; 57:5067-5070. [PMID: 33884392 DOI: 10.1039/d1cc01117k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two-center three-electron (2c-3e) bonded species are important in chemical and biological science. Reported isolable 2c-3e σ-bonded species are usually constructed in homoatomic radicals. The one-electron oxidation of main-group heteronuclear species Nap(SPh)(P(Mes)2) (1), Nap(SePh)(P(Mes)2) (2), Nap(SPh)(As(Mes)2) (3) and Nap(SePh)(As(Mes)2) (4) produced persistent radical cations 1˙+-4˙+ in solution. Large couplings of heteroatoms in EPR spectra of 1˙+-4˙+, shorter bond distances and bigger Wiberg bond orders of Ch-Pn in 1˙+-4˙+ than those in 1-4 in DFT calculations indicate large amounts of spin densities over heteroatoms and the formation of 2c-3e σ-bonds between chalcogen and pnicogen atoms. This work provides evidence of 2c-3e σ-bonds constructed between main-group heteronuclears and rare examples of radical cations involving three-electron σ-bonds between S/Se and P/As atoms.
Collapse
Affiliation(s)
- Wenbang Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wenqing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. and College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Leran Zhang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
23
|
Chen X, Hu C, Zhang X, Liu S, Mei Y, Hu G, Liu LL, Li Z, Su CY. Reversible Stereoisomerization of 1,3-Diphosphetane Frameworks Revealed by a Single-Electron Redox Approach. Inorg Chem 2021; 60:5771-5778. [PMID: 33780618 DOI: 10.1021/acs.inorgchem.1c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of pyramidal inversion has continued to impact modern organic and organometallic chemistry. Sequential alkylation reactions of an N-heterocyclic carbene (NHC) ligated dicarbondiphosphide 1 with RI (R = Me, Et, or iBu) and ZnMe2 give rise to the highly stereoselective synthesis of cis-1,3-diphosphetanes 3. cis-3 is conformationally favorable at room temperature, whereas inversion to trans-3 is observed at 110 °C. One-electron oxidation of cis-3 with Fc+(BArF) (Fc = [Fe(C5H5)2]; BArF = [B(3,5-(CF3)2C6H3)4)]-) leads to the stereoselective formation of trans-1,3-diphosphetane radical cation salts 3•+(BArF), which can be reversibly transformed to cis-3 upon one-electron reduction. Salts 3•+(BArF) represent the first examples of 1,3-diphosphetane radical cations. These results provide a potential application of planar four-membered heterocycle-based building blocks for electrically fueled molecular switches.
Collapse
Affiliation(s)
- Xiaodan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Zhang
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanbo Mei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guping Hu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongshu Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.,Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Supranovich VI, Levin VV, Kokorekin VA, Dilman AD. Generation of Alkyl Radicals from Thiols via Zinc Thiolates: Application for the Synthesis of
gem
‐Difluorostyrenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
25
|
Dasgupta A, Stefkova K, Babaahmadi R, Yates BF, Buurma NJ, Ariafard A, Richards E, Melen RL. Site-Selective C sp3-C sp/C sp3-C sp2 Cross-Coupling Reactions Using Frustrated Lewis Pairs. J Am Chem Soc 2021; 143:4451-4464. [PMID: 33719443 PMCID: PMC8041292 DOI: 10.1021/jacs.1c01622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/08/2023]
Abstract
The donor-acceptor ability of frustrated Lewis pairs (FLPs) has led to widespread applications in organic synthesis. Single electron transfer from a donor Lewis base to an acceptor Lewis acid can generate a frustrated radical pair (FRP) depending on the substrate and energy required (thermal or photochemical) to promote an FLP into an FRP system. Herein, we report the Csp3-Csp cross-coupling reaction of aryl esters with terminal alkynes using the B(C6F5)3/Mes3P FLP. Significantly, when the 1-ethynyl-4-vinylbenzene substrate was employed, the exclusive formation of Csp3-Csp cross-coupled products was observed. However, when 1-ethynyl-2-vinylbenzene was employed, solvent-dependent site-selective Csp3-Csp or Csp3-Csp2 cross-coupling resulted. The nature of these reaction pathways and their selectivity has been investigated by extensive electron paramagnetic resonance (EPR) studies, kinetic studies, and density functional theory (DFT) calculations both to elucidate the mechanism of these coupling reactions and to explain the solvent-dependent site selectivity.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Katarina Stefkova
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Rasool Babaahmadi
- School
of Natural Sciences-Chemistry, University
of Tasmania Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Brian F. Yates
- School
of Natural Sciences-Chemistry, University
of Tasmania Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Niklaas J. Buurma
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Alireza Ariafard
- School
of Natural Sciences-Chemistry, University
of Tasmania Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Emma Richards
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Rebecca L. Melen
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
26
|
Marques LR, Ando RA. Probing the Charge Transfer in a Frustrated Lewis Pair by Resonance Raman Spectroscopy and DFT Calculations. Chemphyschem 2021; 22:522-525. [PMID: 33512751 DOI: 10.1002/cphc.202001024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Indexed: 01/01/2023]
Abstract
A classical Lewis adduct derives from a covalent bond between a Lewis acid and a base. When the adduct formation is precluded by means of steric hindrance the association of the respective acid-base molecular system is defined as a frustrated Lewis pair (FLP). In this work, the archetypal FLP Mes3 P/B(C6 F5 )3 was characterized for the first time by resonance Raman spectroscopy, and the results were supported by density functional theory (DFT) calculations. The charge transfer nature of the lowest energy electronic transition, from phosphine to borane, was confirmed by the selective enhancement of the Raman bands associated to the FLP chromophore at resonance condition. Herein, we demonstrate the use of resonance Raman spectroscopy as a distinguished technique to probe the weak interaction involved in FLP chemistry.
Collapse
Affiliation(s)
- Leandro Ramos Marques
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Butantã, 05508-000, São Paulo-SP, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Butantã, 05508-000, São Paulo-SP, Brazil
| |
Collapse
|
27
|
|
28
|
Levin VV, Dilman AD. Alkene homologation via visible light promoted hydrophosphination using triphenylphosphonium triflate. Chem Commun (Camb) 2021; 57:749-752. [PMID: 33346287 DOI: 10.1039/d0cc07025d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophosphination reaction of alkenes with triphenylphosphonium triflate under photocatalytic conditions is described. The reaction is promoted by naphthalene-fused N-acylbenzimidazole and is believed to proceed through intermediate formation of a phosphinyl radical cation. The resulting phosphonium salts are directly involved in the Wittig reaction leading to homologated alkenes.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
29
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room‐Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| |
Collapse
|
30
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room-Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020; 59:23830-23835. [PMID: 32914528 DOI: 10.1002/anie.202011677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3 )2 C6 H3 )4 )]- ) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China.,Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| |
Collapse
|
31
|
Hirakawa F, Nakagawa H, Honda S, Ishida S, Iwamoto T. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. J Org Chem 2020; 85:14634-14642. [PMID: 32700539 DOI: 10.1021/acs.joc.0c01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bulky phosphines and their redox properties have received increased attention in the view of useful auxiliary ligands for transition metal catalysts and Lewis-base components of frustrated Lewis pairs for chemical transformations. Herein we report the synthesis, structure, and properties of a series of trialkylphosphines 2R (R = methyl, ethyl, isopropyl, tert-butyl, 1-adamantyl) that possess the bulky 2,2,5,5-tetrakis(trimethylsilyl)-1-phosphacyclopentane as a structural backbone. Among these phosphines, 2Ad, which contains an adamantyl moiety, has a very large buried volume (%Vbur) for a trialkylphosphine (62.0) and shows a quasi-reversible oxidative wave at a lower oxidation potential (-0.12 V in CH2Cl2, vs ferrocene/ferrocenium couple) by cyclic voltammetry. The reaction of 2Ad with AgPF6 afforded a cationic silver aquo complex [Ag(2Ad)(H2O)]+[PF6]-, whereas the reaction with NOSbF6 gave a persistent phosphine radical cation [2Ad]•+. Based on the EPR spectra and DFT studies, the spin and positive charge of [2Ad]•+ are localized on the phosphorus atom.
Collapse
Affiliation(s)
- Fumiya Hirakawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroshi Nakagawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
32
|
Helling C, Schulz S. Long‐Lived Radicals of the Heavier Group 15 Elements Arsenic, Antimony, and Bismuth. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| |
Collapse
|
33
|
Rossi-Ashton JA, Clarke AK, Unsworth WP, Taylor RJK. Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catal 2020; 10:7250-7261. [PMID: 32905246 PMCID: PMC7469205 DOI: 10.1021/acscatal.0c01923] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Photocatalytic generation of phosphoranyl radicals is fast emerging as an essential method for the generation of diverse and valuable radicals, typically via deoxygenation or desulfurization processes. This Perspective is a comprehensive evaluation of all studies using phosphoranyl radicals as tunable mediators in photoredox catalysis, highlighting how two distinct methods for phosphoranyl radical formation (radical addition and nucleophilic addition) can be used to generate versatile radical intermediates with diverse reactivity profiles.
Collapse
Affiliation(s)
| | - Aimee K. Clarke
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | - William P. Unsworth
- Department of Chemistry, University of York, Heslington,
York YO10 5DD, U.K.
| | | |
Collapse
|
34
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony-Centered Radicals. Angew Chem Int Ed Engl 2020; 59:7561-7568. [PMID: 32048388 PMCID: PMC7216903 DOI: 10.1002/anie.202000586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/23/2023]
Abstract
We report on the structures of three unprecedented heteroleptic Sb-centered radicals [L(Cl)Ga](R)Sb. (2-R, R=B[N(Dip)CH]2 2-B, 2,6-Mes2 C6 H3 2-C, N(SiMe3 )Dip 2-N) stabilized by one electropositive metal fragment [L(Cl)Ga] (L=HC[C(Me)N(Dip)]2 , Dip=2,6-i-Pr2 C6 H3 ) and one bulky B- (2-B), C- (2-C), or N-based (2-N) substituent. Compounds 2-R are predominantly metal-centered radicals. Their electronic properties are largely influenced by the electronic nature of the ligands R, and significant delocalization of unpaired-spin density onto the ligands was observed in 2-B and 2-N. Cyclic voltammetry (CV) studies showed that 2-B undergoes a quasi-reversible one-electron reduction, which was confirmed by the synthesis of [K([2.2.2]crypt)][L(Cl)GaSbB[N(Dip)CH]2 ] ([K([2.2.2]crypt)][2-B]) containing the stibanyl anion [2-B]- , which was shown to possess significant Sb-B multiple-bonding character.
Collapse
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| |
Collapse
|
35
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony‐Centered Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| |
Collapse
|
36
|
Sharma MK, Blomeyer S, Glodde T, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-phospha-1,3-butadienes and their sequential one-electron oxidation to radical cations and dications. Chem Sci 2020; 11:1975-1984. [PMID: 34123292 PMCID: PMC8148328 DOI: 10.1039/c9sc05598c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2020] [Indexed: 01/05/2023] Open
Abstract
A synthetic strategy for the 2-phospha-1,3-butadiene derivatives [{(IPr)C(Ph)}P(cAACMe)] (3a) and [{(IPr)C(Ph)}P(cAACCy)] (3b) (IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACMe = C{(NDipp)CMe2CH2CMe2}; cAACCy = C{(NDipp)CMe2CH2C(Cy)}, Cy = cyclohexyl) containing a C[double bond, length as m-dash]C-P[double bond, length as m-dash]C framework has been established. Compounds 3a and 3b have a remarkably small HOMO-LUMO energy gap (3a: 5.09; 3b: 5.05 eV) with a very high-lying HOMO (-4.95 eV for each). Consequently, 3a and 3b readily undergo one-electron oxidation with the mild oxidizing agent GaCl3 to afford radical cations [{(IPr)C(Ph)}P(cAACR)]GaCl4 (R = Me 4a, Cy 4b) as crystalline solids. The main UV-vis absorption band for 4a and 4b is red-shifted with respect to that of 3a and 3b, which is associated with the SOMO related transitions. The EPR spectra of compounds 4a and 4b each exhibit a doublet due to coupling of the unpaired electron with the 31P nucleus. Further one-electron removal from the radical cations 4a and 4b is also feasible with GaCl3, affording the dications [{(IPr)C(Ph)}P(cAACR)](GaCl4)2 (R = Me 5a, Cy 5b) as yellow crystals. The molecular structures of compounds 3-5 have been determined by X-ray diffraction and analyzed by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr D-45470 Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| |
Collapse
|
37
|
Li X, Liu YH, Zhu GZ, Gao F. Stabilization and isolation of radical cation and dication salts of a tetrathiafulvalene derivative functionalized with amino groups. NEW J CHEM 2020. [DOI: 10.1039/d0nj04033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The radical cation and dication salts of a tetrathiafulvalene derivative functionalized with amino groups have been stabilized and isolated by chemical oxidation. Comprehensive research on their structure–property relationship was fully performed.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Yu-Han Liu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guang-Zhou Zhu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Feng Gao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
38
|
Cui H, Xiao D, Zhang L, Ruan H, Fang Y, Zhao Y, Tan G, Zhao L, Frenking G, Driess M, Wang X. Isolable cyclic radical cations of heavy main-group elements. Chem Commun (Camb) 2020; 56:2167-2170. [DOI: 10.1039/c9cc09582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first stable radical cations bearing both heavy group 14 and 15 elements have been isolated and fully characterized.
Collapse
|
39
|
|
40
|
Sharma MK, Blomeyer S, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-arsa-1,3-butadiene radical cations and dications. Chem Commun (Camb) 2020; 56:3575-3578. [PMID: 32104835 DOI: 10.1039/d0cc00624f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
2-Arsa-1,3-butadienes (L)As(cAACR) (L = PhC[double bond, length as m-dash]C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACR = C{(NDipp)CMe2CH2C(R)}, R = Me22a, R = cyclohexyl (Cy) 2b) and the corresponding radical cations [(L)As(cAACR)]GaCl4 (R = Me23a, Cy 3b) and dications [(L)As(cAACR)](GaCl4)2 (R = Me 4a, Cy 4b) featuring a C[double bond, length as m-dash]C-As[double bond, length as m-dash]C π-conjugated framework are reported.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, D-45470, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| |
Collapse
|
41
|
|
42
|
Schaub TA, Padberg K, Kivala M. The Renaissance of Bridged Triarylphosphines: Towards Organophosphorus Molecular Bowls. CHEM LETT 2019. [DOI: 10.1246/cl.190601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tobias A. Schaub
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Kevin Padberg
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058 Erlangen, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| |
Collapse
|
43
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
44
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019; 58:15829-15833. [DOI: 10.1002/anie.201910139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/02/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
45
|
Helling C, Wölper C, Schulte Y, Cutsail GE, Schulz S. Synthesis of a Ga-Stabilized As-Centered Radical and a Gallastibene by Tailoring Group 15 Element–Carbon Bond Strengths. Inorg Chem 2019; 58:10323-10332. [DOI: 10.1021/acs.inorgchem.9b01519] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - Yannick Schulte
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide), University of Duisburg-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany
| |
Collapse
|
46
|
Abstract
While conventional approaches to stabilizing main group radicals have involved the use of Lewis acids or bases, this tutorial review focuses on new avenues to main group radicals derived from combinations of donor and acceptor molecules.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
47
|
Sharma MK, Rottschäfer D, Blomeyer S, Neumann B, Stammler HG, van Gastel M, Hinz A, Ghadwal RS. Diphosphene radical cations and dications with a π-conjugated C 2P 2C 2-framework. Chem Commun (Camb) 2019; 55:10408-10411. [PMID: 31403648 DOI: 10.1039/c9cc04701h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of the crystalline diphosphene radical cations [{(NHC)C(Ph)}P]2(GaCl4) (NHC = IPr = C{(NDipp)CH}23, SIPr = C{(NDipp)CH2}24; Dipp = 2,6-iPr2C6H3) and dications [{(NHC)C(Ph)}P]2(GaCl4)2 (NHC = IPr 5, SIPr 6) featuring a π-conjugated C2P2C2-framework has been reported.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Merk A, Großekappenberg H, Schmidtmann M, Luecke M, Lorent C, Driess M, Oestreich M, Klare HFT, Müller T. Einelektronenübertragungsreaktionen in frustrierten und klassischen Silyliumion/Phosphan‐Lewis‐Paaren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anastasia Merk
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Henning Großekappenberg
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Marc Schmidtmann
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Marcel‐Philip Luecke
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Christian Lorent
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Matthias Driess
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Hendrik F. T. Klare
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Thomas Müller
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| |
Collapse
|
49
|
Merk A, Großekappenberg H, Schmidtmann M, Luecke MP, Lorent C, Driess M, Oestreich M, Klare HFT, Müller T. Single-Electron Transfer Reactions in Frustrated and Conventional Silylium Ion/Phosphane Lewis Pairs. Angew Chem Int Ed Engl 2018; 57:15267-15271. [PMID: 30178534 DOI: 10.1002/anie.201808922] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Indexed: 01/08/2023]
Abstract
Silylium ions undergo a single-electron reduction with phosphanes, leading to transient silyl radicals and the corresponding stable phosphoniumyl radical cations. As supported by DFT calculations, phosphanes with electron-rich 2,6-disubstituted aryl groups are sufficiently strong reductants to facilitate this single-electron transfer (SET). Frustration as found in kinetically stabilized triarylsilylium ion/phosphane Lewis pairs is not essential, and silylphosphonium ions, which are generated by conventional Lewis adduct formation of solvent-stabilized trialkylsilylium ions and phosphanes, engage in the same radical mechanism. The trityl cation, a Lewis acid with a higher electron affinity, even oxidizes trialkylphosphanes, such as tBu3 P, which does not react with either B(C6 F5 )3 or silylium ions.
Collapse
Affiliation(s)
- Anastasia Merk
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Henning Großekappenberg
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Marcel-Philip Luecke
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Matthias Driess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
50
|
Wang W, Xu CQ, Fang Y, Zhao Y, Li J, Wang X. An Isolable Diphosphene Radical Cation Stabilized by Three-Center Three-Electron π-Bonding with Chromium: End-On versus Side-On Coordination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Cong-Qiao Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|