1
|
Hao L, Zhu F, Liu X, Wang D. Spirophosphine-Catalyzed Enantioselective [3 + 2] Cycloaddition of Allenoates and Unsaturated α-Ketimine Esters. Org Lett 2024; 26:8860-8865. [PMID: 39373463 DOI: 10.1021/acs.orglett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A novel chiral spiro-monophosphine, OUC-Phos, was synthesized and utilized for the first time in the asymmetric Lu's [3 + 2] cycloaddition reaction of β,γ-unsaturated α-ketimine ester with allenoate. OUC-Phos, featuring a 3,3'-diphenyl-modified spirobiindane skeleton, demonstrated exceptional catalytic efficiency in the [3 + 2] cycloaddition to achieve high yields, enantioselectivities, and diastereoselectivities for the targeted products. The broad substrate scope encompassing diverse functional groups demonstrated the versatility of this methodology. Furthermore, the reaction was successfully scaled up, and the products were easily converted into their corresponding functionalized derivatives.
Collapse
Affiliation(s)
- Luyao Hao
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Fangfang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266071, China
| |
Collapse
|
2
|
Ho KT, Pierce JG. Synthesis of Spiropyrrolines via One-Pot Tf 2O-Mediated Amide Activation/Formal [3 + 2]-Cycloaddition of α-Formylamino Ketones. J Org Chem 2024; 89:13031-13037. [PMID: 39230008 DOI: 10.1021/acs.joc.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
An efficient method for the synthesis of spiropyrrolines from readily accessible α-formylamino ketones is reported. The method involves amide activation using Tf2O, followed by a formal [3 + 2]-cycloaddition of the resulting enolic nitrilium intermediate with Michael acceptors, ultimately affording spiropyrrolines. Mechanistic insights were gained through NMR studies, elucidating the precise role of the base additive and suggesting the formation of an enolic nitrilium intermediate.
Collapse
Affiliation(s)
- Khanh-Toan Ho
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Zhang C, Maddigan-Wyatt JT, Nguyen X, Seitz A, Breugst M, Lupton DW. Enantioselective Synthesis of Cyclopentanes by Phosphine-Catalyzed β,γ-Annulation of Allenoates. Org Lett 2024; 26:7800-7804. [PMID: 39240702 DOI: 10.1021/acs.orglett.4c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Herein, we report the enantioselective phosphine-catalyzed β,γ-annulation of electron-poor allenes with bifunctional malonates. The reaction exploits a 2C phosphonium synthon that when accessed using (R)-SITCP gives 23 cyclopentanes with high stereoselectivity (most >95:5 er and >9:1 dr) and yield. In addition to the (3+2) annulation, a one-pot three-component variant to give the same cyclopentanes and a (3+2) annulation/Dieckmann cyclization cascade, along with mechanistic studies, are reported.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - Xuan Nguyen
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Antonia Seitz
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen, 09111 Chemnitz, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
4
|
Jana K, Zhao Z, Musies J, Sparr C. Atroposelective Arene-Forming Wittig Reaction by Phosphorus P III/P V=O Redox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408159. [PMID: 38940901 DOI: 10.1002/anie.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
The Wittig reaction is renowned as exceptionally versatile method for converting a diversity of aldehydes and ketones into alkenes. Recently, strategies for chiral phosphine catalysis under PIII/PV=O redox cycling emerged to render this venerable transformation stereoselective. Herein, we describe that phosphine redox catalysis enables the enantioselective synthesis of pertinent biaryl atropisomers by means of a stereocontrolled arene-forming Wittig reaction. Key to the process is the release of an endogenous base from readily accessible tert-butyloxycarbonylated Morita-Baylis-Hillman adducts triggered by catalyst intramolecularization, permitting mild phosphine redox catalysis for atroposelective Wittig reactions. By this strategy, a broad diversity of biaryl atropisomers is obtained with up to 94 : 6 enantioselectivity.
Collapse
Affiliation(s)
- Kalipada Jana
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Zhengxing Zhao
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Janis Musies
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
5
|
Seitz A, Maddigan-Wyatt JT, Cao J, Breugst M, Lupton DW. Enantioselective Synthesis of Cyclopentenes by (3+2) Annulation via a 2-Carbon Phosphonium. Angew Chem Int Ed Engl 2024; 63:e202408397. [PMID: 38747007 DOI: 10.1002/anie.202408397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Herein we report a catalytic enantioselective (3+2) annulation, in which a vinyl phosphonium intermediate serves as the 2-carbon component. The reaction involves an α-umpolung β-umpolung coupling sequence, enabled by β-haloacrylates and chiral enantioenriched phosphepine catalysts. The reaction shows good generality, providing access to an array of cyclopentenes, with mechanistic studies supporting stereospecific formation of the vinyl phosphonium intermediate which, then undergoes annulation with turn over limiting catalyst elimination. Beyond defining a new approach to cyclopentenes, these studies demonstrate that β-haloacrylates can replace ynoates in reaction designs that require exclusive umpolung coupling at the α- and β-positions.
Collapse
Affiliation(s)
- Antonia Seitz
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | | | - Jing Cao
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
6
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
7
|
Zhou H, Xue Y, Zhou X, Yao H, Lin A. Palladium-Catalyzed Asymmetric Desymmetrization for the Simultaneous Construction of Chiral Phosphorus and Quaternary Carbon Stereocenters. Org Lett 2024; 26:5934-5939. [PMID: 38967969 DOI: 10.1021/acs.orglett.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A palladium-catalyzed asymmetric tandem Heck and carbonylation of bisallyl-phosphine oxides has been developed. This desymmetrization process provided an efficient route to the simultaneous synthesis of a chiral P-stereogenic center and a chiral quaternary carbon stereocenter in good yields with good diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yiji Xue
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiang Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. J Am Chem Soc 2024; 146:14136-14148. [PMID: 38642063 DOI: 10.1021/jacs.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.
Collapse
Affiliation(s)
- Hongzhi Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sen Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhengwen Xue
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shengkun Hu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Dehnert BW, Dworkin JH, Kwon O. Dealkenylative Functionalizations: Conversion of Alkene C(sp 3)-C(sp 2) Bonds into C(sp 3)-X Bonds via Redox-Based Radical Processes. SYNTHESIS-STUTTGART 2024; 56:71-86. [PMID: 38832211 PMCID: PMC11147281 DOI: 10.1055/a-2044-4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review highlights the history and recent advances in dealkenylative functionalization. Through this deconstructive strategy, radical functionalizations occur under mild, robust conditions. The reactions described proceed with high efficiency, good stereoselectivity, tolerate many functional groups, and are completed within a matter of minutes. By cleaving the C(sp3)-C(sp2) bond of terpenes and terpenoid-derived precursors, rapid diversification of natural products is possible.
Collapse
Affiliation(s)
- Brady W Dehnert
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy H Dworkin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Lei T, Graf S, Schöll C, Krätzschmar F, Gregori B, Appleson T, Breder A. Asymmetric Photoaerobic Lactonization and Aza-Wacker Cyclization of Alkenes Enabled by Ternary Selenium-Sulfur Multicatalysis. ACS Catal 2023; 13:16240-16248. [PMID: 38125978 PMCID: PMC10729055 DOI: 10.1021/acscatal.3c04443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
An adaptable, sulfur-accelerated photoaerobic selenium-π-acid ternary catalyst system for the enantioselective allylic redox functionalization of simple, nondirecting alkenes is reported. In contrast to related photoredox catalytic methods, which largely depend on olefinic substrates with heteroatomic directing groups to unfold high degrees of stereoinduction, the current protocol relies on chiral, spirocyclic selenium-π-acids that covalently bind to the alkene moiety. The performance of this ternary catalytic method is demonstrated in the asymmetric, photoaerobic lactonization and cycloamination of enoic acids and unsaturated sulfonamides, respectively, leading to an averaged enantiomeric ratio (er) of 92:8. Notably, this protocol provides for the first time an asymmetric, catalytic entryway to pharmaceutically relevant 3-pyrroline motifs, which was used as a platform to access a 3,4-dihydroxyproline derivative in only seven steps with a 92:8 er.
Collapse
Affiliation(s)
| | | | - Christopher Schöll
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Felix Krätzschmar
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Bernhard Gregori
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Theresa Appleson
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Alexander Breder
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Huber T, Bauer JO. A Powerful P-N Connection: Preparative Approaches, Reactivity, and Applications of P-Stereogenic Aminophosphines. Chemistry 2023:e202303760. [PMID: 38055219 DOI: 10.1002/chem.202303760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
For more than five decades, P-stereogenic aminophosphine chalcogenides and boranes have attracted scientific attention and are still in the focus of ongoing research. In the last years, novel transition metal-based synthesis methods have been discovered, in addition to the long-known use of chiral auxiliaries. Enantiomerically pure compounds with N-P+ -X- (X=O, S, BH3 ) motifs served as valuable reactive building blocks to provide new classes of organophosphorus derivatives, thereby preserving the stereochemical information at the phosphorus atom. Over the years, intriguing applications in organocatalysis and transition metal catalysis have been reported for some representatives. Asymmetric reductions of C=C, C=N, and C=O double bonds were feasible with selected P-stereogenic aminophosphine oxides in the presence of hydrogen transfer reagents. P-stereogenic aminophosphine boranes could be easily deprotected and used as ligands for various transition metals to enable catalytic asymmetric hydrogenations of olefins and imines. This review traces the emergence of a synthetically and catalytically powerful functional compound class with phosphorus-centered chirality in its main lines, starting from classical approaches to modern synthesis methods to current applications.
Collapse
Affiliation(s)
- Tanja Huber
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jonathan O Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| |
Collapse
|
12
|
Moon HW, Wang F, Bhattacharyya K, Planas O, Leutzsch M, Nöthling N, Auer AA, Cornella J. Mechanistic Studies on the Bismuth-Catalyzed Transfer Hydrogenation of Azoarenes. Angew Chem Int Ed Engl 2023; 62:e202313578. [PMID: 37769154 DOI: 10.1002/anie.202313578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr]2 (Ar=p-CF3 -C6 H4 ) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pKa -gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr]2 is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate-limiting transition state in which the initial N-H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4. These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Feng Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Kalishankar Bhattacharyya
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Wu K, Li Q, Su W, Ni S, Zhou Q. Experimental and Theoretical Study of Phosphine-Catalyzed Reaction Modes in the Reaction of α-Substituted Allenes with Aryl Imines. Angew Chem Int Ed Engl 2023:e202314191. [PMID: 37906448 DOI: 10.1002/anie.202314191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
A new phosphine-catalyzed reaction of α-substituted allenes with aryl imines, in stark contrast to classic cycloaddition reactions, has been developed. This reaction delivers valuable highly functionalized itaconimides with excellent stereoselectivities by a new «un-cyclizing» reaction mode involving β'-carbon of α-substituted allenes. Moreover, the present «un-cyclizing» reaction can also be carried out in a one-pot fashion and scaled up to the gram scale by using aryl aldehydes, without the need to isolate the aryl imines. Mechanistic studies and control experiments reveal the crucial role of H2 CO3 for the present reaction mode. In addition, density functional theory (DFT) calculations were performed to understand the possible mechanism.
Collapse
Affiliation(s)
- Ke Wu
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Longmian Dadao, 210009, China
| | - Quanxin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Daxue Road, 515063, China
| | - Wenbo Su
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Longmian Dadao, 210009, China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Daxue Road, 515063, China
| | - Qingfa Zhou
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Longmian Dadao, 210009, China
| |
Collapse
|
14
|
Moser D, Jana K, Sparr C. Atroposelective P III /P V =O Redox Catalysis for the Isoquinoline-Forming Staudinger-aza-Wittig Reaction. Angew Chem Int Ed Engl 2023; 62:e202309053. [PMID: 37486685 DOI: 10.1002/anie.202309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Herein, we describe the feasibility of atroposelective PIII /PV =O redox organocatalysis by the Staudinger-aza-Wittig reaction. The formation of isoquinoline heterocycles thereby enables the synthesis of a broad range of valuable atropisomers under mild conditions with enantioselectivities of up to 98 : 2 e.r. Readily prepared azido cinnamate substrates convert in high yield with stereocontrol by a chiral phosphine catalyst, which is regenerated using a silane reductant under Brønsted acid co-catalysis. The reaction provides access to diversified aryl isoquinolines, as well as benzoisoquinoline and naphthyridine atropisomers. The products are expeditiously transformed into N-oxides, naphthol and triaryl phosphine variants of prevalent catalysts and ligands. With dinitrogen release and aromatization as ideal driving forces, it is anticipated that atroposelective redox organocatalysis provides access to a multitude of aromatic heterocycles with precise control over their configuration.
Collapse
Affiliation(s)
- Daniel Moser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kalipada Jana
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
15
|
Wang L, Gao F, Zhang X, Peng T, Xu Y, Wang R, Yang D. Concerted Enantioselective [2+2] Cycloaddition Reaction of Imines Mediated by a Magnesium Catalyst. J Am Chem Soc 2023; 145:610-625. [PMID: 36538490 DOI: 10.1021/jacs.2c11284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Yingfan Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Huber T, Espinosa‐Jalapa NA, Bauer JO. Access to Enantiomerically Pure P-Stereogenic Primary Aminophosphine Sulfides under Reductive Conditions. Chemistry 2022; 28:e202202608. [PMID: 36161736 PMCID: PMC10092265 DOI: 10.1002/chem.202202608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 12/29/2022]
Abstract
Stereochemically pure phosphines with phosphorus-heteroatom bonds and P-centered chirality are a promising class of functional building blocks for the design of chiral ligands and organocatalysts. A route to enantiomerically pure primary aminophosphine sulfides was opened through stereospecific reductive C-N bond cleavage of phosphorus(V) precursors by lithium in liquid ammonia. The chemoselectivity of the reaction as a function of reaction time, substrate pattern, and chiral auxiliary was investigated. In the presence of exclusively aliphatic groups bound to the phosphorus atom, all competing reductive side reactions are totally prevented. The absolute configurations of all P-stereogenic compounds were determined by single-crystal X-ray diffraction analysis. Their use as synthetic building blocks was demonstrated. The lithium salt of (R)-BINOL-dithiophosphoric acid proved to be a useful stereochemical probe to determine the enantiomeric purity. Insights into the coordination mode of the lithium-based chiral complex formed in solution was provided by NMR spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Tanja Huber
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jonathan O. Bauer
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
17
|
Xie C, Kim J, Mai BK, Cao S, Ye R, Wang XY, Liu P, Kwon O. Enantioselective Synthesis of Quaternary Oxindoles: Desymmetrizing Staudinger-Aza-Wittig Reaction Enabled by a Bespoke HypPhos Oxide Catalyst. J Am Chem Soc 2022; 144:21318-21327. [PMID: 36375169 PMCID: PMC10746329 DOI: 10.1021/jacs.2c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper describes a catalytic asymmetric Staudinger-aza-Wittig reaction of (o-azidoaryl)malonates, allowing access to chiral quaternary oxindoles through phosphine oxide catalysis. We designed a novel HypPhos oxide catalyst to enable the desymmetrizing Staudinger-aza-Wittig reaction through the PIII/PV═O redox cycle in the presence of a silane reductant and an IrI-based Lewis acid. The reaction occurs under mild conditions, with good functional group tolerance, a wide substrate scope, and excellent enantioselectivity. Density functional theory revealed that the enantioselectivity in the desymmetrizing reaction arose from the cooperative effects of the IrI species and the HypPhos catalyst. The utility of this methodology is demonstrated by the (formal) syntheses of seven alkaloid targets: (-)-gliocladin C, (-)-coerulescine, (-)-horsfiline, (+)-deoxyeseroline, (+)-esermethole, (+)-physostigmine, and (+)-physovenine.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Jacob Kim
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Binh Khanh Mai
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Shixuan Cao
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Rong Ye
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Xin-Yi Wang
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California─Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
18
|
Xiang Alvin Tan C, Li R, Zhang F, Dai L, Ullah N, Lu Y. Synthesis of Axially Chiral CF
3
‐Substituted 2‐Arylpyrroles by Sequential Phosphine‐Catalyzed Asymmetric [3+2] Annulation and Oxidative Central‐to‐Axial Chirality Transfer. Angew Chem Int Ed Engl 2022; 61:e202209494. [DOI: 10.1002/anie.202209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Rui Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| | - Fuhao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lei Dai
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nisar Ullah
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Yixin Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| |
Collapse
|
19
|
Iminosugar-Phosphines as Organocatalysts in the [3 + 2] Cycloaddition of Allenoates and N-Tosylimines. Catalysts 2022. [DOI: 10.3390/catal12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iminosugar derivatives containing a pyrrolidine-phosphine moiety were prepared from carbohydrates and used as catalysts in the [3 + 2] cycloaddition reaction between alkyl allenoates and electron-deficient imines. The corresponding 1,2,3,5-tetrasubstituted pyrrolines were obtained in good yields and diastereoselectivities but with moderate enantiocontrol. The stereochemical outcome of the reaction depends on the substituent at the nitrogen atom and hydroxyl groups, the configuration of the stereogenic centers and the distance between the diphenylphosphine group and the pyrrolidine skeleton of the catalyst. The preparation of both enantiomers of the catalyst allowed the corresponding enantiomeric pyrrolines to be obtained with similar yields, diastereo- and enantioselectivities.
Collapse
|
20
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022; 61:e202203494. [DOI: 10.1002/anie.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
21
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
22
|
Dong W, Tian K, Dong X, Wang C. Design, Synthesis and Application of Multifunctional Chiral Ami‐nophosphine Catalyst for Highly Efficient Catalyst for Asymmetric Intermolecular Cross
Rauhut‐Currier
Reaction. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wu‐Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Kui Tian
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiu‐Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Suzhou Institute of Wuhan University Suzhou Jiangsu 215123 P. R. China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
23
|
Maddigan-Wyatt JT, Cao J, Ametovski J, Hooper JF, Lupton DW. Enantioselective Synthesis of Pyrrolidines by a Phosphine-Catalyzed γ-Umpolung/β-Umpolung Cascade. Org Lett 2022; 24:2847-2852. [DOI: 10.1021/acs.orglett.2c00785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jing Cao
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jhi Ametovski
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Joel F. Hooper
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - David W. Lupton
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Zagidullin AA, Grigoreva ES, Shatalova NI, Miluykov VA. P-chiral 1,7-diphosphanorbornenes: synthesis and application in asymmetric allylic alkylation. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2025055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. A. Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Department of Organic Chemistry, Kazan National Research Technological University, Kazan, Russia
| | - E. S. Grigoreva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - N. I. Shatalova
- Department of Organic Chemistry, Kazan National Research Technological University, Kazan, Russia
| | - V. A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
25
|
Ren H, Ma M, Huang Y. Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Xie X, Li S, Chen Q, Guo H, Yang J, Zhang J. Synthesis and application of novel P-chiral monophosphorus ligands. Org Chem Front 2022. [DOI: 10.1039/d1qo01819a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel P-stereogenic monophosphorus ligands (Xie-phos) were synthesized via the hydrophosphinylation of alkynes with secondary phosphine oxides by palladium catalysis and the following base mediated cyclization.
Collapse
Affiliation(s)
- Xiaoxiao Xie
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Sanliang Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qiaoyu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, 200438, China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
27
|
Meng Y, Chen L, Li EQ. Recent Advances in Lewis Base-Catalysed Chemo-, Diastereo- and Enantiodivergent Reactions of Electron-deficient Olefins and Alkynes. CHEM REC 2021; 22:e202100276. [PMID: 34962071 DOI: 10.1002/tcr.202100276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Lewis base catalysis provides powerful synthetic strategies for the selective construction of carbon-carbon and carbon-heteroatom bonds. Thus continuous efforts have been deployed to develop effective methodologies involving Lewis base catalysis. The nucleophilicity and steric hindrance of Lewis base catalyst often plays a major role in catalytic reactivity and selectivity in the reaction. In the past decades, tremendous progress has been made in the divergent construction of valuable motifs under Lewis base catalysis. In this review, we provide a comprehensive and updated summary of Lewis base-catalysed chemo-, diastereo- and enantiodivergent reaction, as well as the related mechanism will be highlighted in detail.
Collapse
Affiliation(s)
- Yinggao Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Zhou L, Zhang X, Wang Q, Liu M, Wang W, Wu Y, Chen L, Guo H. Phosphine-Catalyzed Asymmetric Tandem Isomerization/Annulation of Allyl Amines with Allenoates: Enantioselective Annulation of a Saturated C-N Bond. Org Lett 2021; 23:9173-9178. [PMID: 34784228 DOI: 10.1021/acs.orglett.1c03483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under catalysis by chiral phosphine, an asymmetric isomerization/annulation cascade reaction of allylamines with allenoates was realized. A wide range of γ-substituted allenoates were tolerated to afford chiral pyrroline derivatives in high yields with excellent enantioselectivities. In the reaction, isomerization of readily available N-allylamines to reactive aliphatic imines through a 1,4-proton shift is a key step, which circumvents the isolation of highly unstable alkyl N-sulfonylimines.
Collapse
Affiliation(s)
- Leijie Zhou
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Qijun Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
29
|
Maddigan-Wyatt JT, Blyth MT, Ametovski J, Coote ML, Hooper JF, Lupton DW. Redox Isomerization/(3+2) Allenoate Annulation by Auto-Tandem Phosphine Catalysis. Chemistry 2021; 27:16232-16236. [PMID: 34596926 DOI: 10.1002/chem.202103224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/25/2023]
Abstract
A phosphine-catalyzed approach to pyrrolines has been developed that involves two mechanistically unlinked catalytic processes. The first involves the redox isomerization of amino crotonates to provide access to aliphatic tosyl imines, which then engage in a (3+2) annulation with various allenoates. The reaction shows generality, with 24 examples established, along with a low yielding and moderately enantioselective variant. Mechanistic studies indicate that the viability of the process is linked to the selection of catalysts with similar propensity to add to the two coupling partners.
Collapse
Affiliation(s)
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| | - Jhi Ametovski
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| | - Joel F Hooper
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
30
|
Lorton C, Roblin A, Retailleau P, Voituriez A. Synthesis of Functionalized Cyclobutenes and Spirocycles
via
Asymmetric P(III)/P(V) Redox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charlotte Lorton
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Antoine Roblin
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Arnaud Voituriez
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
31
|
Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Phosphine‐Catalyzed Synthesis of Chiral
N
‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Jia S, Ma M, Li EQ, Duan Z, Mathey F. Design of 1-Phosphanorbornene Derivatives as Chiral Organocatalysts for Enantioselective (4 + 2) Annulation Reactions of γ-Benzyl Allenoates. Org Lett 2021; 23:3337-3342. [PMID: 33851852 DOI: 10.1021/acs.orglett.1c00833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel diastereoisomeric P-chirogenic phosphine catalysts, i.e., JiaPhos, which can be easily derived from inexpensive and commercially available starting materials in five chemical operations (totally 4.16g scale), are introduced. To our delight, the JiaPhos catalysts display good performance in enantioselective (4 + 2) annulations involving 3-methylene-2-oxindoles and γ-benzyl allenoates, providing a wide range of 3,3'-spirocyclic oxindoles with good efficiency and enantioselectivity.
Collapse
Affiliation(s)
- Siming Jia
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mengmeng Ma
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Françis Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
34
|
Chen X, Hu C, Zhang X, Liu S, Mei Y, Hu G, Liu LL, Li Z, Su CY. Reversible Stereoisomerization of 1,3-Diphosphetane Frameworks Revealed by a Single-Electron Redox Approach. Inorg Chem 2021; 60:5771-5778. [PMID: 33780618 DOI: 10.1021/acs.inorgchem.1c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of pyramidal inversion has continued to impact modern organic and organometallic chemistry. Sequential alkylation reactions of an N-heterocyclic carbene (NHC) ligated dicarbondiphosphide 1 with RI (R = Me, Et, or iBu) and ZnMe2 give rise to the highly stereoselective synthesis of cis-1,3-diphosphetanes 3. cis-3 is conformationally favorable at room temperature, whereas inversion to trans-3 is observed at 110 °C. One-electron oxidation of cis-3 with Fc+(BArF) (Fc = [Fe(C5H5)2]; BArF = [B(3,5-(CF3)2C6H3)4)]-) leads to the stereoselective formation of trans-1,3-diphosphetane radical cation salts 3•+(BArF), which can be reversibly transformed to cis-3 upon one-electron reduction. Salts 3•+(BArF) represent the first examples of 1,3-diphosphetane radical cations. These results provide a potential application of planar four-membered heterocycle-based building blocks for electrically fueled molecular switches.
Collapse
Affiliation(s)
- Xiaodan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Zhang
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanbo Mei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guping Hu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongshu Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.,Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
35
|
Li H, He Z. Chiral phosphine-catalyzed asymmetric [4 + 1] annulation of polar dienes with allylic derivatives: Enantioselective synthesis of substituted cyclopentenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Varmužová V, Horký F, Štěpnička P. Synthesis and coordination of a hybrid phosphinoferrocene sulfonamide ligand. NEW J CHEM 2021. [DOI: 10.1039/d1nj00080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid, phosphinoferrocene sulfonamide ligand was synthesised and studied as a ligand in Pd(ii) complexes, which were structurally characterised. Selected compounds were studied by cyclic voltammetry.
Collapse
Affiliation(s)
- Věra Varmužová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Hlavova 2030
- Czech Republic
| | - Filip Horký
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Hlavova 2030
- Czech Republic
| | - Petr Štěpnička
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Hlavova 2030
- Czech Republic
| |
Collapse
|
37
|
Huang Y, Liao J, Wang W, Liu H, Guo H. Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chem Commun (Camb) 2020; 56:15235-15281. [PMID: 33320123 DOI: 10.1039/d0cc05699e] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleophilic phosphine catalysis is a practical and powerful tool for the synthesis of various heterocyclic compounds with the advantages of environmentally friendly, metal-free, and mild reaction conditions. The present report summarizes the construction of four to eight-membered heterocyclic compounds containing nitrogen, oxygen and sulphur atoms through phosphine-catalyzed intramolecular annulations and intermolecular [2+2], [3+2], [4+1], [3+1+1], [5+1], [4+2], [2+2+2], [3+3], [4+3] and [3+2+3] annulations of electron-deficient alkenes, allenes, alkynes and Morita-Baylis-Hillman carbonates.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
38
|
Reuß F, Heretsch P. Synthetic strategies for the ibophyllidine alkaloids. Nat Prod Rep 2020; 38:693-701. [PMID: 33074277 DOI: 10.1039/d0np00036a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1975-2020The ibophyllidine alkaloids are unique pyrroloindole alkaloids exhibiting a five-membered D-ring in contrast to the six-membered D-ring of the more common Aspidosperma and Strychnos alkaloids. This structural feature has made them sought-after targets for organic chemists as well as for the elucidation of their biosynthesis. Beginning with the first and eponymous member ibophyllidine, isolation and structure determination is discussed. The main focus of this review are the diverse chemical approaches towards the ibophyllidines in context with their respective biosynthesis. The often employed Diels-Alder reaction strategy, two other named reaction-based strategies and the most recent enantioselective strategies are presented and compared.
Collapse
Affiliation(s)
- Franziska Reuß
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | |
Collapse
|
39
|
Blank BR, Andrews IP, Kwon O. Phosphine-Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3-Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem 2020; 12:4352-4372. [PMID: 34447481 PMCID: PMC8386297 DOI: 10.1002/cctc.202000626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 01/02/2023]
Abstract
We have developed a phosphine-catalyzed (4+1) annulative rearrangement for the preparation of 3-pyrrolines from allenylic carbamates via phosphonium diene intermediates. We employed this methodology to synthesize an array of 1,3-disubstituted- and 1,2,3-trisubstituted-3-pyrrolines, including the often difficult to prepare 2-alkyl variants. A mechanistic investigation employing allenylic acetates and mononucleophiles unexpectedly unveiled that a phosphine-catalyzed (4+1) reaction for the construction of cyclopentene products, previously reported by Tong, might not occur through a phosphonium diene, as had been proposed, but rather through multiple mechanisms working in concert. Consequently, our phosphine-catalyzed rearrangement is most likely the first transformation to involve the unequivocal formation of a phosphonium diene intermediate along the reaction pathway. To demonstrate the synthetic utility of this newly developed reaction, we have completed concise formal syntheses of the pyrrolizidine alkaloids (±)-trachelanthamidine and (±)-supinidine.
Collapse
Affiliation(s)
- Brian R Blank
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ian P Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California, 90095-1569 (USA)
| |
Collapse
|
40
|
Wilting F, Kopp R, Gurnev PA, Schedel A, Dupper NJ, Kwon O, Nicke A, Gudermann T, Schredelseker J. The antiarrhythmic compound efsevin directly modulates voltage-dependent anion channel 2 by binding to its inner wall and enhancing mitochondrial Ca 2+ uptake. Br J Pharmacol 2020; 177:2947-2958. [PMID: 32059260 PMCID: PMC7279994 DOI: 10.1111/bph.15022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The synthetic compound efsevin was recently identified to suppress arrhythmogenesis in models of cardiac arrhythmia, making it a promising candidate for antiarrhythmic therapy. Its activity was shown to be dependent on the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane. Here, we investigated the molecular mechanism of the efsevin-VDAC2 interaction. EXPERIMENTAL APPROACH To evaluate the functional interaction of efsevin and VDAC2, we measured currents through recombinant VDAC2 in planar lipid bilayers. Using molecular ligand-protein docking and mutational analysis, we identified the efsevin binding site on VDAC2. Finally, physiological consequences of the efsevin-induced modulation of VDAC2 were analysed in HL-1 cardiomyocytes. KEY RESULTS In lipid bilayers, efsevin reduced VDAC2 conductance and shifted the channel's open probability towards less anion-selective closed states. Efsevin binds to a binding pocket formed by the inner channel wall and the pore-lining N-terminal α-helix. Exchange of amino acids N207, K236 and N238 within this pocket for alanines abolished the channel's efsevin-responsiveness. Upon heterologous expression in HL-1 cardiomyocytes, both channels, wild-type VDAC2 and the efsevin-insensitive VDAC2AAA restored mitochondrial Ca2+ uptake, but only wild-type VDAC2 was sensitive to efsevin. CONCLUSION AND IMPLICATIONS In summary, our data indicate a direct interaction of efsevin with VDAC2 inside the channel pore that leads to modified gating and results in enhanced SR-mitochondria Ca2+ transfer. This study sheds new light on the function of VDAC2 and provides a basis for structure-aided chemical optimization of efsevin.
Collapse
Affiliation(s)
- Fabiola Wilting
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
| | - Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
| | - Philip A. Gurnev
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMaryland
| | - Anna Schedel
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
| | - Nathan J. Dupper
- Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCalifornia
| | - Ohyun Kwon
- Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCalifornia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
- Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK)Partner Site Munich Heart Alliance (MHA)MunichGermany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of MedicineLMU MunichMunichGermany
| |
Collapse
|
41
|
Wang H, Li X, Tu Y, Zhang J. Catalytic Enantiodivergent Michael Addition by Subtle Adjustment of Achiral Amino Moiety of Dipeptide Phosphines. iScience 2020; 23:101138. [PMID: 32450512 PMCID: PMC7251764 DOI: 10.1016/j.isci.2020.101138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022] Open
Abstract
Over the past decades, asymmetric catalysis has been intensely investigated as a powerful tool for the preparation of numerous chiral biologically active compounds. However, developing general and practical strategies for preparation of both enantiomers of a chiral molecule via asymmetric catalysis is still a challenge, particularly when the two enantiomers of a chiral catalyst are not easily prepared from natural chiral sources. Inspired by the biologic system, we report herein an unprecedented catalytic enantiodivergent Michael addition of pyridazinones to enones by subtle adjustment of achiral amino moiety of dipeptide phosphine catalysts. These two dipeptide phosphine catalysts, P5 and P8, could deliver both enantiomers of a series of N2-alkylpyridazinones in good yields (up to 99%) with high enantioselectivities (up to 99% ee) via the catalyst-controlled enantiodivergent addition of pyridazinones to enones.
Collapse
Affiliation(s)
- Huamin Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xiuzheng Li
- School of Pharmacy, Anhui Medical University, 81 N. Meishan Road, Hefei 230032, P. R.China
| | - Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
42
|
Manzano R, Romaniega A, Prieto L, Díaz E, Reyes E, Uria U, Carrillo L, Vicario JL. γ-Substituted Allenic Amides in the Phosphine-Catalyzed Enantioselective Higher Order Cycloaddition with Azaheptafulvenes. Org Lett 2020; 22:4721-4725. [PMID: 32464065 DOI: 10.1021/acs.orglett.0c01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Racemic γ-substituted allenes undergo enantioselective higher order [8 + 2]-cycloaddition with azaheptafulvenes using a chiral amino acid derived amidophosphine as catalyst, providing the corresponding azaazulenoid cycloadducts with excellent levels of regio-, diastereo-, and enantioselectivities. In this reaction, the activated allylic phosphonium ylide intermediate participates as the C2-component of the reaction, in contrast to the conventional reactivity of this type of zwitterionic intermediates as C3-components in cycloaddition reactions.
Collapse
Affiliation(s)
- Rubén Manzano
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Aketza Romaniega
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Estíbaliz Díaz
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraim Reyes
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L Vicario
- University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
43
|
Iwamoto T, Mizuhata Y, Tokitoh N, Nakamura M. Development of P- and N-Chirogenic Ligands Based on Chiral Induction from a Phosphorus Donor to a Nitrogen Donor in Palladium Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takahiro Iwamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
44
|
Enantiopure Chiral Phosphines Bearing a Sulfinyl Group and their Application in Catalytic Enantiodivergent Synthesis of Polysubstituted Pyrrolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Shi W, Mao B, Xu J, Wang Q, Wang W, Wu Y, Li X, Guo H. Phosphine-Catalyzed Cascade Michael Addition/[4+2] Cycloaddition Reaction of Allenoates and 2-Arylidene-1,3-indanediones. Org Lett 2020; 22:2675-2680. [PMID: 32186891 DOI: 10.1021/acs.orglett.0c00637] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phosphine-catalyzed cascade Michael addition/[4+2] cycloaddition reaction of tetrahydrobenzofuranone-derived allenoates and 2-arylidene-1,3-indanediones has been reported, affording spirocyclic 1,3-indanedione derivatives in moderate to high yields with moderate to good diastereoselectivities. A scaled-up reaction worked well under mild conditions, and a plausible mechanism is proposed.
Collapse
Affiliation(s)
- Wangyu Shi
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Biming Mao
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiaqing Xu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Qijun Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuefeng Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongchao Guo
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
46
|
Arupula SK, Qureshi AA, Swamy KCK. Lewis Base-Switched [3 + 3] and [4 + 2] Annulation Reactions of δ-Acetoxy Allenoates with Cyclic N-Sulfonyl Imines: Divergent Synthesis of Functionalized α-Pyridyl Acetates and Teraryl Scaffolds. J Org Chem 2020; 85:4130-4144. [DOI: 10.1021/acs.joc.9b03281] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanjeeva K. Arupula
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Asif Ali Qureshi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
47
|
Cao ZH, Wang YH, Kalita SJ, Schneider U, Huang YY. Phosphine-Catalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angew Chem Int Ed Engl 2020; 59:1884-1890. [PMID: 31747102 DOI: 10.1002/anie.201912263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Unprecedented phosphine-catalyzed [4+1] cycloadditions of allenyl imides have been discovered using various N-based substrates including methyl ketimines, enamines, and a primary amine. These transformations provide a one-pot access to cyclopentenoyl enamines and imines, or (chiral) γ-lactams through two geminal C-C bond or two C-N bond formations, respectively. Several P-based key intermediates including a 1,4-(bis)electrophilic α,β-unsaturated ketenyl phosphonium species have been detected by 31 P NMR and HRMS analyses, which shed light on the postulated catalytic cycle. The synthetic utility of this new chemistry has been demonstrated through a gram-scaling up of the catalytic reaction as well as regioselective hydrogenation and double condensation to form cyclopentanoyl enamines and fused pyrazole building blocks, respectively.
Collapse
Affiliation(s)
- Ze-Hun Cao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Hao Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Subarna Jyoti Kalita
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Uwe Schneider
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
48
|
Cao Z, Wang Y, Kalita SJ, Schneider U, Huang Y. Phosphine‐Catalyzed [4+1] Cycloadditions of Allenes with Methyl Ketimines, Enamines, and a Primary Amine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ze‐Hun Cao
- Department of ChemistrySchool of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 China
| | - Yu‐Hao Wang
- Department of ChemistrySchool of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 China
| | - Subarna Jyoti Kalita
- Department of ChemistrySchool of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 China
| | - Uwe Schneider
- EaStCHEM School of ChemistryThe University of EdinburghThe King's Buildings David Brewster Road Edinburgh EH9 3FJ UK
| | - Yi‐Yong Huang
- Department of ChemistrySchool of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology Wuhan 430070 China
| |
Collapse
|
49
|
Abstract
The 1,3-dipolar cycloaddition reaction is a powerful and versatile strategy for
the synthesis of carbocyclic and heterocyclic five-membered rings. Herein, the most recent
developments on the [3+2] cycloaddition reactions using allenes acting either as dipolarophiles
or 1,3-dipole precursors, are highlighted. The recent contributions on the
phosphine- and transition metal-catalyzed [3+2] annulations involving allenes as substrates
are also covered, with the exception of those in which the formation of a 1,3-dipole
(or synthetic equivalent) is not invoked.
This review summarizes the most relevant research in which allenes are used as building
blocks for the construction of structurally diverse five-membered rings via [3+2] annulation
reactions.
Collapse
Affiliation(s)
- Ana L. Cardoso
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria I.L. Soares
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
50
|
Zhu RY, Chen L, Hu XS, Zhou F, Zhou J. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Chem Sci 2020; 11:97-106. [PMID: 32110361 PMCID: PMC7012078 DOI: 10.1039/c9sc04938j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
We report the highly enantioselective synthesis of P-chiral tertiary phosphine oxides featuring an ethynyl group via Cu(i)-catalyzed azide-alkyne cycloaddition. Newly developed chiral pyridinebisoxazolines (PYBOX) bearing a bulky C4 shielding group play an important role in achieving excellent enantioselectivity while suppressing side bis-triazoles formation in desymmetrizing prochiral diethynylphosphine oxides. Notably, by tuning the size of the C4 shielding group, it is possible to achieve excellent remote enantiofacial control in desymmetrizing phosphole oxide-diynes with the prochiral P-center farther from the ethynyl group by four covalent bonds. Time-dependent enantioselectivity is observed for these desymmetric CuAAC reactions, suggesting a synergic combination of a desymmetrization and a kinetic resolution, and our ligands prove to be better than unmodified PYBOX in both steps. This finding contributes to a highly enantioselective kinetic resolution of racemic ethynylphosphine oxides. The resulting chiral ethynylphosphine oxides are versatile P-chiral synthons, which can undergo a number of diversifying reactions to enrich structural diversity.
Collapse
Affiliation(s)
- Ren-Yi Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Long Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development , China .
- Shanghai Key Laboratory of Green Chemistry and Chemical Process , East China Normal University , Shanghai 200062 , China
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 200032 , China
| |
Collapse
|