1
|
Boothe R, Oppelt J, Franke A, Moore JL, Squarcina A, Zahl A, Senft L, Kellner I, Awalah AL, Bradford A, Obisesan SV, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. Nickel(II) complexes with covalently attached quinols rely on ligand-derived redox couples to catalyze superoxide dismutation. Dalton Trans 2025; 54:3733-3749. [PMID: 39868440 DOI: 10.1039/d4dt03331k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis. Although nickel SODs are known to cycle through Ni(II) and Ni(III) species during catalysis, cryo-mass spectrometry studies indicate that the nickel atoms in our catalysts remain in the +2 oxidation state throughout SOD mimicry.
Collapse
Affiliation(s)
- Robert Boothe
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Ina Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Akudo L Awalah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Alisabeth Bradford
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
2
|
Farnum BH, Goldsmith CR. Use of Intramolecular Quinol Redox Couples to Facilitate the Catalytic Transformation of O 2 and O 2-Derived Species. Acc Chem Res 2024. [PMID: 39689366 DOI: 10.1021/acs.accounts.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
ConspectusThe redox reactivity of transition metal centers can be augmented by nearby redox-active inorganic or organic moieties. In some cases, these functional groups can even allow a metal center to participate in reactions that were previously inaccessible to both the metal center and the functional group by themselves. Our research groups have been synthesizing and characterizing coordination complexes with polydentate quinol-containing ligands. Quinol is capable of being reversibly oxidized by either one or two electrons to semiquinone or para-quinone, respectively. Functionally, quinol behaves much differently than phenol, even though the pKa values of the first O-H bonds are nearly identical.The redox activity of the quinol in the polydentate ligand can augment the abilities of bound redox-active metals to catalyze the dismutation of O2-• and H2O2. These complexes can thereby act as high-performing functional mimics of superoxide dismutase (SOD) and catalase (CAT) enzymes, which exclusively use redox-active metals to transfer electrons to and from these reactive oxygen species (ROS). The quinols augment the activity of redox-active metals by stabilizing higher-valent metal species, providing alternative redox partners for the oxidation and reduction of reactive oxygen species, and protecting the catalyst from destructive side reactions. The covalently attached quinols can even enable redox-inactive Zn(II) to catalyze the degradation of ROS. With the Zn(II)-containing SOD and CAT mimics, the organic redox couple entirely substitutes for the inorganic redox couples used by the enzymes. The ligand structure modulates the antioxidant activity, and thus far, we have found that compounds that have poor or negligible SOD activity can nonetheless behave as efficient CAT mimics.Quinol-containing ligands have also been used to prepare electrocatalysts for dioxygen reduction, functionally mimicking the enzyme cytochrome c oxidase. The installation of quinols can boost electrocatalytic activity and even enable otherwise inactive ligand frameworks to support electrocatalysis. The quinols can also shift the product selectivity of O2 reduction from H2O2 to H2O without markedly increasing the effective overpotential. Distinct control of the coordination environment around the metal center allows the most successful of these catalysts to use economic and naturally abundant first-row transition metals such as iron and cobalt to selectively reduce O2 to H2O at low effective overpotentials. With iron, we have found that the electrocatalysts can enter the catalytic cycle as either an Fe(II) or Fe(III) species with no difference in turnover frequency. The entry point to the cycle, however, has a marked impact on the effective overpotential, with the Fe(III) species thus far being more efficient.
Collapse
Affiliation(s)
- Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
3
|
Obisesan SV, Parvin M, Tao M, Ramos E, Saunders AC, Farnum BH, Goldsmith CR. Installing Quinol Proton/Electron Mediators onto Non-Heme Iron Complexes Enables Them to Electrocatalytically Reduce O 2 to H 2O at High Rates and Low Overpotentials. Inorg Chem 2024; 63:14126-14141. [PMID: 39008564 DOI: 10.1021/acs.inorgchem.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We prepare iron(II) and iron(III) complexes with polydentate ligands that contain quinols, which can act as electron proton transfer mediators. Although the iron(II) complex with N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) is inactive as an electrocatalyst, iron complexes with N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qp2) and N-(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H2qp3) were found to be much more active and more selective for water production than a previously reported cobalt-H2qp1 electrocatalyst while operating at low overpotentials. The catalysts with H2qp3 can enter the catalytic cycle as either Fe(II) or Fe(III) species; entering the cycle through Fe(III) lowers the effective overpotential. On the basis of their TOF0 values, the successful iron-quinol complexes are better electrocatalysts for oxygen reduction than previously reported iron-porphyrin compounds, with the Fe(III)-H2qp3 arguably being the best homogeneous electrocatalyst for this reaction. With iron, the quinol-for-phenol substitution shifts the product selectivity from H2O2 to water with little impact on the overpotential, but unlike cobalt, this substitution also greatly improves the activity, as assessed by TOFmax, by hastening the protonation and oxygen binding steps. The addition of a second quinol further enhances the activity and selectivity for water but modestly increases the effective overpotential.
Collapse
Affiliation(s)
- Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Maksuda Parvin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew Tao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eric Ramos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Miliordos E, Moore JL, Obisesan SV, Oppelt J, Ivanović-Burmazović I, Goldsmith CR. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand. J Phys Chem A 2024; 128:1491-1500. [PMID: 38354404 DOI: 10.1021/acs.jpca.3c07403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Previously, we found that a Zn(II) complex with the redox-active ligand N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) was able to act as a functional mimic of superoxide dismutase, despite its lack of a redox-active transition metal. As the complex catalyzes the dismutation of superoxide to form O2 and H2O2, the quinol in the ligand is believed to cycle between three oxidation states: quinol, quinoxyl radical, and para-quinone. Although the metal is not the redox partner, it nonetheless is essential to the reactivity since the free ligand by itself is inactive as a catalyst. In the present work, we primarily use calculations to probe the mechanism. The calculations support the inner-sphere decomposition of superoxide, suggest that the quinol/quinoxyl radical couple accounts for most of the catalysis, and elucidate the many roles that proton transfer between the zinc complexes and buffer has in the reactivity. Acid/base reactions involving the nonmetal-coordinating hydroxyl group on the quinol are predicted to be key to lowering the energy of the intermediates. We prepared a Zn(II) complex with N-(2-hydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (Hpp1) that lacks this functional group and found that it could not catalyze the dismutation of superoxide; this confirms the importance of the second, distal hydroxyl group of the quinol.
Collapse
Affiliation(s)
- Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Anbu S, Kenning L, Stasiuk GJ. ATP-responsive Mn(II)-based T1 contrast agent for MRI. Chem Commun (Camb) 2023; 59:13623-13626. [PMID: 37902503 PMCID: PMC10644988 DOI: 10.1039/d3cc03430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
A novel diacetylpyridylcarbohydrazide-DAPyCOHz-based manganese(II) chelate with dipicolylamine/zinc(II) (DPA/Zn2+) arms (MnLDPA-Zn2) was developed for adenosine triphosphate (ATP) responsive magnetic resonance imaging (MRI) T1 contrast applications. Compound 2 shows enhanced relaxivity (r1 = 11.52 mM-1 s-1) upon selective ATP binding over other phosphates.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Departments of Chemistry and Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lawerence Kenning
- MRI Centre, Royal Infirmary Hospital NHS Trust, Anlaby Road, Hull, HU3 2JZ, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
6
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
7
|
Karbalaei S, Franke A, Oppelt J, Aziz T, Jordan A, Pokkuluri PR, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. A macrocyclic quinol-containing ligand enables high catalase activity even with a redox-inactive metal at the expense of the ability to mimic superoxide dismutase. Chem Sci 2023; 14:9910-9922. [PMID: 37736643 PMCID: PMC10510768 DOI: 10.1039/d3sc02398b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Previously, we found that linear quinol-containing ligands could allow manganese complexes to act as functional mimics of superoxide dismutase (SOD). The redox activity of the quinol enables even Zn(ii) complexes with these ligands to catalyze superoxide degradation. As we were investigating the abilities of manganese and iron complexes with 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane (H4qp4) to act as redox-responsive contrast agents for magnetic resonance imaging (MRI), we found evidence that they could also catalyze the dismutation of H2O2. Here, we investigate the antioxidant behavior of Mn(ii), Fe(ii), and Zn(ii) complexes with H4qp4. Although the H4qp4 complexes are relatively poor mimetics of SOD, with only the manganese complex displaying above-baseline catalysis, all three display extremely potent catalase activity. The ability of the Zn(ii) complex to catalyze the degradation of H2O2 demonstrates that the use of a redox-active ligand can enable redox-inactive metals to catalyze the decomposition of reactive oxygen species (ROS) besides superoxide. The results also demonstrate that the ligand framework can tune antioxidant activity towards specific ROS.
Collapse
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München 81377 München Germany
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München 81377 München Germany
| | - Tarfi Aziz
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Aubree Jordan
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - P Raj Pokkuluri
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
8
|
Moore JL, Oppelt J, Senft L, Franke A, Scheitler A, Dukes MW, Alix HB, Saunders AC, Karbalaei S, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. Diquinol Functionality Boosts the Superoxide Dismutase Mimicry of a Zn(II) Complex with a Redox-Active Ligand while Maintaining Catalyst Stability and Enhanced Activity in Phosphate Solution. Inorg Chem 2022; 61:19983-19997. [PMID: 36445832 DOI: 10.1021/acs.inorgchem.2c03256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the current work, we demonstrate ligand design concepts that significantly improve the superoxide dismutase (SOD) activity of a zinc complex; the catalysis is enhanced when two quinol groups are present in the polydentate ligand. We investigate the mechanism through which the quinols influence the catalysis and determine the impact of entirely removing a chelating group from the original hexadentate ligand. Our results suggest that SOD mimicry with these compounds requires a ligand that coordinates Zn(II) strongly in both its oxidized and reduced forms and that the activity proceeds through Zn(II)-semiquinone complexes. The complex with two quinols displays greatly enhanced catalytic ability, with the activity improving by as much as 450% over a related complex with a single quinol. In the reduced form of the diquinol complex, one quinol appears to coordinate to the zinc much more weakly than the other. We believe that superoxide can more readily displace this portion of the ligand, facilitating its coordination to the metal center and thereby hastening the SOD reactivity. Despite the presence of two redox-active groups that may communicate through intramolecular hydrogen bonding and redox tautomerism, only one quinol undergoes two-electron oxidation to a para-quinone during the catalysis. After the formation of the para-quinone, the remaining quinol deprotonates and binds tightly to the metal, ensuring that the complex remains intact in its oxidized state, thereby maintaining its catalytic ability. The Zn(II) complex with the diquinol ligand is highly unusual for a SOD mimic in that it performs more efficiently in phosphate solution.
Collapse
Affiliation(s)
- Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Julian Oppelt
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Laura Senft
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Alicja Franke
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, Erlangen91508, Germany
| | - Meghan W Dukes
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Haley B Alix
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama36849, United States
| | | | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
9
|
Obisesan SV, Rose C, Farnum BH, Goldsmith CR. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O 2 to H 2O. J Am Chem Soc 2022; 144:22826-22830. [DOI: 10.1021/jacs.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
10
|
Li Y, Xia Q, Zhu C, Cao W, Xia Z, Liu X, Xiao B, Chen K, Liu Y, Zhong L, Tan B, Lei J, Zhu J. An activatable Mn(II) MRI probe for detecting peroxidase activity in vitro and in vivo. J Inorg Biochem 2022; 236:111979. [PMID: 36087435 DOI: 10.1016/j.jinorgbio.2022.111979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022]
Abstract
Myeloperoxidase (MPO), a hallmark of the function and activation of innate immune cells, can act as a 'double-edged sword', contributing to clear infection as well as causing tissue oxidizing damage in various inflammatory diseases. In this study, an activatable Mn(II) chelate-based magnetic resonance imaging (MRI) contrast agent (CA), Mn-TyEDTA (TyEDTA = tyrosine derived ethylenediaminetetraacetic acid) structurally featuring a phenol group as the electron-donor, was developed to sense the activity of peroxidase in vitro and in vivo. Mn-TyEDTA demonstrated a peroxidase activity-dependent relaxivity in the presence of horseradish peroxidase (HRP)/H2O2 with more than a 2.6-fold increase in water proton relaxivity produced (HRP, 500 U; H2O2, 4.5 eq). A mechanism of peroxidase-mediated Mn(II) monomer radical polymerization was confirmed with those oligomers of Mn-TyEDTA such as dimer, trimer and tetramer were found in the LC-MS study. Dynamic MR imaging of normal mice revealed rapid blood clearance and mixed renal and hepatobiliary elimination of Mn-TyEDTA. Furthermore, compared to liver-specific and non-specific extracellular contrast agents (Mn-BnO-TyEDTA (BnO-TyEDTA = benzyl tyrosine-derived ethylenediaminetetraacetic acid) and Gd-DTPA (DTPA = diethylene triamine penta-acetic acid)), MRI on a monosodium urate (MSU) crystal-induced acute mice model of arthritis showed that inflamed tissues could be selectively enhanced by Mn-TyEDTA, suggesting that this peroxidase-activatable Mn(II) MRI probe could potentially be used for noninvasive detection of MPO activity in vivo.
Collapse
Affiliation(s)
- Yunhe Li
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Chunrong Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Weidong Cao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Zhiyang Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Xinxin Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bin Xiao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Keyu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Yun Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bangxian Tan
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Jun Lei
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| |
Collapse
|
11
|
Karbalaei S, Franke A, Jordan A, Rose C, Pokkuluri PR, Beyers RJ, Zahl A, Ivanović‐Burmazović I, Goldsmith CR. A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H
2
O
2. Chemistry 2022; 28:e202201179. [DOI: 10.1002/chem.202201179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry Ludwig-Maximilians-Universität München 81377 München Germany
| | - Aubree Jordan
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Cayla Rose
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - P. Raj Pokkuluri
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center Auburn AL 36849 USA
| | - Achim Zahl
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | | | | |
Collapse
|
12
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
14
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
15
|
Senft L, Moore JL, Franke A, Fisher KR, Scheitler A, Zahl A, Puchta R, Fehn D, Ison S, Sader S, Ivanović-Burmazović I, Goldsmith CR. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci 2021; 12:10483-10500. [PMID: 34447541 PMCID: PMC8356818 DOI: 10.1039/d1sc02465e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H2O2, [Mn(H2qp1)(MeCN)]2+ and [Mn(H4qp2)Br2], could also catalytically degrade superoxide. Subsequently, [Zn(H2qp1)(OTf)]+ was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O2˙− to O2 and H2O2, raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O2˙− in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O2˙− to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2, we detect Mn(iii)-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn(iii)-hydroperoxo compound, and what is formally a Mn(iv)-oxo species with the monoquinolate/mono-para-quinone form of H4qp2. With the monoquinolic H2qp1, we observe a Mn(ii)-superoxo ↔ Mn(iii)-peroxo intermediate with the oxidized para-quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O2˙− oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity (kcat ∼ 108 M−1 s−1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn(ii) porphyrin-based SOD mimics. Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.![]()
Collapse
Affiliation(s)
- Laura Senft
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Katherine R Fisher
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Dominik Fehn
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sidney Ison
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
16
|
Karbalaei S, Knecht E, Franke A, Zahl A, Saunders AC, Pokkuluri PR, Beyers RJ, Ivanović-Burmazović I, Goldsmith CR. A Macrocyclic Ligand Framework That Improves Both the Stability and T1-Weighted MRI Response of Quinol-Containing H 2O 2 Sensors. Inorg Chem 2021; 60:8368-8379. [PMID: 34042423 DOI: 10.1021/acs.inorgchem.1c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously prepared Mn(II)- and quinol-containing magnetic resonance imaging (MRI) contrast agent sensors for H2O2 relied on linear polydentate ligands to keep the redox-activatable quinols in close proximity to the manganese. Although these provide positive T1-weighted relaxivity responses to H2O2 that result from oxidation of the quinol groups to p-quinones, these reactions weaken the binding affinity of the ligands, promoting dissociation of Mn(II) from the contrast agent in aqueous solution. Here, we report a new ligand, 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane, that consists of two quinols covalently tethered to a cyclam macrocycle. The macrocycle provides stronger thermodynamic and kinetic barriers for metal-ion dissociation in both the reduced and oxidized forms of the ligand. The Mn(II) complex reacts with H2O2 to produce a more highly aquated Mn(II) species that exhibits a 130% greater r1, quadrupling the percentile response of our next best sensor. With a large excess of H2O2, there is a noticeable induction period before quinol oxidation and r1 enhancement occurs. Further investigation reveals that, under such conditions, catalase activity initially outcompetes ligand oxidation, with the latter occurring only after most of the H2O2 has been depleted.
Collapse
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Erik Knecht
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - P Raj Pokkuluri
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J Beyers
- Magnetic Resonance Imaging Research Center, Auburn University, Auburn, Alabama 36849, United States
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Mathis CL, Saouma CT. Protic media enhanced protodeboronation for a potential H2O2-sensitive ligand system. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Hutchinson TE, Bashir A, Yu M, Beyers RJ, Goldsmith CR. An overly anionic metal coordination environment eliminates the T-weighted response of quinol-containing MRI contrast agent sensors to H2O2. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Wang H, Jordan VC, Ramsay IA, Sojoodi M, Fuchs BC, Tanabe KK, Caravan P, Gale EM. Molecular Magnetic Resonance Imaging Using a Redox-Active Iron Complex. J Am Chem Soc 2019; 141:5916-5925. [PMID: 30874437 PMCID: PMC6726119 DOI: 10.1021/jacs.9b00603] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce a redox-active iron complex, Fe-PyC3A, as a biochemically responsive MRI contrast agent. Switching between Fe3+-PyC3A and Fe2+-PyC3A yields a full order of magnitude relaxivity change that is field-independent between 1.4 and 11.7 T. The oxidation of Fe2+-PyC3A to Fe3+-PyC3A by hydrogen peroxide is very rapid, and we capitalized on this behavior for the molecular imaging of acute inflammation, which is characterized by elevated levels of reactive oxygen species. Injection of Fe2+-PyC3A generates strong, selective contrast enhancement of inflamed pancreatic tissue in a mouse model (caerulein/LPS model). No significant signal enhancement is observed in normal pancreatic tissue (saline-treated mice). Importantly, signal enhancement of the inflamed pancreas correlates strongly and significantly with ex vivo quantitation of the pro-inflammatory biomarker myeloperoxidase. This is the first example of using metal ion redox for the MR imaging of pathologic change in vivo. Redox-active Fe3+/2+ complexes represent a new design paradigm for biochemically responsive MRI contrast agents.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ian A. Ramsay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
21
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
22
|
Islam MK, Kim S, Kim HK, Kim YH, Lee YM, Choi G, Baek AR, Sung BK, Kim M, Cho AE, Kang H, Lee GH, Choi SH, Lee T, Park JA, Chang Y. Synthesis and Evaluation of Manganese(II)-Based Ethylenediaminetetraacetic Acid-Ethoxybenzyl Conjugate as a Highly Stable Hepatobiliary Magnetic Resonance Imaging Contrast Agent. Bioconjug Chem 2018; 29:3614-3625. [PMID: 30383368 DOI: 10.1021/acs.bioconjchem.8b00560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we designed and synthesized a highly stable manganese (Mn2+)-based hepatobiliary complex by tethering an ethoxybenzyl (EOB) moiety with an ethylenediaminetetraacetic acid (EDTA) coordination cage as an alternative to the well-established hepatobiliary gadolinium (Gd3+) chelates and evaluated its usage as a T1 hepatobiliary magnetic resonance imaging (MRI) contrast agent (CA). This new complex exhibits higher r1 relaxivity (2.3 mM-1 s-1) than clinically approved Mn2+-based hepatobiliary complex Mn-DPDP (1.6 mM-1 s-1) at 1.5 T. Mn-EDTA-EOB shows much higher kinetic inertness than that of clinically approved Gd3+-based hepatobiliary MRI CAs, such as Gd-DTPA-EOB and Gd-BOPTA. In addition, in vivo biodistribution and MRI enhancement patterns of this new Mn2+ chelate are comparable to those of Gd3+-based hepatobiliary MRI CAs. The diagnostic efficacy of the new complex was demonstrated by its enhanced tumor detection sensitivity in a liver cancer model using in vivo MRI.
Collapse
Affiliation(s)
| | | | | | - Yeoun-Hee Kim
- Institute of New Drug Research , Myungmoon Bio , 180, Yuram-ro , Dong-gu, Daegu 41059 , Korea
| | | | | | | | | | - Minsup Kim
- Department of Bioinformatics , Korea University Sejong Campus , 2511, Sejong-ro , Sejong City 30019 , Korea
| | - Art E Cho
- Department of Bioinformatics , Korea University Sejong Campus , 2511, Sejong-ro , Sejong City 30019 , Korea
| | | | | | - Seon Hee Choi
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80, Chumbok-ro , Dong-gu, Daegu 41061 , Korea
| | - Taekwan Lee
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80, Chumbok-ro , Dong-gu, Daegu 41061 , Korea
| | - Ji-Ae Park
- Molecular Imaging Research Center , Korea Institute of Radiological and Medical Sciences , Seoul 139-706 , Korea
| | - Yongmin Chang
- Department of Radiology , Kyungpook National University Hospital , 130 Dongdeok-ro , Jung-gu, Daegu 41944 , Korea
| |
Collapse
|
23
|
Superoxide dismutase activity enabled by a redox-active ligand rather than metal. Nat Chem 2018; 10:1207-1212. [PMID: 30275506 DOI: 10.1038/s41557-018-0137-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species are integral to many physiological processes. Although their roles are still being elucidated, they seem to be linked to a variety of disorders and may represent promising drug targets. Mimics of superoxide dismutases, which catalyse the decomposition of O2•- to H2O2 and O2, have traditionally used redox-active metals, which are toxic outside of a tightly coordinating ligand. Purely organic antioxidants have also been investigated but generally require stoichiometric, rather than catalytic, doses. Here, we show that a complex of the redox-inactive metal zinc(II) with a hexadentate ligand containing a redox-active quinol can catalytically degrade superoxide, as demonstrated by both reactivity assays and stopped-flow kinetics studies of direct reactions with O2•- and the zinc(II) complex. The observed superoxide dismutase catalysis has an important advantage over previously reported work in that it is hastened, rather than impeded, by the presence of phosphate, the concentration of which is high under physiological conditions.
Collapse
|
24
|
Yu M, Bouley BS, Xie D, Enriquez JS, Que EL. 19F PARASHIFT Probes for Magnetic Resonance Detection of H2O2 and Peroxidase Activity. J Am Chem Soc 2018; 140:10546-10552. [DOI: 10.1021/jacs.8b05685] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Bailey S. Bouley
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - José S. Enriquez
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
25
|
Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Yang H, Lu WL, Huang T, Chen QY, Gao J, Zhao Y. An aptamer-Fe 3+ modified nanoparticle for lactate oxidation and tumor photodynamic therapy. Colloids Surf B Biointerfaces 2018; 164:192-200. [PMID: 29413596 DOI: 10.1016/j.colsurfb.2018.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 11/18/2022]
Abstract
To develop a cancer targeting lactate attenuator in vivo for cancer phototherapy and inhibition of HIF-1, we report an aptamer modified photo-responsive nanoparticle (labeled as Mn-D@BPFe-A) for lactate oxidation and cancer phototherapy. Mn-D@BPFe-A was constructed by the assembly of functional complex with BSA, followed by surface metal coordination and the recognition of Fe3+ with GAG containing sequence. Upon irradiation, Mn-D@BPFe-A NPs can oxidize water with the generation of OH, which convert lactate into pyruvate both in vitro and in vivo. Obviously, the Mn-D@BPFe-A exhibits a significant tumor ablation owing to the light driven oxidation of lactic acid and dysfunction of mitochondria. Importantly, it can decrease both the level of lactate in cancer tissues and the expression of HIF-1α and Glut-1 in HepG-2 cells. These results demonstrated that oxidation of lactate with dysfunction of mitochondria by nucleic acid-Fe3+ modified nanoparticle is an effective strategy for the development of non-oxygen dependent photodynamic effect agents.
Collapse
Affiliation(s)
- Huan Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wen-Long Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tao Huang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
27
|
|
28
|
Du K, Waters EA, Harris TD. Ratiometric quantitation of redox status with a molecular Fe 2 magnetic resonance probe. Chem Sci 2017; 8:4424-4430. [PMID: 28979760 PMCID: PMC5580376 DOI: 10.1039/c7sc00562h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
We demonstrate the ability of a molecular Fe2 complex to enable magnetic resonance (MR)-based ratiometric quantitation of redox status, namely through redox-dependent paramagnetic chemical exchange saturation transfer (PARACEST). Metalation of a tetra(carboxamide) ligand with FeII and/or FeIII in the presence of etidronate ion affords analogous FeII2, FeIIFeIII, and FeIII2 complexes. Both FeII2 and FeIIFeIII complexes give highly-shifted, sharp, and non-overlapping NMR spectra, with multiple resonances for each complex corresponding to exchangeable carboxamide protons. These protons can be selectively irradiated to give CEST peaks at 74 and 83 ppm vs. H2O for the FeIIFeIII complex and at 29, 40 and 68 ppm for the FeII2 complex. The CEST spectra obtained from a series of samples containing mixtures of FeII2 and FeIIFeIII are correlated with independently-determined open-circuit potentials to construct a Nernstian calibration curve of potential vs. CEST peak intensity ratio. In addition, averaged intensities of phantom images collected on a 9.4 T MRI scanner show analogous Nernstian behavior. Finally, both the FeII2 and FeIIFeIII forms of the complex are stable to millimolar concentrations of H2PO4-/HPO42-, CO32-, SO42-, CH3COO-, and Ca2+ ions, and the FeIII2 form is air-stable in aqueous buffer and shows >80% viability in melanoma cells at millimolar concentration. The stability suggests the possible application of this or related complexes for in vivo studies. To our knowledge, this concentration-independent method based on a single Fe2 probe provides the first example of MR-based ratiometric quantitation of redox environment.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Emily A Waters
- Center for Advanced Molecular Imaging , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| |
Collapse
|
29
|
Xie D, Kim S, Kohli V, Banerjee A, Yu M, Enriquez JS, Luci JJ, Que EL. Hypoxia-Responsive 19F MRI Probes with Improved Redox Properties and Biocompatibility. Inorg Chem 2017; 56:6429-6437. [PMID: 28537705 DOI: 10.1021/acs.inorgchem.7b00500] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
19F magnetic resonance imaging (MRI), an emerging modality in biomedical imaging, has shown promise for in vitro and in vivo preclinical studies. Here we present a series of fluorinated Cu(II)ATSM derivatives for potential use as 19F magnetic resonance agents for sensing cellular hypoxia. The synthesized complexes feature a hypoxia-targeting Cu2+ coordination core, nine equivalent fluorine atoms connected via a variable-length poly(ethylene glycol) linker. Introduction of the fluorine moiety maintains the planar coordination geometry of the Cu2+ center, while the linker length modulates the Cu2+/+ reduction potential, 19F NMR relaxation properties, and lipophilicity. In particular, the 19F NMR relaxation properties were quantitatively evaluated by the Solomon-Bloembergen model, revealing a regular pattern of relaxation enhancement tuned by the distance between Cu2+ and F atoms. Finally, the potential utility of these complexes for sensing reductive environments was demonstrated using both 19F MR phantom imaging and 19F NMR, including experiments in intact live cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Seyong Kim
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Vikraant Kohli
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Arnab Banerjee
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - José S Enriquez
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin , Austin, Texas 78712, United States.,Imaging Research Center, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
30
|
Lan YQ, Xiao KJ, Wu YJ, Chen QY. Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 177:28-32. [PMID: 28113138 DOI: 10.1016/j.saa.2017.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/24/2016] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661nm when excited with 643nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.
Collapse
Affiliation(s)
- Ya-Quan Lan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ke-Jing Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun-Jie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
31
|
Yu M, Ward MB, Franke A, Ambrose SL, Whaley ZL, Bradford TM, Gorden JD, Beyers RJ, Cattley RC, Ivanović-Burmazović I, Schwartz DD, Goldsmith CR. Adding a Second Quinol to a Redox-Responsive MRI Contrast Agent Improves Its Relaxivity Response to H2O2. Inorg Chem 2017; 56:2812-2826. [DOI: 10.1021/acs.inorgchem.6b02964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng Yu
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Meghan B. Ward
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Stephen L. Ambrose
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary L. Whaley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Thomas Miller Bradford
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center, Auburn, Alabama 36849, United States
| | - Russell C. Cattley
- Department
of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | | | - Dean D. Schwartz
- Department of Anatomy, Physiology, and
Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
32
|
Kenkel I, Franke A, Dürr M, Zahl A, Dücker-Benfer C, Langer J, Filipović MR, Yu M, Puchta R, Fiedler SR, Shores MP, Goldsmith CR, Ivanović-Burmazović I. Switching between Inner- and Outer-Sphere PCET Mechanisms of Small-Molecule Activation: Superoxide Dismutation and Oxygen/Superoxide Reduction Reactivity Deriving from the Same Manganese Complex. J Am Chem Soc 2017; 139:1472-1484. [PMID: 28111938 DOI: 10.1021/jacs.6b08394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Readily exchangeable water molecules are commonly found in the active sites of oxidoreductases, yet the overwhelming majority of studies on small-molecule mimics of these enzymes entirely ignores the contribution of water to the reactivity. Studies of how these enzymes can continue to function in spite of the presence of highly oxidizing species are likewise limited. The mononuclear MnII complex with the potentially hexadentate ligand N-(2-hydroxy-5-methylbenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (LOH) was previously found to act as both a H2O2-responsive MRI contrast agent and a mimic of superoxide dismutase (SOD). Here, we studied this complex in aqueous solutions at different pH values in order to determine its (i) acid-base equilibria, (ii) coordination equilibria, (iii) substitution lability and operative mechanisms for water exchange, (iv) redox behavior and ability to participate in proton-coupled electron transfer (PCET) reactions, (v) SOD activity and reductive activity toward both oxygen and superoxide, and (vi) mechanism for its transformation into the binuclear MnII complex with (H)OL-LOH and its hydroxylated derivatives. The conclusions drawn from potentiometric titrations, low-temperature mass spectrometry, temperature- and pressure-dependent 17O NMR spectroscopy, electrochemistry, stopped-flow kinetic analyses, and EPR measurements were supported by the structural characterization and quantum chemical analysis of proposed intermediate species. These comprehensive studies enabled us to determine how transiently bound water molecules impact the rate and mechanism of SOD catalysis. Metal-bound water molecules facilitate the PCET necessary for outer-sphere SOD activity. The absence of the water ligand, conversely, enables the inner-sphere reduction of both superoxide and dioxygen. The LOH complex maintains its SOD activity in the presence of •OH and MnIV-oxo species by channeling these oxidants toward the synthesis of a functionally equivalent binuclear MnII species.
Collapse
Affiliation(s)
- Isabell Kenkel
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Maximilian Dürr
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Carlos Dücker-Benfer
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Jens Langer
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Milos R Filipović
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Meng Yu
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Stephanie R Fiedler
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | | |
Collapse
|
33
|
Lu WL, Lan YQ, Xiao KJ, Xu QM, Qu LL, Chen QY, Huang T, Gao J, Zhao Y. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer. J Mater Chem B 2017; 5:1275-1283. [DOI: 10.1039/c6tb02575g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypoxia promotes not only the metastasis of tumors but also therapeutic resistance.
Collapse
Affiliation(s)
- Wen-Long Lu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ya-Quan Lan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ke-Jing Xiao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qin-Mei Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging
- Department of Radiology
- Zhongda Hospital
- Medical School
- Southeast University
| | - Ling-Ling Qu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Tao Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jing Gao
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
34
|
Gale EM, Jones CM, Ramsay I, Farrar CT, Caravan P. A Janus Chelator Enables Biochemically Responsive MRI Contrast with Exceptional Dynamic Range. J Am Chem Soc 2016; 138:15861-15864. [PMID: 27960350 PMCID: PMC5328420 DOI: 10.1021/jacs.6b10898] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We introduce a new biochemically responsive Mn-based MRI contrast agent that provides a 9-fold change in relaxivity via switching between the Mn3+ and Mn2+ oxidation states. Interchange between oxidation states is promoted by a "Janus" ligand that isomerizes between binding modes that favor Mn3+ or Mn2+. It is the only ligand that supports stable complexes of Mn3+ and Mn2+ in biological milieu. Rapid interconversion between oxidation states is mediated by peroxidase activity (oxidation) and l-cysteine (reduction). This Janus system provides a new paradigm for the design of biochemically responsive MRI contrast agents.
Collapse
Affiliation(s)
- Eric M. Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Chloe M. Jones
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Ian Ramsay
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Christian T. Farrar
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| |
Collapse
|
35
|
Boison D, Lu WL, Xu QM, Yang H, Huang T, Chen QY, Gao J, Zhao Y. A mitochondria targeting Mn nanoassembly of BODIPY for LDH-A, mitochondria modulated therapy and bimodal imaging of cancer. Colloids Surf B Biointerfaces 2016; 147:387-396. [DOI: 10.1016/j.colsurfb.2016.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
|
36
|
Mu WY, Xiao XX, Chen TT, Chen QY. Mn(ii) silver-aptamer clusters for targeted MR imaging of tumors. J Mater Chem B 2016; 4:5284-5288. [PMID: 32263609 DOI: 10.1039/c6tb01146b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoxia-inducible factor (HIF) highly expressed in most of the cancer cells. The Mn(ii)-aptamer based nanoclusters with 3D structures would be HIF-aptamer based targeted magnetic resonance imaging agents for cancer MRI diagnosis. Herein, a new class of contrast agent Mn(ii) silver-aptamer clusters (AdpaMn@DNA-Ag-DNAG1) were constructed based on the assembly of DNA-mediated Ag nanoclusters (DNA-AgNCs) with the Mn(ii) complex (AdpaMn) and DNAG1, the recognition sequence of GLUT-1. Then, the Mn(ii) silver-aptamer clusters (AdpaMn@DNA-Ag-DNAG1) are used as the MRI agents both in vitro and in vivo. The results show that the MRI signal is clearly presented in the tumor position. Consequently, the Mn(ii) silver-aptamer clusters can be used as a new class of contrast agents for targeted MR imaging of tumors.
Collapse
Affiliation(s)
- Wei-Yu Mu
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | |
Collapse
|
37
|
Xie D, King TL, Banerjee A, Kohli V, Que EL. Exploiting Copper Redox for 19F Magnetic Resonance-Based Detection of Cellular Hypoxia. J Am Chem Soc 2016; 138:2937-40. [DOI: 10.1021/jacs.5b13215] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin, 105
E. 24th St Stop A5300, Austin, Texas 78712, United States
| | - Tyler L. King
- Department of Chemistry, The University of Texas at Austin, 105
E. 24th St Stop A5300, Austin, Texas 78712, United States
| | - Arnab Banerjee
- Department of Chemistry, The University of Texas at Austin, 105
E. 24th St Stop A5300, Austin, Texas 78712, United States
| | - Vikraant Kohli
- Department of Chemistry, The University of Texas at Austin, 105
E. 24th St Stop A5300, Austin, Texas 78712, United States
| | - Emily L. Que
- Department of Chemistry, The University of Texas at Austin, 105
E. 24th St Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
38
|
Yu M, Xie D, Phan KP, Enriquez JS, Luci JJ, Que EL. A CoII complex for 19F MRI-based detection of reactive oxygen species. Chem Commun (Camb) 2016; 52:13885-13888. [DOI: 10.1039/c6cc08207f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fluorinated, cobalt(ii)-based 19F MRI imaging agent switches from a paramagnetic high spin CoII state to a diamagnetic low spin CoIII state following oxidation by H2O2 and other reactive oxygen species, resulting in a turn-on response via both 19F NMR and MRI.
Collapse
Affiliation(s)
- Meng Yu
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Da Xie
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Khanh P. Phan
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - José S. Enriquez
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Jeffrey J. Luci
- Department of Neuroscience
- The University of Texas at Austin
- Austin
- USA
- Imaging Research Center
| | - Emily L. Que
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
39
|
O'Neill ES, Kolanowski JL, Yin GH, Broadhouse KM, Grieve SM, Renfrew AK, Bonnitcha PD, New EJ. Reversible magnetogenic cobalt complexes. RSC Adv 2016. [DOI: 10.1039/c6ra04643f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A cobalt tris(2-pyridylmethyl)amine complex cycles between stable paramagnetic Co(ii) and diamagnetic Co(iii) forms with corresponding changes in the MRI contrast.
Collapse
Affiliation(s)
- E. S. O'Neill
- School of Chemistry
- The University of Sydney
- Australia
| | | | - G. H. Yin
- School of Chemistry
- The University of Sydney
- Australia
| | - K. M. Broadhouse
- Heart Research Institute
- Newtown
- Australia
- Sydney Translational Imaging Laboratory
- Sydney Medical School
| | - S. M. Grieve
- The Kolling Institute
- The University of Sydney
- Australia
- Heart Research Institute
- Newtown
| | - A. K. Renfrew
- School of Chemistry
- The University of Sydney
- Australia
| | | | - E. J. New
- School of Chemistry
- The University of Sydney
- Australia
| |
Collapse
|