1
|
Nong ZS, Wang PS, Zhou QL, Gong LZ. Palladium-Catalyzed Branch-Selective Allylic C-H Amination Enabled by Nucleophile Coordination. Org Lett 2024; 26:8481-8485. [PMID: 39331493 DOI: 10.1021/acs.orglett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Regiochemical control is a central subject in the field of synthetic chemistry. Here we unveil an innovative approach for the branch-selective allylic C-H amination of α-alkenes with amine nucleophiles facilitated by phosphoramidite-palladium catalysis. A diverse array of α-alkenes has been effectively utilized to produce a variety of structurally distinct allylamines with moderate to excellent regioselectivity. Furthermore, the asymmetric version of this reaction is feasible through the use of chiral phosphoramidite ligands, albeit with currently modest enantioselectivity.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Lin Zhou
- Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Wu Z, Yang X, Zhang F, Liu Y, Feng X. Tandem catalytic allylic C-H amination and asymmetric [2,3]-rearrangement via bimetallic relay catalysis. Chem Sci 2024; 15:13299-13305. [PMID: 39183897 PMCID: PMC11339977 DOI: 10.1039/d4sc03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
A bimetallic relay catalysis protocol for tandem allylic C-H amination and asymmetric [2,3]-sigmatropic rearrangement has been developed with the use of an achiral Pd0 catalyst and a chiral N,N'-dioxide-MgII complex in a one-pot operation. A series of anti-α-amino derivatives containing two stereogenic centers were prepared from readily available allylbenzenes and glycine pyrazolamide with good yields and high stereoselectivities. Moreover, the synthetic potential of this protocol was further demonstrated by the product transformations, and a catalytic cycle was proposed to illustrate the reaction process.
Collapse
Affiliation(s)
- Zhenwei Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xi Yang
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
| | - Yangbin Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Yamada K, Cheung KPS, Gevorgyan V. General Regio- and Diastereoselective Allylic C-H Oxygenation of Internal Alkenes. J Am Chem Soc 2024; 146:18218-18223. [PMID: 38922638 DOI: 10.1021/jacs.4c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Branched allylic esters and carboxylates are fundamental motifs prevalent in natural products and drug molecules. The direct allylic C-H oxygenation of internal alkenes represents one of the most straightforward approaches, bypassing the requirement for an allylic leaving group as in the classical Tsuji-Trost reaction. However, current methods suffer from limited scope─often accompanied by selectivity issues─thus hampering further development. Herein we report a photocatalytic platform as a general solution to these problems, enabling the coupling of diverse internal alkenes with carboxylic acids, alcohols, and other O-nucleophiles, typically in a highly regio- and diastereoselective manner.
Collapse
Affiliation(s)
- Kyohei Yamada
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu Y, Cheng M, Larionov OV, Jin S. Cobalt-Catalyzed Carbon-Heteroatom Transfer Enables Regioselective Tricomponent 1,4-Carboamination. J Am Chem Soc 2024; 146:8508-8519. [PMID: 38382542 DOI: 10.1021/jacs.3c14828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Tricomponent cobalt(salen)-catalyzed carbofunctionalization of unsaturated substrates by radical-polar crossover has the potential to streamline access to broad classes of heteroatom-functionalized synthetic targets, yet the reaction platform has remained elusive, despite the well-developed analogous hydrofunctionalizations mediated by high-valent alkylcobalt intermediates. We report herein the development of a cobalt(salen) catalytic system that enables carbofunctionalization. The reaction entails a tricomponent decarboxylative 1,4-carboamination of dienes and provides a direct route to aromatic allylic amines by obviating preformed allylation reagents and protection of oxidation-sensitive aromatic amines. The catalytic system merges acridine photocatalysis with cobalt(salen)-catalyzed regioselective 1,4-carbofunctionalization that facilitates the crossover of the radical and polar phases of the tricomponent coupling process, revealing critical roles of the reactants, as well as ligand effects and the nature of the formal high-valent alkylcobalt species on the chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kaitong Zhuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yangyang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Shuyu Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Huiying Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Siwen Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kunzhi Shen
- Shenyang Photosensitive Chemical Research Institute Company Limited, 8-12 No. 6 Road, Shenyang 110141, P. R. China
| | - Yao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Shengfei Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
5
|
Liu R, Shen ML, Fan LF, Zhou XL, Wang PS, Gong LZ. Palladium-Catalyzed Branch- and Z-Selective Allylic C-H Amination with Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202211631. [PMID: 36399016 DOI: 10.1002/anie.202211631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C-H bonds and commonly available amines is a major synthetic challenge. An allylic C-H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Meng-Lan Shen
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Lian-Feng Fan
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Xiao-Le Zhou
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Liu-Zhu Gong
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| |
Collapse
|
6
|
Liu Y, Chen ZH, Li Y, Qian J, Li Q, Wang H. Boryl-Dictated Site-Selective Intermolecular Allylic and Propargylic C-H Amination. J Am Chem Soc 2022; 144:14380-14387. [PMID: 35895901 DOI: 10.1021/jacs.2c06117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For internal alkenes possessing two or more sets of electronically and sterically similar allylic protons, the site-selectivity for allylic C-H functionalization is fundamentally challenging. Previously, the negative inductive effect from an electronegative atom has been demonstrated to be effective for several inspiring regioselective C-H functionalization reactions. Yet, the use of an electropositive atom for a similar purpose remains to be developed. α-Aminoboronic acids and their derivatives have found widespread applications. Their current syntheses rely heavily on functional group manipulations. Herein we report a boryl-directed intermolecular C-H amination of allyl N-methyliminodiacetyl boronates (B(MIDA)s) and propargylic B(MIDA)s to give α-amino boronates with an exceptionally high level of site-selectivities (up to 300:1). A wide variety of highly functionalized secondary and tertiary α-amino boronates are formed in generally good to excellent yields, thanks to the mildness of the reaction conditions. The unsaturated double and triple bonds within the product leave room for further decorations. Mechanistic studies reveal that the key stabilization effect of the B(MIDA) moiety on its adjacent developing positive charge is responsible for the high site-selectivity and that a closed transition state might be involved, as the reaction is fully stereoretentive. An activation effect of B(MIDA) is also found.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Hao Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Murru S, Mokar BD, Bista R, Harakat D, Le Bras J, Fronczek F, Nicholas KM, Srivastava RS. Copper-catalyzed asymmetric allylic C–H amination of alkenes using N-arylhydroxylamines. Org Chem Front 2021. [DOI: 10.1039/d1qo00223f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first Cu-catalyzed asymmetric allylic C–H amination of alkenes with N-aryl hydroxylamines has been developed. Metal-complexes isolation, ESI-MS analysis and the DFT calculations provided key insights on mechanistic pathway.
Collapse
Affiliation(s)
- Siva Murru
- Chemistry Program
- School of Sciences
- University of Louisiana at Monroe
- Louisiana 71209
- USA
| | - Bhanudas D. Mokar
- Department of Chemistry
- University of Louisiana at Lafayette
- Louisiana 70504
- USA
| | - Ramesh Bista
- Chemistry Program
- School of Sciences
- University of Louisiana at Monroe
- Louisiana 71209
- USA
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims – UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles
- 51687 REIMS Cedex 2
- France
| | - Jean Le Bras
- Institut de Chimie Moléculaire de Reims – UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles
- 51687 REIMS Cedex 2
- France
| | - Frank Fronczek
- Department of Chemistry
- Louisiana State University
- Baton Rouge 70803
- USA
| | | | | |
Collapse
|
12
|
Manna K, Begam HM, Samanta K, Jana R. Overcoming the Deallylation Problem: Palladium(II)-Catalyzed Chemo-, Regio-, and Stereoselective Allylic Oxidation of Aryl Allyl Ether, Amine, and Amino Acids. Org Lett 2020; 22:7443-7449. [PMID: 32955263 DOI: 10.1021/acs.orglett.0c02465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a Pd(II)/bis-sulfoxide-catalyzed intramolecular allylic C-H acetoxylation of aryl allyl ether, amine, and amino acids with the retention of a labile allyl moiety. Mechanistically, the reaction proceeds through a distinct double-bond isomerization from the allylic to the vinylic position followed by intramolecular carboxypalladation and the β-hydride elimination pathway. For the first time, C-H oxidation of N-allyl-protected amino acids to furnish five-membered heterocycles through 1,3-syn-addition is established with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Lei H, Rovis T. A site-selective amination catalyst discriminates between nearly identical C-H bonds of unsymmetrical disubstituted alkenes. Nat Chem 2020; 12:725-731. [PMID: 32541949 PMCID: PMC7428077 DOI: 10.1038/s41557-020-0470-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
C-H activation reactions enable chemists to unveil new retrosynthetic disconnections and streamline conventional synthetic approaches. A long-standing challenge in C-H activation is the inability to distinguish electronically and sterically similar C-H bonds. Although numerous synergistic combinations of transition-metal complexes and chelating directing groups have been utilized to distinguish C-H bonds, undirected regioselective C-H functionalization strategies remain elusive. Here we report a regioselective C-H activation/amination reaction of various unsymmetrical dialkyl-substituted alkenes. The regioselectivity of C-H activation is correlated to the electronic properties of allylic C-H bonds indicated by the corresponding 1JCH coupling constants. A linear relationship between the difference in the 1JCH coupling constants of the two competing allylic C-H bonds (Δ1JCH) and the C-H activation barriers (ΔΔG‡) has also been determined.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Affiliation(s)
- Moriah Locklear
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| | - Patrick H. Dussault
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| |
Collapse
|
15
|
Palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes and glycine Schiff bases. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9687-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Ren W, Jin M, Zuo QM, Yang SD. Allylation of β-amino phosphonic acid precursor via palladium-NHC catalyzed allylic C–H activation. Org Chem Front 2020. [DOI: 10.1039/c9qo01089k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Pd(ii)/N-heterocyclic carbene (NHC) catalyzed allylic C–H alkylation of allylbenzene with α-cyano-phosphate ester has been achieved under mild reaction conditions with the highest regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ming Jin
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
17
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019; 58:16806-16810. [DOI: 10.1002/anie.201908960] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
18
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
19
|
Romero AH. Fused Heteroaromatic Rings via Metal-Mediated/Catalyzed Intramolecular C–H Activation: A Comprehensive Review. Top Curr Chem (Cham) 2019; 377:21. [DOI: 10.1007/s41061-019-0246-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022]
|
20
|
Wang R, Luan Y, Ye M. Transition Metal–Catalyzed Allylic C(sp
3
)–H Functionalization
via η
3
‐Allylmetal Intermediate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronghua Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Luan
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Knecht T, Mondal S, Ye JH, Das M, Glorius F. Intermolecular, Branch-Selective, and Redox-Neutral Cp*Ir III -Catalyzed Allylic C-H Amidation. Angew Chem Int Ed Engl 2019; 58:7117-7121. [PMID: 30892775 DOI: 10.1002/anie.201901733] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 01/17/2023]
Abstract
Herein, we report the redox-neutral, intermolecular, and highly branch-selective amidation of allylic C-H bonds enabled by Cp*IrIII catalysis. A variety of readily available carboxylic acids were converted into the corresponding dioxazolones and efficiently coupled with terminal and internal olefins in high yields and selectivities. Mechanistic investigations support the formation of a nucleophilic IrIII -allyl intermediate rather than the direct insertion of an Ir-nitrenoid species into the allylic C-H bond.
Collapse
Affiliation(s)
- Tobias Knecht
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Shobhan Mondal
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Jian-Heng Ye
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
22
|
Knecht T, Mondal S, Ye J, Das M, Glorius F. Intermolekulare, verzweigt‐selektive und redoxneutrale Cp*Ir
III
‐katalysierte allylische C‐H‐Amidierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tobias Knecht
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Shobhan Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Jian‐Heng Ye
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
23
|
Lei H, Rovis T. Ir-Catalyzed Intermolecular Branch-Selective Allylic C-H Amidation of Unactivated Terminal Olefins. J Am Chem Soc 2019; 141:2268-2273. [PMID: 30715868 DOI: 10.1021/jacs.9b00237] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient method for intermolecular branch-selective allylic C-H amidation has been accomplished via Ir(III) catalysis. The reaction proceeds through initial allylic C-H activation, supported by the isolation and crystallographic characterization of an allyl-Ir(III) intermediate, followed by a subsequent oxidative amidation with readily available dioxazolones as nitrenoid precursors. A diverse range of amides are successfully installed at the branched position of terminal alkenes in good yields and regioselectivities. Importantly, the reaction allows the use of amide-derived nitrenoid precursors avoiding problematic Curtius-type rearrangements.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
24
|
Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem Rev 2018; 119:1855-1969. [PMID: 30582688 DOI: 10.1021/acs.chemrev.8b00506] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.
Collapse
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Hang-Fei Tu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Günter Helmchen
- Organisch-Chemisches Institut der Ruprecht-Karls , Universität Heidelberg , Im Neuenheimer Feld 270 , D-69120 Heidelberg , Germany
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
25
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018; 57:16520-16524. [DOI: 10.1002/anie.201809112] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
26
|
Zhu D, Lv L, Li CC, Ung S, Gao J, Li CJ. Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Sosthene Ung
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Jian Gao
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for, Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
27
|
Zhang XY, Zheng L, Guan BT. Lithium Diisopropylamide Catalyzed Allylic C-H Bond Alkylation with Styrenes. Org Lett 2018; 20:7177-7181. [PMID: 30387607 DOI: 10.1021/acs.orglett.8b03108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Allylic substitution reactions, a well-established approach for new bond construction, often need transition-metal catalysts and stoichiometric amounts of organometallic reagents, strong bases, or oxidants. Lithium diisopropylamide (LDA), a widely used and commercially available Brønsted base, is herein reported to catalyze the allylic C-H bond addition of 1,3-diarylpropenes to styrenes. Preliminary mechanism studies have provided a solid structure of the π-allyllithium intermediate and revealed the unique catalytic roles of LDA and its conjugate acid diisopropylamine.
Collapse
Affiliation(s)
- Xiang-Yu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Lei Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Bing-Tao Guan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
28
|
Nelson TAF, Blakey SB. Intermolecular Allylic C−H Etherification of Internal Olefins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Taylor A. F. Nelson
- Department of Chemistry Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Simon B. Blakey
- Department of Chemistry Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| |
Collapse
|
29
|
Nelson TAF, Blakey SB. Intermolecular Allylic C-H Etherification of Internal Olefins. Angew Chem Int Ed Engl 2018; 57:14911-14915. [PMID: 30256503 DOI: 10.1002/anie.201809863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 11/08/2022]
Abstract
Herein we report on the development of an oxidative allylic C-H etherification reaction, utilizing internal olefins and alcohols as simple precursors. Key advances include the use of RhCp* complexes to promote the allylic C-H functionalization of internal olefins and the compatibility of the oxidative conditions with oxidatively sensitive alcohols, enabling the direct etherification reaction. Preliminary mechanistic studies, consistent with C-H functionalization as the rate determining step, are presented.
Collapse
Affiliation(s)
- Taylor A F Nelson
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| | - Simon B Blakey
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
30
|
Yang Y, Yang X, Zhang Y, Xue Y. Computational Mechanism Study on Allylic Oxidation of cis-Internal Alkenes: Insight into the Lewis Acid-Assisted Brønsted Acid (LBA) Catalysis in Heteroene Reactions. J Org Chem 2018; 83:13344-13355. [PMID: 30277766 DOI: 10.1021/acs.joc.8b02130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The catalytic allylic C-H oxidation of alkenes plays an important role in the field of medicine chemistry. Recently, Tambar et al. improved this transformation via a heteroene reaction with the assistance of a Lewis acid-assisted chiral Brønsted acid (LBA) and achieved a selective allylic oxidation of inactivated cis-internal alkenes to versatile oxidation products. By means of density functional theory (DFT) calculations, we provided a detailed investigation on the mechanism of the heteroene reaction and successfully located a new catalytic process, which is able to explain the experimental observations very well. Four different reactive pathways (pathways A, B, C, and D) for the LBA-catalyzed heteroene reaction have been designed. We found pathway D, which undergoes a protonation process for the activation of enophile benzenesulfonyl sulfurimide, has the lowest overall free energy barrier. Pathway E was put forward to lead to a minor enantiomer. The theoretical enantiomeric ratio calculated via their energy difference is consistent with the experimental report. For the heteroene reaction, we proposed a new reaction mechanism, which can assist in related transformations and the design of new LBA catalysts.
Collapse
Affiliation(s)
- Yongsheng Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education , Sichuan University , Chengdu 610064 , China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, Collaborative Innovation Center of Biotherapy , Chengdu 610041 , China
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education , Sichuan University , Chengdu 610064 , China
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
31
|
Shen SJ, Zhu CL, Lu DF, Xu H. Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Activation Promoted by Nitrogen-Based Ligands. ACS Catal 2018; 8:4473-4482. [PMID: 29785320 DOI: 10.1021/acscatal.8b00821] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report an iron-catalyzed direct diazidation method via activation of bench-stable peroxyesters promoted by nitrogen-based ligands. This method is effective for a broad range of olefins and N-heterocycles, including those that are difficult substrates for the existing olefin diamination and diazidation methods. Notably, nearly a stoichiometric amount of oxidant and TMSN3 are sufficient for high-yielding diazidation for most substrates. Preliminary mechanistic studies elucidated the similarities and differences between this method and the benziodoxole-based olefin diazidation method previously developed by us. This method effectively addresses the limitations of the existing olefin diazidation methods. Most notably, previously problematic nonproductive oxidant decomposition can be minimized. Furthermore, X-ray crystallographic studies suggest that an iron-azide-ligand complex can be generated in situ from an iron acetate precatalyst and that it may facilitate peroxyester activation and the rate-determining C-N3 bond formation during diazidation of unstrained olefins.
Collapse
Affiliation(s)
- Shou-Jie Shen
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue Southeast, Atlanta, Georgia 30303, United States
| | - Cheng-Liang Zhu
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue Southeast, Atlanta, Georgia 30303, United States
| | - Deng-Fu Lu
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue Southeast, Atlanta, Georgia 30303, United States
| | - Hao Xu
- Department of Chemistry, Georgia State University, 100 Piedmont Avenue Southeast, Atlanta, Georgia 30303, United States
| |
Collapse
|
32
|
Hu B, Deng L. Catalytic Asymmetric Synthesis of Trifluoromethylated γ-Amino Acids through the Umpolung Addition of Trifluoromethyl Imines to Carboxylic Acid Derivatives. Angew Chem Int Ed Engl 2018; 57:2233-2237. [PMID: 29232488 PMCID: PMC6408948 DOI: 10.1002/anie.201710915] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/07/2022]
Abstract
Novel cinchona alkaloid derived chiral phase-transfer catalysts enabled the highly chemo-, regio-, diastereo-, and enantioselective umpolung addition of trifluoromethyl imines to α,β-unsaturated N-acyl pyrroles. With a catalyst loading ranging from 0.2 to 5.0 mol %, this new catalytic asymmetric transformation provides facile and high-yielding access to highly enantiomerically enriched chiral trifluoromethylated γ-amino acids and γ-lactams.
Collapse
Affiliation(s)
- Bin Hu
- Department of Chemistry Brandeis University Waltham, Massachusetts 02454-9110, United States
| | - Li Deng
- Department of Chemistry Brandeis University Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
33
|
Hu B, Deng L. Catalytic Asymmetric Synthesis of Trifluoromethylated γ-Amino Acids through the Umpolung Addition of Trifluoromethyl Imines to Carboxylic Acid Derivatives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Hu
- Department of Chemistry; Brandeis University; Waltham MA 02454-9110 USA
| | - Li Deng
- Department of Chemistry; Brandeis University; Waltham MA 02454-9110 USA
| |
Collapse
|
34
|
Wang PS, Shen ML, Wang TC, Lin HC, Gong LZ. Access to Chiral Hydropyrimidines through Palladium-Catalyzed Asymmetric Allylic C-H Amination. Angew Chem Int Ed Engl 2017; 56:16032-16036. [PMID: 29063650 DOI: 10.1002/anie.201709681] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/25/2022]
Abstract
A palladium-catalyzed asymmetric intramolecular allylic C-H amination controlled by a chiral phosphoramidite ligand was established for the preparation of various substituted chiral hydropyrimidinones, the precursors of hydropyrimidines, in high yields with high enantioselectivities. In particular, dienyl sodium N-sulfonyl amides bearing an arylethene-1-sulfonyl group underwent a sequential allylic C-H amination and intramolecular Diels-Alder (IMDA) reaction to produce chiral fused tricyclic tetrahydropyrimidinone frameworks in high yields and with high levels of stereoselectivity. Significantly, this method was used as the key step in an asymmetric synthesis of letermovir.
Collapse
Affiliation(s)
- Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Meng-Lan Shen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hua-Chen Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
35
|
Wang PS, Shen ML, Wang TC, Lin HC, Gong LZ. Access to Chiral Hydropyrimidines through Palladium-Catalyzed Asymmetric Allylic C−H Amination. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Meng-Lan Shen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Hua-Chen Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
36
|
Wang D, Weinstein AB, White PB, Stahl SS. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem Rev 2017; 118:2636-2679. [PMID: 28975795 DOI: 10.1021/acs.chemrev.7b00334] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed aerobic oxidation reactions have been the focus of industrial application and extensive research efforts for nearly 60 years. A significant transition occurred in this field approximately 20 years ago, with the introduction of catalysts supported by ancillary ligands. The ligands play crucial roles in the reactions, including promotion of direct oxidation of palladium(0) by O2, bypassing the typical requirement for Cu salts or related redox cocatalysts to facilitate oxidation of the reduced Pd catalyst; facilitation of key bond-breaking and bond-forming steps during substrate oxidation; and modulation of chemo-, regio-, or stereoselectivity of a reaction. The use of ligands has contributed to significant expansion of the scope of accessible aerobic oxidation reactions. Increased understanding of the role of ancillary ligands should promote the development of new synthetic transformations, enable improved control over the reaction selectivity, and improve catalyst activity and stability. This review surveys the different ligands that have been used to support palladium-catalyzed aerobic oxidation reactions and, where possible, describes mechanistic insights into the role played by the ancillary ligand.
Collapse
Affiliation(s)
- Dian Wang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Adam B Weinstein
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Paul B White
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
37
|
Hu RB, Wang CH, Ren W, Liu Z, Yang SD. Direct Allylic C–H Bond Activation To Synthesize [Pd(η3-cin)(IPr)Cl] Complex: Application in the Allylation of Oxindoles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02965] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rong-Bin Hu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s Republic of China
| | - Chun-Hai Wang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Wei Ren
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zhong Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shang-Dong Yang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People’s Republic of China
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
38
|
Liu P, Wang PS. Palladium-catalyzed Asymmetric Allylic C–H Oxidation for the Formal Synthesis of Gonytolide C. CHEM LETT 2017. [DOI: 10.1246/cl.170406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
39
|
Bayeh L, Le PQ, Tambar UK. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 2017; 547:196-200. [PMID: 28636605 PMCID: PMC6020688 DOI: 10.1038/nature22805] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/25/2017] [Indexed: 11/08/2022]
Abstract
The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.
Collapse
Affiliation(s)
- Liela Bayeh
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| | - Phong Q. Le
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern
Medical Center, 5323 Harry, Hines Boulevard, Dallas, Texas 75390-9038, United
States
| |
Collapse
|
40
|
Litman ZC, Sharma A, Hartwig JF. Oxidation of Hindered Allylic C-H Bonds with Applications to the Functionalization of Complex Molecules. ACS Catal 2017; 7:1998-2001. [PMID: 29910970 DOI: 10.1021/acscatal.6b03648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the palladium-catalyzed oxidation of hindered alkenes to form linear allylic esters. The combination of palladium(II) benzoate, 4,5-diazafluoren-9-one, and benzoquinone catalyzes the mild oxidation of terminal alkenes with tert-butyl benzoyl peroxide as an oxidant in the presence of diverse functional groups. Selective oxidation of terminal alkenes in the presence of trisubstituted and disubstituted alkenes has been achieved, and the ability to conduct the reaction on a gram scale has been demonstrated. The mild conditions and high tolerance for auxiliary functionality make this method suitable for the synthesis and derivatization of complex molecules.
Collapse
Affiliation(s)
- Zachary C. Litman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ankit Sharma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Newton CG, Wang SG, Oliveira CC, Cramer N. Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes. Chem Rev 2017; 117:8908-8976. [DOI: 10.1021/acs.chemrev.6b00692] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher G. Newton
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shou-Guo Wang
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Caio C. Oliveira
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric
Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Wenzel MN, Owens PK, Bray JTW, Lynam JM, Aguiar PM, Reed C, Lee JD, Hamilton JF, Whitwood AC, Fairlamb IJS. Redox Couple Involving NOx in Aerobic Pd-Catalyzed Oxidation of sp3-C–H Bonds: Direct Evidence for Pd–NO3–/NO2– Interactions Involved in Oxidation and Reductive Elimination. J Am Chem Soc 2017; 139:1177-1190. [DOI: 10.1021/jacs.6b10853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Margot N. Wenzel
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Philippa K. Owens
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Joshua T. W. Bray
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Pedro M. Aguiar
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Christopher Reed
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - James D. Lee
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Adrian C. Whitwood
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
43
|
Li LL, Tao ZL, Han ZY, Gong LZ. Double Chiral Induction Enables a Stereoselective Carbonyl Allylation with Simple Alkenes under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid. Org Lett 2016; 19:102-105. [DOI: 10.1021/acs.orglett.6b03378] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lu-Lu Li
- Hefei National Laboratory
for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Lin Tao
- Hefei National Laboratory
for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory
for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory
for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Lopez MJ, Kondo A, Nagae H, Yamamoto K, Tsurugi H, Mashima K. C(sp3)–H Alkenylation Catalyzed by Cationic Alkylhafnium Complexes: Stereoselective Synthesis of Trisubstituted Alkenes from 2,6-Dimethylpyridines and Internal Alkynes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael J. Lopez
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ai Kondo
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Haruki Nagae
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Koji Yamamoto
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
45
|
Ordóñez M, Cativiela C, Romero-Estudillo I. An update on the stereoselective synthesis of γ-amino acids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Guo W, Martínez-Rodríguez L, Kuniyil R, Martin E, Escudero-Adán EC, Maseras F, Kleij AW. Stereoselective and Versatile Preparation of Tri- and Tetrasubstituted Allylic Amine Scaffolds under Mild Conditions. J Am Chem Soc 2016; 138:11970-8. [DOI: 10.1021/jacs.6b07382] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wusheng Guo
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Luis Martínez-Rodríguez
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rositha Kuniyil
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Eddy Martin
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Eduardo C. Escudero-Adán
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
47
|
White PB, Jaworski JN, Fry CG, Dolinar BS, Guzei IA, Stahl SS. Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions. J Am Chem Soc 2016; 138:4869-80. [PMID: 26967703 PMCID: PMC4863657 DOI: 10.1021/jacs.6b01188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
4,5-Diazafluoren-9-one (DAF) has been identified as a highly effective ligand in a number of Pd-catalyzed oxidation reactions, but the mechanistic basis for its utility has not been elucidated. Here, we present the complex coordination chemistry of DAF and palladium(II) carboxylate salts. Multiple complexes among an equilibrating mixture of species have been characterized by (1)H and (15)N NMR spectroscopy and X-ray crystallography. These complexes include monomeric and dimeric Pd(II) species, with monodentate (κ(1)), bidentate (κ(2)), and bridging (μ:κ(1):κ(1)) DAF coordination modes. Titration studies of DAF and Pd(OAc)2 reveal the formation of two dimeric DAF/Pd(OAc)2 complexes at low [DAF] and four monomeric species at higher [DAF]. The dimeric complexes feature two bridging acetate ligands together with either a bridging or nonbridging (κ(1)) DAF ligand coordinated to each Pd(II) center. The monomeric structures consist of three isomeric Pd(κ(1)-DAF)2(OAc)2 complexes, together with Pd(κ(2)-DAF)(OAc)2 in which the DAF exhibits a traditional bidentate coordination mode. Replacing DAF with the structurally related, but more-electron-rich derivative 9,9-dimethyl-4,5-diazafluorene (Me2DAF) simplifies the equilibrium mixture to two complexes: a dimeric species in which the Me2DAF bridges the two Pd centers and a monomeric species with a traditional κ(2)-Me2DAF coordination mode. The use of DAF in combination with other carboxylate ligands (CF3CO2(-) or tBuCO2(-)) also results in a simplified collection of equilibrating Pd(II)-DAF complexes. Collectively, the results highlight the ability of DAF to equilibrate rapidly among multiple coordination modes, and provide valuable insights into the utility of DAF as a ligand in Pd-catalyzed oxidation reactions.
Collapse
Affiliation(s)
- Paul B. White
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Jonathan N. Jaworski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Charles G. Fry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Brian S. Dolinar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
48
|
White PB, Jaworski JN, Zhu GH, Stahl SS. Diazafluorenone-Promoted Oxidation Catalysis: Insights into the Role of Bidentate Ligands in Pd-Catalyzed Aerobic Aza-Wacker Reactions. ACS Catal 2016; 6:3340-3348. [PMID: 27175308 DOI: 10.1021/acscatal.6b00953] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2,2'-Bipyridine (bpy), 1,10-phenanthroline (phen) and related bidentate ligands often inhibit homogeneous Pd-catalyzed aerobic oxidation reactions; however, certain derivatives, such as 4,5-diazafluoren-9-one (DAF), can promote catalysis. In order to gain insight into this divergent ligand behavior, eight different bpy- and phen-derived chelating ligands have been evaluated in Pd(OAc)2-catalyzed oxidative cyclization of (E)-4-hexenyltosylamide. Two of the ligands, DAF and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me2bpy), support efficient catalytic turnover, while the others strongly inhibit the reaction. DAF is especially effective and is the only ligand that exhibits "ligand-accelerated catalysis". Evidence suggests that the utility of DAF and 6,6'-Me2bpy originates from the ability of these ligands to access κ1-coordination modes via dissociation of one of the pyridyl rings. This hemilabile character is directly observed by NMR spectroscopy upon adding one equivalent of pyridine to solutions of 1:1 L/Pd(OAc)2 (L = DAF and 6,6'-Me2bpy), and is further supported by an X-ray crystal structure of Pd(py)(κ1-DAF)OAc2. DFT computational studies illuminate the influence of three different chelating ligands [DAF, 6,6'-Me2bpy, and 2,9-dimethyl-1,10-phenanthroline (2,9-Me2phen)] on the energetics of the aza-Wacker reaction pathway. The results show that DAF and 6,6'-Me2bpy destabilize the corresponding ground-state Pd(N~N)(OAc)2 complexes, while stabilizing the rate-limiting transition state for alkene insertion into a Pd-N bond. Interconversion between κ2- and κ1-coordination modes facilitate access to open coordination sites at the PdII center. The insights from these studies introduce new ligand concepts that could promote numerous other classes of Pd-catalyzed aerobic oxidation reaction.
Collapse
Affiliation(s)
- Paul B. White
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jonathan N. Jaworski
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Geyunjian Harry Zhu
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
49
|
Zheng M, Chen P, Wu W, Jiang H. Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones. Chem Commun (Camb) 2016; 52:84-7. [DOI: 10.1039/c5cc06958k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An efficient palladium-catalyzed Heck-type reaction of oximes with allylic alcohol has been developed for the synthesis of pyridines and azafluorenones.
Collapse
Affiliation(s)
- Meifang Zheng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Pengquan Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
50
|
Zhang H, Hu RB, Liu N, Li SX, Yang SD. Dearomatization of Indoles via Palladium-Catalyzed Allylic C-H Activation. Org Lett 2015; 18:28-31. [PMID: 26673685 DOI: 10.1021/acs.orglett.5b03053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first Pd-catalyzed allylic dearomatization of substituted indoles triggered by C-H bond activation is reported. The presence of a catalytic amount of 2,5-DMBQ is proven to be a key factor for the high yield. This one-pot tandem allylic C-H activation/dearomatization sequence provides a straightforward access to 3,3-disubstituted indolines.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| | - Rong-Bin Hu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| | - Na Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| | - Shi-Xia Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics , Lanzhou 730000, P. R. China
| |
Collapse
|