1
|
Khaleel ZH, No YH, Kim NH, Bae DH, Wu Y, Kim S, Choi H, Lee DE, Jeong SY, Ko YJ, Kim SG, Suh M, Kim JC, DeGrado WF, Kim KH, Kim YH. Design of a light and Ca 2+ switchable organic-peptide hybrid. Proc Natl Acad Sci U S A 2025; 122:e2411316122. [PMID: 39883844 PMCID: PMC11804555 DOI: 10.1073/pnas.2411316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca2+-binding organic-peptide hybrid. The designed molecule, designated Ca2+-binding switch (CaBS), combines an EF-hand motif from classical Ca2+-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light. The MC/SP group acts both as a photoswitch as well as an optical sensor of Ca2+ binding. Photoconversion of the SP to the corresponding MC unmasks an acidic phenol, which CaBS uses as an integral part of both its Ca2+-binding site as well as its tertiary and quaternary structure. By design, the SP state of CaBS is monomeric, while the Ca2+-bound form of the MC state is an obligate dimer, with two Ca2+-binding sites formed at the interface of a domain-swapped dimer. Thus, light and Ca2+ were expected to serve as an "AND gate" that powers a change in backbone structure/dynamics, oligomerization state, and fluorescence properties of the designed molecule. CaBS was designed using Rosetta and molecular dynamics simulations, and experimentally characterized by nuclear magnetic resonance, isothermal titration calorimetry, and optical titrations. These data illustrate the potential of combining small molecule engineering with de novo protein design to develop sensors whose conformation, association state, and optical properties respond to multiple environmental cues.
Collapse
Affiliation(s)
- Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Do Hyun Bae
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yibing Wu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities, Seoul National University, Seoul08826, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- IMNEWRUN Inc., Suwon16419, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung25451, Republic of Korea
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology School, University of Science and Technology, Seoul02792, Republic of Korea
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA94158
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- IMNEWRUN Inc., Suwon16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
2
|
Hunter Wilson R, Diaz DJ, Damodaran AR, Bhagi-Damodaran A. Machine Learning Guided Rational Design of a Non-Heme Iron-Based Lysine Dioxygenase Improves its Total Turnover Number. Chembiochem 2024; 25:e202400495. [PMID: 39370399 DOI: 10.1002/cbic.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based self-supervised machine learning framework, MutComputeX, with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher expression yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40 % improvement in the TTN (218±3) as compared to WT LDO (TTN=160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| | - Daniel J Diaz
- Department of Chemistry, Department of Computer Science, University of Texas at Austin, Austin, TX-78705, United States
- Institute for Foundations of Machine Learning, University of Texas at Austin, Austin, TX-78705, United States
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| |
Collapse
|
3
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024; 24:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
5
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Subach OM, Piatkevich KD, Subach FV. NeMeHg, genetically encoded indicator for mercury ions based on mNeonGreen green fluorescent protein and merP protein from Shigella flexneri. Front Bioeng Biotechnol 2024; 12:1407874. [PMID: 39050684 PMCID: PMC11266101 DOI: 10.3389/fbioe.2024.1407874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The detection of mercury ions is an important task in both environmental monitoring and cell biology research. However, existing genetically encoded sensors for mercury ions have certain limitations, such as negative fluorescence response, narrow dynamic range, or the need for cofactor supplementation. To address these limitations, we have developed novel sensors by fusing a circularly permutated version of the mNeonGreen green fluorescent protein with the merP mercury-binding protein from Gram-negative bacteria Shigella flexneri. The developed NeMeHg and iNeMeHg sensors responded to mercury ions with positive and negative fluorescence changes, respectively. We characterized their properties in vitro. Using the developed biosensors, we were able to successfully visualize changes in mercury ion concentration in mammalian cultured cells.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| |
Collapse
|
7
|
Hunter Wilson R, Damodaran AR, Bhagi-Damodaran A. Machine learning guided rational design of a non-heme iron-based lysine dioxygenase improves its total turnover number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597480. [PMID: 38895203 PMCID: PMC11185610 DOI: 10.1101/2024.06.04.597480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based machine-learning algorithm with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40% improvement in the TTN (218±3) as compared to WT LDO (TTN = 160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455
| | | |
Collapse
|
8
|
Hoffnagle AM, Tezcan FA. Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. J Am Chem Soc 2023; 145:14208-14214. [PMID: 37352018 PMCID: PMC10439731 DOI: 10.1021/jacs.3c04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.
Collapse
Affiliation(s)
- Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Chatterjee A, Puri S, Sharma PK, Deepa PR, Chowdhury S. Nature-inspired Enzyme engineering and sustainable catalysis: biochemical clues from the world of plants and extremophiles. Front Bioeng Biotechnol 2023; 11:1229300. [PMID: 37409164 PMCID: PMC10318364 DOI: 10.3389/fbioe.2023.1229300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The use of enzymes to accelerate chemical reactions for the synthesis of industrially important products is rapidly gaining popularity. Biocatalysis is an environment-friendly approach as it not only uses non-toxic, biodegradable, and renewable raw materials but also helps to reduce waste generation. In this context, enzymes from organisms living in extreme conditions (extremozymes) have been studied extensively and used in industries (food and pharmaceutical), agriculture, and molecular biology, as they are adapted to catalyze reactions withstanding harsh environmental conditions. Enzyme engineering plays a key role in integrating the structure-function insights from reference enzymes and their utilization for developing improvised catalysts. It helps to transform the enzymes to enhance their activity, stability, substrates-specificity, and substrate-versatility by suitably modifying enzyme structure, thereby creating new variants of the enzyme with improved physical and chemical properties. Here, we have illustrated the relatively less-tapped potentials of plant enzymes in general and their sub-class of extremozymes for industrial applications. Plants are exposed to a wide range of abiotic and biotic stresses due to their sessile nature, for which they have developed various mechanisms, including the production of stress-response enzymes. While extremozymes from microorganisms have been extensively studied, there are clear indications that plants and algae also produce extremophilic enzymes as their survival strategy, which may find industrial applications. Typical plant enzymes, such as ascorbate peroxidase, papain, carbonic anhydrase, glycoside hydrolases and others have been examined in this review with respect to their stress-tolerant features and further improvement via enzyme engineering. Some rare instances of plant-derived enzymes that point to greater exploration for industrial use have also been presented here. The overall implication is to utilize biochemical clues from the plant-based enzymes for robust, efficient, and substrate/reaction conditions-versatile scaffolds or reference leads for enzyme engineering.
Collapse
Affiliation(s)
| | | | | | - P. R. Deepa
- *Correspondence: P. R. Deepa, ; Shibasish Chowdhury,
| | | |
Collapse
|
10
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
11
|
Tabares LC, Daniel DT, Vázquez-Ibar JL, Kouklovsky C, Alezra V, Un S. Using the Noncanonical Metallo-Amino Acid [Cu(II)(2,2'-Bipyridin-5-yl)]-alanine to Study the Structures of Proteins. J Phys Chem Lett 2023; 14:3368-3375. [PMID: 36995079 DOI: 10.1021/acs.jpclett.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genetic code expansion allows modification of the physical and chemical properties of proteins by the site-directed insertion of noncanonical amino acids. Here we exploit this technology for measuring nanometer-scale distances in proteins. (2,2'-Bipyridin-5-yl)alanine was incorporated into the green fluorescent protein (GFP) and used as an anchoring point for Cu(II) to create a spin-label. The incorporation of (2,2'-bipyridin-5-yl)alanine directly into the protein resulted in a high-affinity binding site for Cu(II) capable of outcompeting other binding positions in the protein. The resulting Cu(II)-spin label is very compact and not larger than a conventional amino acid. By using 94 GHz electron paramagnetic resonance (EPR) pulse dipolar spectroscopy we have been able to determine accurately the distance between two such spin-labels. Our measurements revealed that GFP dimers can adopt different quaternary conformations. The combination of spin-labeling using a paramagnetic nonconventional amino acid with high-frequency EPR techniques resulted in a sensitive method for studying the structures of proteins.
Collapse
Affiliation(s)
- Leandro C Tabares
- Institute for Integrative Biology of the Cell, Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette F-91198, France
| | - Davis T Daniel
- Institute for Integrative Biology of the Cell, Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette F-91198, France
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell, Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette F-91198, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, Orsay F-91405, Cedex France
| | - Valérie Alezra
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, Orsay F-91405, Cedex France
| | - Sun Un
- Institute for Integrative Biology of the Cell, Department of Biochemistry, Biophysics and Structural Biology, Université Paris-Saclay, CEA, CNRS UMR 9198, CEA-Saclay, Gif-sur-Yvette F-91198, France
| |
Collapse
|
12
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
13
|
Opuu V, Simonson T. Enzyme redesign and genetic code expansion. Protein Eng Des Sel 2023; 36:gzad017. [PMID: 37879093 DOI: 10.1093/protein/gzad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Enzyme design is an important application of computational protein design (CPD). It can benefit enormously from the additional chemistries provided by noncanonical amino acids (ncAAs). These can be incorporated into an 'expanded' genetic code, and introduced in vivo into target proteins. The key step for genetic code expansion is to engineer an aminoacyl-transfer RNA (tRNA) synthetase (aaRS) and an associated tRNA that handles the ncAA. Experimental directed evolution has been successfully used to engineer aaRSs and incorporate over 200 ncAAs into expanded codes. But directed evolution has severe limits, and is not yet applicable to noncanonical AA backbones. CPD can help address several of its limitations, and has begun to be applied to this problem. We review efforts to redesign aaRSs, studies that designed new proteins and functionalities with the help of ncAAs, and some of the method developments that have been used, such as adaptive landscape flattening Monte Carlo, which allows an enzyme to be redesigned with substrate or transition state binding as the design target.
Collapse
Affiliation(s)
- Vaitea Opuu
- Institut Chimie Biologie Innovation (CNRS UMR8231), Ecole Supérieure de Physique et Chimie de Paris (ESPCI), 75005 Paris, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
14
|
Ennist NM, Stayrook SE, Dutton PL, Moser CC. Rational design of photosynthetic reaction center protein maquettes. Front Mol Biosci 2022; 9:997295. [PMID: 36213121 PMCID: PMC9532970 DOI: 10.3389/fmolb.2022.997295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.
Collapse
Affiliation(s)
- Nathan M. Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- *Correspondence: Nathan M. Ennist,
| | - Steven E. Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, United States
| | - P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher C. Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Engineering of enzymes using non-natural amino acids. Biosci Rep 2022; 42:231590. [PMID: 35856922 PMCID: PMC9366748 DOI: 10.1042/bsr20220168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In enzyme engineering, the main targets for enhancing properties are enzyme activity, stereoselective specificity, stability, substrate range, and the development of unique functions. With the advent of genetic code extension technology, non-natural amino acids (nnAAs) are able to be incorporated into proteins in a site-specific or residue-specific manner, which breaks the limit of 20 natural amino acids for protein engineering. Benefitting from this approach, numerous enzymes have been engineered with nnAAs for improved properties or extended functionality. In this review, we focus on applications and strategies for using nnAAs in enzyme engineering. Notably, approaches to computational modelling of enzymes with nnAAs are also addressed. Finally, we discuss the bottlenecks that currently need to be addressed in order to realise the broader prospects of this genetic code extension technique.
Collapse
|
16
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Magi Meconi G, Sasselli IR, Bianco V, Onuchic JN, Coluzza I. Key aspects of the past 30 years of protein design. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086601. [PMID: 35704983 DOI: 10.1088/1361-6633/ac78ef] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Proteins are the workhorse of life. They are the building infrastructure of living systems; they are the most efficient molecular machines known, and their enzymatic activity is still unmatched in versatility by any artificial system. Perhaps proteins' most remarkable feature is their modularity. The large amount of information required to specify each protein's function is analogically encoded with an alphabet of just ∼20 letters. The protein folding problem is how to encode all such information in a sequence of 20 letters. In this review, we go through the last 30 years of research to summarize the state of the art and highlight some applications related to fundamental problems of protein evolution.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | - Ivan R Sasselli
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | | | - Jose N Onuchic
- Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of Chemistry, Department of Biosciences, Rice University, Houston, TX 77251, United States of America
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
- Basque Foundation for Science, Ikerbasque, 48009, Bilbao, Spain
| |
Collapse
|
18
|
Xiong Q, Zheng T, Shen X, Li B, Fu J, Zhao X, Wang C, Yu Z. Expanding the functionality of proteins with genetically encoded dibenzo[ b, f][1,4,5]thiadiazepine: a photo-transducer for photo-click decoration. Chem Sci 2022; 13:3571-3581. [PMID: 35432856 PMCID: PMC8943893 DOI: 10.1039/d1sc05710c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic incorporation of novel noncanonical amino acids (ncAAs) that are specialized for the photo-click reaction allows the precisely orthogonal and site-specific functionalization of proteins in living cells under photo-control. However, the development of a r̲ing-strain i̲n situ l̲oadable d̲ipolarophile (RILD) as a genetically encodable reporter for photo-click bioconjugation with spatiotemporal controllability is quite rare. Herein, we report the design and synthesis of a photo-switchable d̲ib̲enzo[b,f][1,4,5]t̲hiad̲iazepine-based a̲lanine (DBTDA) ncAA, together with the directed evolution of a pyrrolysyl-tRNA synthetase/tRNACUA pair (PylRS/tRNACUA), to encode the DBTDA into recombinant proteins as a RILD in living E. coli cells. The fast-responsive photo-isomerization of the DBTDA residue can be utilized as a converter of photon energy into ring-strain energy to oscillate the conformational changes of the parent proteins. Due to the photo-activation of RILD, the photo-switching of the DBTDA residue on sfGFP and OmpC is capable of promoting the photo-click ligation with diarylsydnone (DASyd) derived probes with high efficiency and selectivity. We demonstrate that the genetic code expansion (GCE) with DBTDA benefits the studies on the distribution of decorated OmpC-DBTD on specific E. coli cells under a spatiotemporal resolved photo-stimulation. The GCE for encoding DBTDA enables further functional diversity of artificial proteins in living systems.
Collapse
Affiliation(s)
- Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xin Shen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Baolin Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jielin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chunxia Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
19
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
20
|
Stein A, Liang AD, Sahin R, Ward TR. Incorporation of Metal-Chelating Unnatural Amino Acids into HaloTag for Allylic Deamination. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
An X, Chen C, Wang T, Huang A, Zhang D, Han MJ, Wang J. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase. Chembiochem 2021; 22:2535-2539. [PMID: 32789938 DOI: 10.1002/cbic.202000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Tyrosine plays important roles in many enzymes. To facilitate enzyme design, mechanistic studies and minimize structural perturbation in the active site, here we report the genetic incorporation of a novel unnatural amino acid selenotyrosine (SeHF), which has single-atom replacement in comparison to tyrosine. The arPTE-(Agrobacterium radiobacter Phosphotriesterase) Tyr309SeHF mutant exhibits a significant 12-fold increase in kcat and 3.2-fold enhancement in kcat /KM at pH 7.0. Molecular dynamics simulations show that the SeHF309 mutation results in a conformational switch which opens up the product release pocket and increases the product release rate, thereby elevating the overall enzyme activity. Significant improvement of the catalytic efficiency at neutral pH by single unnatural amino acid (UAA) mutation broadens the application of this enzyme, and provides valuable insights to the mechanism. Our method represents a new approach for designing enzymes with enhanced activity.
Collapse
Affiliation(s)
- Xiaojing An
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of the Chinese Academy of Sciences (UCAS), Hefei, China
| | - Tianyuan Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Aiping Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
22
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
23
|
Abstract
Sequence-defined oligomeric molecules with discrete folding propensities, termed foldamers, are a versatile source of agents with tailored structure and function. An inspiration for the development of the foldamer paradigm are natural biomacromolecules, the sequence-encoded folding of which is the basis of life. Metal ions and clusters are common features in proteins, where the role of metal varies from supporting structure to enabling function. The ubiquity of metals in natural systems suggests promise for metals in the context of folded artificial backbones. In this Minireview, we highlight efforts to realize this potential through a survey of published work on the design, synthesis, and characterization of metal-binding foldamers.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shelby L Schettler
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
24
|
Drienovská I, Scheele RA, Gutiérrez de Souza C, Roelfes G. A Hydroxyquinoline-Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes. Chembiochem 2020; 21:3077-3081. [PMID: 32585070 PMCID: PMC7689906 DOI: 10.1002/cbic.202000306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Indexed: 11/11/2022]
Abstract
We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII , ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII -bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII -coupled enzyme was shown to mimic natural Zn hydrolase activity.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remkes A. Scheele
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
25
|
Henderson JN, Simmons CR, Fahmi NE, Jeffs JW, Borges CR, Mills JH. Structural Insights into How Protein Environments Tune the Spectroscopic Properties of a Noncanonical Amino Acid Fluorophore. Biochemistry 2020; 59:3401-3410. [PMID: 32845612 DOI: 10.1021/acs.biochem.0c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded fluorescent noncanonical amino acids (fNCAAs) could be used to develop novel fluorescent sensors of protein function. Previous efforts toward this goal have been limited by the lack of extensive physicochemical and structural characterizations of protein-based sensors containing fNCAAs. Here, we report the steady-state spectroscopic properties and first structural analyses of an fNCAA-containing Fab fragment of the 5c8 antibody, which binds human CD40L. A previously reported 5c8 variant in which the light chain residue IleL98 is replaced with the fNCAA l-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) exhibits a 1.7-fold increase in fluorescence upon antigen binding. Determination and comparison of the apparent pKas of 7-HCAA in the unbound and bound forms indicate that the observed increase in fluorescence is not the result of perturbations in pKa. Crystal structures of the fNCAA-containing Fab in the apo and bound forms reveal interactions between the 7-HCAA side chain and surrounding residues that are disrupted upon antigen binding. This structural characterization not only provides insight into the manner in which protein environments can modulate the fluorescence properties of 7-HCAA but also could serve as a starting point for the rational design of new fluorescent protein-based reporters of protein function.
Collapse
Affiliation(s)
- J Nathan Henderson
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Chad R Simmons
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Nour Eddine Fahmi
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua W Jeffs
- The Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chad R Borges
- The Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jeremy H Mills
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
26
|
Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, Aprahamian M, Baker D, Barlow KA, Barth P, Basanta B, Bender BJ, Blacklock K, Bonet J, Boyken SE, Bradley P, Bystroff C, Conway P, Cooper S, Correia BE, Coventry B, Das R, De Jong RM, DiMaio F, Dsilva L, Dunbrack R, Ford AS, Frenz B, Fu DY, Geniesse C, Goldschmidt L, Gowthaman R, Gray JJ, Gront D, Guffy S, Horowitz S, Huang PS, Huber T, Jacobs TM, Jeliazkov JR, Johnson DK, Kappel K, Karanicolas J, Khakzad H, Khar KR, Khare SD, Khatib F, Khramushin A, King IC, Kleffner R, Koepnick B, Kortemme T, Kuenze G, Kuhlman B, Kuroda D, Labonte JW, Lai JK, Lapidoth G, Leaver-Fay A, Lindert S, Linsky T, London N, Lubin JH, Lyskov S, Maguire J, Malmström L, Marcos E, Marcu O, Marze NA, Meiler J, Moretti R, Mulligan VK, Nerli S, Norn C, Ó'Conchúir S, Ollikainen N, Ovchinnikov S, Pacella MS, Pan X, Park H, Pavlovicz RE, Pethe M, Pierce BG, Pilla KB, Raveh B, Renfrew PD, Burman SSR, Rubenstein A, Sauer MF, Scheck A, Schief W, Schueler-Furman O, Sedan Y, Sevy AM, Sgourakis NG, Shi L, Siegel JB, Silva DA, Smith S, Song Y, Stein A, Szegedy M, Teets FD, Thyme SB, Wang RYR, Watkins A, Zimmerman L, Bonneau R. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods 2020; 17:665-680. [PMID: 32483333 PMCID: PMC7603796 DOI: 10.1038/s41592-020-0848-2] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA.
- Department of Biology, New York University, New York, New York, USA.
| | - Brian D Weitzner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Lyell Immunopharma Inc., Seattle, WA, USA
| | - Steven M Lewis
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Jared Adolf-Bryfogle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Melanie Aprahamian
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kyle A Barlow
- Graduate Program in Bioinformatics, University of California San Francisco, San Francisco, CA, USA
| | - Patrick Barth
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Baylor College of Medicine, Department of Pharmacology, Houston, TX, USA
| | - Benjamin Basanta
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Biological Physics Structure and Design PhD Program, University of Washington, Seattle, WA, USA
| | - Brian J Bender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kristin Blacklock
- Institute of Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Scott E Boyken
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Lyell Immunopharma Inc., Seattle, WA, USA
| | - Phil Bradley
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris Bystroff
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick Conway
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Seth Cooper
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lorna Dsilva
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Roland Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexander S Ford
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Brandon Frenz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Darwin Y Fu
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sharon Guffy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, University of Denver, Denver, CO, USA
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tim M Jacobs
- Program in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - David K Johnson
- Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - John Karanicolas
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hamed Khakzad
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute for Computational Science, University of Zurich, Zurich, Switzerland
- S3IT, University of Zurich, Zurich, Switzerland
| | - Karen R Khar
- Cyrus Biotechnology, Seattle, WA, USA
- Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| | - Sagar D Khare
- Institute of Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, NJ, USA
- Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Computational Biology and Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Firas Khatib
- Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Alisa Khramushin
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Indigo C King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Robert Kleffner
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Brian Koepnick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Georg Kuenze
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisuke Kuroda
- Medical Device Development and Regulation Research Center, School of Engineering, University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Jason W Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemistry, Franklin & Marshall College, Lancaster, PA, USA
| | - Jason K Lai
- Baylor College of Medicine, Department of Pharmacology, Houston, TX, USA
| | - Gideon Lapidoth
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew Leaver-Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Thomas Linsky
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nir London
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph H Lubin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jack Maguire
- Program in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lars Malmström
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute for Computational Science, University of Zurich, Zurich, Switzerland
- S3IT, University of Zurich, Zurich, Switzerland
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Enrique Marcos
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicholas A Marze
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Departments of Chemistry, Pharmacology and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
- Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Rocco Moretti
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Vikram Khipple Mulligan
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Santrupti Nerli
- Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Christoffer Norn
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shane Ó'Conchúir
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Noah Ollikainen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Michael S Pacella
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xingjie Pan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Hahnbeom Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ryan E Pavlovicz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Manasi Pethe
- Department of Chemistry and Chemical Biology, The State University of New Jersey, Piscataway, NJ, USA
- Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kala Bharath Pilla
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Barak Raveh
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aliza Rubenstein
- Institute of Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Computational Biology and Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marion F Sauer
- Chemical and Physical Biology Program, Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, USA
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - William Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Sedan
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Sevy
- Chemical and Physical Biology Program, Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, USA
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Lei Shi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Shannon Smith
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Cyrus Biotechnology, Seattle, WA, USA
| | - Amelie Stein
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Maria Szegedy
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Frank D Teets
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Summer B Thyme
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ray Yu-Ruei Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrew Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lior Zimmerman
- Department of Microbiology and Molecular Genetics, IMRIC, Ein Kerem Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA.
- Department of Biology, New York University, New York, New York, USA.
- Department of Computer Science, New York University, New York, NY, USA.
- Center for Data Science, New York University, New York, NY, USA.
| |
Collapse
|
27
|
Nödling AR, Santi N, Williams TL, Tsai YH, Luk LYP. Enabling protein-hosted organocatalytic transformations. RSC Adv 2020; 10:16147-16161. [PMID: 33184588 PMCID: PMC7654312 DOI: 10.1039/d0ra01526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
In this review, the development of organocatalytic artificial enzymes will be discussed. This area of protein engineering research has underlying importance, as it enhances the biocompatibility of organocatalysis for applications in chemical and synthetic biology research whilst expanding the catalytic repertoire of enzymes. The approaches towards the preparation of organocatalytic artificial enzymes, techniques used to improve their performance (selectivity and reactivity) as well as examples of their applications are presented. Challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Alexander R Nödling
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Nicolò Santi
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
28
|
Jamal S, Ahmed A, Moin ST. Evaluation of a sesquiterpene as possible drug lead against gelatinases via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1645-1660. [PMID: 32174257 DOI: 10.1080/07391102.2020.1743363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Malignant tumors can be targeted by accounting for their metastatic capabilities. Matrix metalloproteinases (MMPs) are the key players in tumor metastasis facilitating through their proteolytic activities of angiogenesis and extracellular matrix components (ECM) degradation. MMP-2 and MMP-9 being the members of a distinguished class of MMPs more commonly known as gelatinases are the prominent enzymes which are involved in different cancer progression stages. Targeting these isoforms specifically has always been a challenging task due to highly similar structural and functional features among the other members of MMPs with well preserve active sites containing catalytic zinc atom that was the only reason that none of the MMP inhibitor has been successfully marketed for the tumor pathology up till now. Therefore, non-competitive inhibitors with different structural attributed are needed to be evaluated at the molecular level for further experiments. The present study deals with the application of molecular dynamics simulation for the investigation of an alternative pathway for the inhibition of MMP-2 and MMP-9 by a sesquiterpene isolated from Polygonum barbatum which demonstrates the characteristics binding to the S1' subsite of the enzymes followed by in vitro gene expression studies. The simulation results provide information on the possible binding profile producing inhibitory effects imposed by the inhibitor to these enzymes by acquiring different structural and dynamical features. Moreover, thermodynamic quantities based on the computationally intensive thermodynamic integration approach were also obtained in terms of inhibitor binding affinity computed for the inhibitor against MMP-2 and MMP-9 that completely augmented the experimental gene expression study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sehrish Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
29
|
Laureanti JA, Ginovska B, Buchko GW, Schenter GK, Hebert M, Zadvornyy OA, Peters JW, Shaw WJ. A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO2 Hydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph A. Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Gregory K. Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Margaret Hebert
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Oleg A. Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - John W. Peters
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wendy J. Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
30
|
Bhagat AK, Buium H, Shmul G, Alfonta L. Genetically Expanded Reactive-Oxygen-Tolerant Alcohol Dehydrogenase II. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ashok Kumar Bhagat
- Departments of Life Sciences, Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hadar Buium
- Departments of Life Sciences, Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Guy Shmul
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lital Alfonta
- Departments of Life Sciences, Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
31
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Koebke KJ, Pecoraro VL. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis. Acc Chem Res 2019; 52:1160-1167. [PMID: 30933479 DOI: 10.1021/acs.accounts.9b00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The relationship between structure and function has long been one of the major points of investigation in Biophysics. Understanding how much, or how little, of a protein's often complicated structure is necessary for its function can lead to directed therapeutic strategies and would allow one to design proteins for specific desired functions. Studying protein function by de novo design builds the functionality from the ground up in a completely unrelated and noncoded protein scaffold. Our lab has used this strategy to study heavy and transition metal binding within the TRI family of three stranded coiled coil (3SCC) constructs to understand coordination geometry and metalloenzyme catalytic control within a protein environment. These peptides contain hydrophobic layers within the interior of the 3SCC, which one can mutate to metal binding residues to create a minimal metal binding site, while solid phase synthesis allows our lab to easily incorporate a number of noncoded amino acids including d enantiomers of binding or secondary coordination sphere amino acids, penicillamine, or methylated versions of histidine. Our studies of Cd(II) binding to Cys3 environments have determined, largely through the use of 113Cd NMR and 111mCd PAC, that the coordination environment around a heavy metal can be controlled by incorporating noncoded amino acids in either the primary or secondary coordination spheres. We found mutating the metal binding amino acids to l-Pen can enforce trigonal Cd(II)S3 geometry exclusively compared to the mixed coordination determined for l-Cys coordination. The same result can be achieved with secondary sphere mutations as well by incorporating d-Leu above a Cys3. We hypothesize this latter effect is due to the increased steric packing above the metal binding site that occurs when the l-Leu oriented toward the N-terminus of the scaffold is mutated to d-Leu and oriented toward the C-terminus. Mutating the layer below Cys3 to d-Leu instead formed a mixed 4- and 5-coordinate Cd(II)S3(H2O) and Cd(II)S3(H2O)2 construct as steric bulk was decreased below the metal binding site. We have also applied noncoded amino acids to metalloenzyme systems by incorporating His residues that are methylated at the δ- or ε-nitrogen to enforce Cu(I) ligation to the opposite open nitrogen of His and found a 2 orders of magnitude increased catalytic efficiency for nitrite reductase activity with ε-nitrogen coordination compared to δ-nitrogen. These results exemplify the ability to tune coordination environment and catalytic efficiency within a de novo scaffold as well as the utility of noncoded amino acids to increase the chemist's toolbox. By furthering our understanding of metalloprotein design one could envision, through our use of amino acids not normally available to nature, that protein design laboratories will soon be capable of outperforming the native systems previously used as their benchmark of successful design. The ability to design proteins at this level would have far reaching and exciting benefits within various fields including medical and industrial applications.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Abstract
The availability of renewable energy technologies is increasing dramatically across the globe thanks to their growing maturity. However, large scale electrical energy storage and retrieval will almost certainly be a required in order to raise the penetration of renewable sources into the grid. No present energy storage technology has the perfect combination of high power and energy density, low financial and environmental cost, lack of site restrictions, long cycle and calendar lifespan, easy materials availability, and fast response time. Engineered electroactive microbes could address many of the limitations of current energy storage technologies by enabling rewired carbon fixation, a process that spatially separates reactions that are normally carried out together in a photosynthetic cell and replaces the least efficient with non-biological equivalents. If successful, this could allow storage of renewable electricity through electrochemical or enzymatic fixation of carbon dioxide and subsequent storage as carbon-based energy storage molecules including hydrocarbons and non-volatile polymers at high efficiency. In this article we compile performance data on biological and non-biological component choices for rewired carbon fixation systems and identify pressing research and engineering challenges.
Collapse
|
34
|
Diep P, Mahadevan R, Yakunin AF. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front Bioeng Biotechnol 2018; 6:157. [PMID: 30420950 PMCID: PMC6215804 DOI: 10.3389/fbioe.2018.00157] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Wastewater effluents from mines and metal refineries are often contaminated with heavy metal ions, so they pose hazards to human and environmental health. Conventional technologies to remove heavy metal ions are well-established, but the most popular methods have drawbacks: chemical precipitation generates sludge waste, and activated carbon and ion exchange resins are made from unsustainable non-renewable resources. Using microbial biomass as the platform for heavy metal ion removal is an alternative method. Specifically, bioaccumulation is a natural biological phenomenon where microorganisms use proteins to uptake and sequester metal ions in the intracellular space to utilize in cellular processes (e.g., enzyme catalysis, signaling, stabilizing charges on biomolecules). Recombinant expression of these import-storage systems in genetically engineered microorganisms allows for enhanced uptake and sequestration of heavy metal ions. This has been studied for over two decades for bioremediative applications, but successful translation to industrial-scale processes is virtually non-existent. Meanwhile, demands for metal resources are increasing while discovery rates to supply primary grade ores are not. This review re-thinks how bioaccumulation can be used and proposes that it can be developed for bioextractive applications-the removal and recovery of heavy metal ions for downstream purification and refining, rather than disposal. This review consolidates previously tested import-storage systems into a biochemical framework and highlights efforts to overcome obstacles that limit industrial feasibility, thereby identifying gaps in knowledge and potential avenues of research in bioaccumulation.
Collapse
Affiliation(s)
| | | | - Alexander F. Yakunin
- BioZone - Centre for Applied Biosciences and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Alcala-Torano R, Walther M, Sommer DJ, Park CK, Ghirlanda G. Rational design of a hexameric protein assembly stabilized by metal chelation. Biopolymers 2018; 109:e23233. [PMID: 30191549 DOI: 10.1002/bip.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
Abstract
Protein-based self-assembled nanostructures hold tremendous promise as smart materials. One strategy to control the assembly of individual protein modules takes advantage of the directionality and high affinity bonding afforded by metal chelation. Here, we describe the use of 2,2'-bipyridine units (Bpy) as side chains to template the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent manner. The structures are trimers of independently folded 3-helix bundles, and are held together by 2 Me(Bpy)3 complexes. The assemblies are stable to thermal denaturation, and are more than 90% helical at 90°C. Circular dichroism spectroscopy shows that one of the 2 possible (Bpy)3 enantiomers is favored over the other. Because of the sequence pliability of the starting peptides, these constructs could find use to organize functional groups at controlled positions within a supramolecular assembly.
Collapse
Affiliation(s)
| | - Mathieu Walther
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Dayn J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Chad K Park
- Department of Biochemistry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
36
|
Koebke KJ, Pecoraro VL. Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go. ACS Catal 2018; 8:8046-8057. [PMID: 30294504 DOI: 10.1021/acscatal.8b02153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of redox-active metalloprotein catalysts is a challenging objective of de novo protein design. Within this Perspective we detail our efforts to create a redox-active Cu nitrite reductase (NiR) by incorporating Cu into the hydrophobic interior of well-defined three-stranded coiled coils (3SCCs). The scaffold contains three histidine residues that provide a layer of three nitrogen donors that mimic the type 2 catalytic site of NiR. We have found that this strategy successfully produces an active and stable CuNiR model that functions for over 1000 turnovers. Spectroscopic evidence indicates that the Cu(I) site has a lower coordination number in comparison to the enzyme, whereas the Cu(II) geometry may more faithfully reproduce the NiR type 2 center. Mutations at the helical interface successfully produce a hydrogen bond between an interfacial Glu residue and the Culigating His residue, which allows for the tuning of the redox potential over a 100 mV range. We successfully created constructs with as much as a 120-fold improvement from the original design by modifying the steric bulk above or below the Cu binding site. These systems are now the most active water-soluble and stable artificial NiR catalysts yet produced. Several avenues for improving the catalytic efficiency of later designs are detailed within this Perspective, including adjustment of their resting oxidation state, the use of asymmetric scaffolds to allow for single amino acid mutation within the second coordination sphere, and the design of hydrogen-bonding networks to tune residue orientation and electronics. Through these studies the TRI-H system has given insight into the difficulties that arise in creating a de novo redox active enzyme. Work to improve upon this model will provide strategies by which redox-active de novo enzymes may be tuned and detail how native enzymes accomplish catalytic efficiencies through proton gated redox catalysis.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109, United States
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Hemschemeier A, Happe T. The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Almhjell PJ, Mills JH. Metal-chelating non-canonical amino acids in metalloprotein engineering and design. Curr Opin Struct Biol 2018; 51:170-176. [DOI: 10.1016/j.sbi.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
|
39
|
Hayashi T, Hilvert D, Green AP. Engineered Metalloenzymes with Non-Canonical Coordination Environments. Chemistry 2018; 24:11821-11830. [PMID: 29786902 DOI: 10.1002/chem.201800975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/09/2022]
Abstract
Nature employs a limited number of genetically encoded, metal-coordinating residues to create metalloenzymes with diverse structures and functions. Engineered components of the cellular translation machinery can now be exploited to encode non-canonical ligands with user-defined electronic and structural properties. This ability to install "chemically programmed" ligands into proteins can provide powerful chemical probes of metalloenzyme mechanism and presents excellent opportunities to create metalloprotein catalysts with augmented properties and novel activities. In this Concept article, we provide an overview of several recent studies describing the creation of engineered metalloenzymes with interesting catalytic properties, and reveal how characterization of these systems has advanced our understanding of nature's bioinorganic mechanisms. We also highlight how powerful laboratory evolution protocols can be readily adapted to allow optimization of metalloenzymes with non-canonical ligands. This approach combines beneficial features of small molecule and protein catalysis by allowing the installation of a greater variety of local metal coordination environments into evolvable protein scaffolds, and holds great promise for the future creation of powerful metalloprotein catalysts for a host of synthetically valuable transformations.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Anthony P Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
40
|
Gainza-Cirauqui P, Correia BE. Computational protein design-the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol 2018; 52:145-152. [PMID: 29729544 DOI: 10.1016/j.copbio.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells.
Collapse
Affiliation(s)
- Pablo Gainza-Cirauqui
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Bruno Emanuel Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland.
| |
Collapse
|
41
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
42
|
Gan F, Liu R, Wang F, Schultz PG. Functional Replacement of Histidine in Proteins To Generate Noncanonical Amino Acid Dependent Organisms. J Am Chem Soc 2018; 140:3829-3832. [DOI: 10.1021/jacs.7b13452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fei Gan
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Renhe Liu
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Peter G. Schultz
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Hecht MH, Zarzhitsky S, Karas C, Chari S. Are natural proteins special? Can we do that? Curr Opin Struct Biol 2018; 48:124-132. [DOI: 10.1016/j.sbi.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
|
44
|
Yu Y, Hu C, Xia L, Wang J. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03754] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cheng Hu
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lin Xia
- Center
for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiangyun Wang
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
45
|
Abstract
This mini review gives an overview over different design approaches and methodologies applied in rational and semirational enzyme engineering. The underlying principles for engineering novel activities, enantioselectivity, substrate specificity, stability, and pH optimum are summarized.
Collapse
Affiliation(s)
- Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
46
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
47
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
48
|
Drienovská I, Alonso-Cotchico L, Vidossich P, Lledós A, Maréchal JD, Roelfes G. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem Sci 2017; 8:7228-7235. [PMID: 29081955 PMCID: PMC5633786 DOI: 10.1039/c7sc03477f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate-metal cofactor-host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2'-bipyridin-5yl)alanine is used to bind the catalytic Cu(ii) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein-ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| | - Lur Alonso-Cotchico
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Pietro Vidossich
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Agustí Lledós
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Gerard Roelfes
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| |
Collapse
|
49
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
50
|
Hansen WA, Khare SD. Benchmarking a computational design method for the incorporation of metal ion-binding sites at symmetric protein interfaces. Protein Sci 2017; 26:1584-1594. [PMID: 28513090 PMCID: PMC5521545 DOI: 10.1002/pro.3194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/07/2017] [Accepted: 05/06/2017] [Indexed: 11/12/2022]
Abstract
The design of novel metal-ion binding sites along symmetric axes in protein oligomers could provide new avenues for metalloenzyme design, construction of protein-based nanomaterials and novel ion transport systems. Here, we describe a computational design method, symmetric protein recursive ion-cofactor sampling (SyPRIS), for locating constellations of backbone positions within oligomeric protein structures that are capable of supporting desired symmetrically coordinated metal ion(s) chelated by sidechains (chelant model). Using SyPRIS on a curated benchmark set of protein structures with symmetric metal binding sites, we found high recovery of native metal coordinating rotamers: in 65 of the 67 (97.0%) cases, native rotamers featured in the best scoring model while in the remaining cases native rotamers were found within the top three scoring models. In a second test, chelant models were crossmatched against protein structures with identical cyclic symmetry. In addition to recovering all native placements, 10.4% (8939/86013) of the non-native placements, had acceptable geometric compatibility scores. Discrimination between native and non-native metal site placements was further enhanced upon constrained energy minimization using the Rosetta energy function. Upon sequence design of the surrounding first-shell residues, we found further stabilization of native placements and a small but significant (1.7%) number of non-native placement-based sites with favorable Rosetta energies, indicating their designability in existing protein interfaces. The generality of the SyPRIS approach allows design of novel symmetric metal sites including with non-natural amino acid sidechains, and should enable the predictive incorporation of a variety of metal-containing cofactors at symmetric protein interfaces.
Collapse
Affiliation(s)
- William A. Hansen
- Institute for Quantitative Biomedicine at Rutgers610 Taylor RoadPiscatawayNew Jersey08854
- Center for integrative Proteomics Research610 Taylor RoadPiscatawayNew Jersey08854
| | - Sagar D. Khare
- Institute for Quantitative Biomedicine at Rutgers610 Taylor RoadPiscatawayNew Jersey08854
- Center for integrative Proteomics Research610 Taylor RoadPiscatawayNew Jersey08854
- Chemistry and Chemical Biology at Rutgers610 Taylor RoadPiscatawayNew Jersey08854
| |
Collapse
|