1
|
Yu Z, Liu Y, Zhou X, Fang Y, Tang Z, Zhu J, Zhang J. Closed-Loop Recyclable and Extrusion Reprocessable Thermosets Enabled by Guanylthiourea Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410773. [PMID: 39556722 DOI: 10.1002/advs.202410773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Plastic recycling is a critical step toward improving waste management and achieving economic recycling. Here, a thermoset crosslinked by guanythiourea structure (GTUH network) is reported, that addresses the recycling issue of thermosets by serial hybridization of thiourea and guanidine urea. The dual dissociative dynamic exchange reaction of guanamine urea and thiourea, combined with non-covalent hydrogen bonding interactions, endows the network with rapid relaxation ability. GTUH networks, in particular, can be recycled through continuous extrusion processing due to multiple reversible mechanisms, as opposed to hot pressing alone. Even if reprocessed by hot pressing, only 5 min at 140 °C and 10 MPa are required. The oxidation enhancement mechanism of thiourea contributes to maintaining or even improving the mechanical properties of the recycled network. Moreover, the dynamic reactions of guanythiourea structure allow for closed-loop chemical recycling of the network. Research into recyclable carbon fiber-reinforced composites indicates promising potential applications for this material in the circular economy and resources.
Collapse
Affiliation(s)
- Zhen Yu
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiangyu Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yajin Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhaobin Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Athawale PR, Shultz ZP, Saputo A, Hall YD, Lopchuk JM. Strain-release driven reactivity of a chiral SuFEx reagent provides stereocontrolled access to sulfinamides, sulfonimidamides, and sulfoximines. Nat Commun 2024; 15:7001. [PMID: 39143047 PMCID: PMC11324897 DOI: 10.1038/s41467-024-51224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Efforts aimed at enriching the chemical and structural diversity of small molecules have invigorated synthetic exploration in the last two decades. Spatially defined molecular functionality serves as the foundation to construct unique chemical space to further advance discovery science. The chiral SuFEx reagent t-BuSF provides a modular platform for the stereocontrolled bifunctionalization of sulfur. Here we report a third functional feature of t-BuSF enabled by carbamoyl torsional strain-release that further expands the S(IV) and S(VI) chemical space accessible as showcased in over seventy examples, multiple applications in medicinal chemistry, organocatalysis, and diversity-oriented synthesis. The methods presented herein allow for rapid asymmetric diversification around a stereodefined sulfur center with readily available building blocks, improving upon the current state-of-the-art for sulfinyl and sulfonimidoyl synthesis.
Collapse
Affiliation(s)
- Paresh R Athawale
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zachary P Shultz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Alexandra Saputo
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Yvonne D Hall
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Justin M Lopchuk
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Wang WT, Holzhey P, Zhou N, Zhang Q, Zhou S, Duijnstee EA, Rietwyk KJ, Lin JY, Mu Y, Zhang Y, Bach U, Wu CG, Yip HL, Snaith HJ, Feng SP. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature 2024; 632:294-300. [PMID: 38914114 PMCID: PMC11306093 DOI: 10.1038/s41586-024-07705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Further improvements in perovskite solar cells require better control of ionic defects in the perovskite photoactive layer during the manufacturing stage and their usage1-5. Here we report a living passivation strategy using a hindered urea/thiocarbamate bond6-8 Lewis acid-base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. Upon exposure to moisture or heat, HUBLA generates new agents and further passivates defects in the perovskite. This passivation strategy achieved high-performance devices with a power conversion efficiency (PCE) of 25.1 per cent. HUBLA devices retained 94 per cent of their initial PCE for approximately 1,500 hours of ageing at 85 degrees Celsius in nitrogen and maintained 88 per cent of their initial PCE after 1,000 hours of ageing at 85 degrees Celsius and 30 per cent relative humidity in air.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Department of Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Philippe Holzhey
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Australian Research Council Centre of Excellence in Exciton Science, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| | - Ning Zhou
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Suer Zhou
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | | | - Kevin J Rietwyk
- Australian Research Council Centre of Excellence in Exciton Science, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| | - Jeng-Yu Lin
- Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan
| | - Yijie Mu
- Department of Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Udo Bach
- Australian Research Council Centre of Excellence in Exciton Science, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| | - Chun-Guey Wu
- Department of Chemistry and Research Center for New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan City, Taiwan
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Shien-Ping Feng
- Department of Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Yu Z, Li Q, Liu Y, Tian S, Chen W, Han Y, Tang Z, Zhang J. Malleable, Ultrastrong Antibacterial Thermosets Enabled by Guanidine Urea Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402891. [PMID: 38868926 PMCID: PMC11321644 DOI: 10.1002/advs.202402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Dynamic covalent polymers (DCPs) that strike a balance between high performance and rapid reconfiguration have been a challenging task. For this purpose, a solution is proposed in the form of a new dynamic covalent supramolecular motif-guanidine urea structure (GUAs). GUAs contain complex and diverse chemical structures as well as unique bonding characteristics, allowing guanidine urea supramolecular polymers to demonstrate advanced physical properties. Noncovalent interaction aggregates (NIAs) have been confirmed to form in GUA-DCPs through multistage H-bonding and π-π stacking, resulting in an extremely high Young's modulus of 14 GPa, suggesting remarkable mechanical strength. Additionally, guanamine urea linkages in GUAs, a new type of dynamic covalent bond, provide resins with excellent malleability and reprocessability. Guanamine urea metathesis is validated using small molecule model compounds, and the temperature dependent infrared and rheological behavior of GUA-DCPs following the dissociative exchange mechanism. Moreover, the inherent photodynamic antibacterial properties are extensively verified by antibacterial experiments. Even after undergoing three reprocessing cycles, the antibacterial rate of GUA-DCPs remains above 99% after 24 h, highlighting their long-lasting antibacterial effectiveness. GUA-DCPs with dynamic nature, tuneable composition, and unique combination of properties make them promising candidates for various technological advancements.
Collapse
Affiliation(s)
- Zhen Yu
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiong Li
- Department of ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Yanlin Liu
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Shu Tian
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Wanding Chen
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Yingying Han
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Zhaobin Tang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Junping Zhang
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
5
|
Roh S, Nam Y, Nguyen MTN, Han JH, Lee JS. Dynamic Covalent Bond-Based Polymer Chains Operating Reversibly with Temperature Changes. Molecules 2024; 29:3261. [PMID: 39064840 PMCID: PMC11279090 DOI: 10.3390/molecules29143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Dynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer. In this review, we introduce dynamic covalent bonds that operate without catalysts in various temperature ranges. The basic bonding mechanism and the kinetics are examined to understand dynamic covalent chemistry reversibly performed by equilibrium control. Furthermore, a recent synthesis method that implements dynamic covalent coupling based on various polymers is introduced. Dynamic covalent bonds that operate depending on temperature can be applied and expand the use of polymers, providing predictions for the development of future smart materials.
Collapse
Affiliation(s)
| | | | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.R.); (Y.N.); (M.T.N.N.); (J.-H.H.)
| |
Collapse
|
6
|
Jia Y, Guan Q, Chu C, Zhang L, Neisiany RE, Gu S, Sun J, You Z. A fluorine-based strong and healable elastomer with unprecedented puncture resistance for high performance flexible electronics. Sci Bull (Beijing) 2024; 69:1875-1886. [PMID: 38616151 DOI: 10.1016/j.scib.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
There is usually a trade-off between high mechanical strength and dynamic self-healing because the mechanisms of these properties are mutually exclusive. Herein, we design and fabricate a fluorinated phenolic polyurethane (FPPU) elastomer based on octafluoro-4,4'-biphenol to overcome this challenge. This fluorine-based motif not only tunes interchain interactions through π-π stacking between aromatic rings and free-volume among polymer chains but also improves the reversibility of phenol-carbamate bonds via electron-withdrawing effect of fluorine atoms. The developed FPPU elastomer shows the highest recorded puncture energy (648.0 mJ), high tensile strength (27.0 MPa), as well as excellent self-healing efficiency (92.3%), along with low surface energy (50.9 MJ m-2), notch-insensitivity, and reprocessability compared with non-fluorinated counterpart biphenolic polyurethane (BPPU) elastomer. Taking advantage of the above-mentioned merits of FPPU elastomer, we prepare an anti-fouling triboelectric nanogenerator (TENG) with a self-healable, and reprocessable elastic substrate. Benefiting from stronger electron affinity of fluorine atoms than hydrogen atoms, this electronic device exhibits ultrahigh peak open-circuit voltage of 302.3 V compared to the TENG fabricated from BPPU elastomer. Furthermore, a healable and stretchable conductive composite is prepared. This research provides a distinct and general pathway toward constructing high-performance elastomers and will enable a series of new applications.
Collapse
Affiliation(s)
- Yujie Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Gliwice 44-100, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Junfen Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Yang H, Wang H, Du G, Ni K, Wu Y, Su H, Gao W, Tan X, Yang Z, Yang L, Ran X. Ureido Hyperbranched Polymer Modified Urea-Formaldehyde Resin as High-Performance Particleboard Adhesive. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114021. [PMID: 37297155 DOI: 10.3390/ma16114021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The performance of urea-formaldehyde (UF) resin and its formaldehyde emission is a natural contradiction. High molar ratio UF resin performance is very good, but its formaldehyde release is high; low molar ratio UF resin formaldehyde release is reduced, but the resin itself performance becomes very bad. In order to solve this traditional problem, an excellent strategy of UF resin modified by hyperbranched polyurea is proposed. In this work, hyperbranched polyurea (UPA6N) is first synthesized by a simple method without any solvent. UPA6N is then added into industrial UF resin in different proportions as additives to manufacture particleboard and test its related properties. UF resin with a low molar ratio has a crystalline lamellar structure, and UF-UPA6N resin has an amorphous structure and rough surface. The results show that internal bonding strength increased by 58.5%, modulus of rupture increased by 24.4%, 24 h thickness swelling rate (%) decreased by 54.4%, and formaldehyde emission decreased by 34.6% compared with the unmodified UF particleboard. This may be ascribed to the polycondensation between UF and UPA6N, while UF-UPA6N resin forms more dense three-dimensional network structures. Finally, the application of UF-UPA6N resin adhesives to bond particleboard significantly improves the adhesive strength and water resistance and reduces formaldehyde emission, suggesting that the adhesive can be used as a green and eco-friendly adhesive resource for the wood industry.
Collapse
Affiliation(s)
- Hongxing Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hao Wang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Sou thwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Kelu Ni
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Yingchen Wu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hang Su
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Wei Gao
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Xiaoping Tan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Zhaojin Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Kunming Feilin Panel Board Co., Ltd., Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Sou thwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Spitzbarth B, Eelkema R. On-Demand Release of Secondary Amine Bases for the Activation of Catalysts and Crosslinkers. Chemistry 2023; 29:e202203028. [PMID: 36541271 DOI: 10.1002/chem.202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dynamic covalent (DCv) ureas have been used abundantly to design self-healing materials. We demonstrate that apart from self-healing materials, the species present in the equilibrium of DCv ureas can be employed as responsive organocatalysts. Easily controllable stimuli like heat or addition of water shift the equilibrium towards isocyanate and free base which can function as an in situ released reagent. We demonstrate this application of DCv ureas with two examples. Firstly, we use the liberated base to catalytically activate a latent organocatalyst for acylhydrazone formation. Secondly, this base can be employed in an equimolar manner to trigger the release of nitrile-N-oxides from chlorooximes, which react with acrylate-terminated polymers to form an isoxazoline polymer gel.
Collapse
Affiliation(s)
- Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft (The, Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft (The, Netherlands
| |
Collapse
|
10
|
Ma Y, Jiang X, Yin J, Weder C, Berrocal JA, Shi Z. Chemical Upcycling of Conventional Polyureas into Dynamic Covalent Poly(aminoketoenamide)s. Angew Chem Int Ed Engl 2023; 62:e202212870. [PMID: 36394348 DOI: 10.1002/anie.202212870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability. The treatment of these polymers or their composites with acetylacetone affords di-vinylogous amide-terminated compounds in good yield. These products can be reacted with aromatic isocyanates, and the resulting aminoketoenamide bonds are highly dynamic at elevated temperatures. We show here that this conversion scheme can be exploited for the preparation of dynamic covalent poly(aminoketoenamide) networks, which are healable and reprocessable through thermal treatment without any catalyst.
Collapse
Affiliation(s)
- Youwei Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
12
|
Tao Y, Liang X, Zhang J, Lei IM, Liu J. Polyurethane vitrimers: Chemistry, properties and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops Chinese Academy of Agricultural Sciences Changsha China
| | - Jun Zhang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Department of Electromechanical Engineering, Faculty of Science and Technology University of Macau Macau China
| | - Ji Liu
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| |
Collapse
|
13
|
Wanasinghe SV, Dodo OJ, Konkolewicz D. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angew Chem Int Ed Engl 2022; 61:e202206938. [PMID: 36167937 PMCID: PMC10092857 DOI: 10.1002/anie.202206938] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Dynamic bonds introduce unique properties such as self-healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine-tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol-Michael exchange, Diels-Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
Collapse
Affiliation(s)
- Shiwanka V. Wanasinghe
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Obed J. Dodo
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| |
Collapse
|
14
|
Hang G, Liu W, Shakir U, Zhang T, Zheng S. Self-healable and reprocessable networks of Poly(propylene oxide) with POSS crosslinked with disulfide bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Saleem J, Baig MZK, Luyt AS, Shakoor RA, Mansour S, McKay G. Reusable Macroporous Oil Sorbent Films from Plastic Wastes. Polymers (Basel) 2022; 14:polym14224867. [PMID: 36432992 PMCID: PMC9699559 DOI: 10.3390/polym14224867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plastic waste comprises 15% of the total municipal solid waste and can be a rich source for producing value-added materials. Among them, polyethylene (PE) and polypropylene (PP) account for 60% of the total plastic waste, mainly due to their low-end and one-time-use applications. Herein, we report reusable oil sorbent films made by upcycling waste PE and PP. The as-prepared oil sorbent had an uptake capacity of 55 g/g. SEM analysis revealed a macroporous structure with a pore size range of 1-10 µm, which facilitates oil sorption. Similarly, the contact angle values reflected the oleophilic nature of the sorbent. Moreover, thermal properties and crystallinity were examined using DSC, while mechanical properties were calculated using tensile testing. Lastly, 95% of the sorbed oil could be easily recovered by squeezing mechanically or manually.
Collapse
Affiliation(s)
- Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Correspondence:
| | | | | | - Rana Abdul Shakoor
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Said Mansour
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
16
|
Huang H, Wei H, Huang L, Fan T, Li X, Zhang Z, Shi T. Spontaneous Alternating Copolymerization of Aziridines with Tosyl Isocyanate toward Polyureas. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Otálora A, Lerma TA, Palencia M. Novel one-pot synthesis of polymeric hydrogels based on isocyanate click chemistry: Structural and functional characterization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Usman A, Xiong F, Aftab W, Qin M, Zou R. Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202457. [PMID: 35616900 DOI: 10.1002/adma.202202457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phase-change materials (PCMs) offer tremendous potential to store thermal energy during reversible phase transitions for state-of-the-art applications. The practicality of these materials is adversely restricted by volume expansion, phase segregation, and leakage problems associated with conventional solid-liquid PCMs. Solid-solid PCMs, as promising alternatives to solid-liquid PCMs, are gaining much attention toward practical thermal-energy storage (TES) owing to their inimitable advantages such as solid-state processing, negligible volume change during phase transition, no contamination, and long cyclic life. Herein, the aim is to provide a holistic analysis of solid-solid PCMs suitable for thermal-energy harvesting, storage, and utilization. The developing strategies of solid-solid PCMs are presented and then the structure-property relationship is discussed, followed by potential applications. Finally, an outlook discussion with momentous challenges and future directions is presented. Hopefully, this review will provide a guideline to the scientific community to develop high-performance solid-solid PCMs for advanced TES applications.
Collapse
Affiliation(s)
- Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Material, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Clean Energy, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Lu X, Zhang L, Zhang J, Wang C, Zhang A. Facile Preparation of Dual Functional Wearable Devices Based on Hindered Urea Bond-Integrated Reprocessable Polyurea and AgNWs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41421-41432. [PMID: 36049051 DOI: 10.1021/acsami.2c11875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the advancement of material science and electronic technology, wearable devices have been integrated into daily lives, no longer just a stirring idea in science fiction. In the future, robust multifunctionalized wearable devices with low cost and long-term service life are urgently required. However, preparing multifunctional wearable devices robust enough to resist harsh conditions using a commercially available raw material through a simple process still remains challenging. In this work, reprocessable polyurea (HUBTPU) with a hard segment of hindered urea bonds (HUBs) and a soft segment of polyether is synthesized via a facile one-pot method. The robust dual functional wearable devices were obtained by simply spray-coating silver nanowires (AgNWs) on HUBTPU elastomer substrates. Due to the dynamic combination and decomposition of the HUBs and hydrogen bonds at 130 °C, the robust elastomer demonstrates favorable adhesion to various substrates. Especially, the partially embedded AgNW structure is also achieved by using ethanol as a spray solvent. The adhesion of HUBTPU substrates and embedded structure leads to stronger interfacial adhesion and stability compared to non-adhesive substrates. The as-obtained HUBTPU electrodes are able to be heated to 115 °C by applying a low voltage and sensing the strain deformation caused by human movement, which means that the electrodes are endowed with both electrical heating capability and strain sensing functionality. Therefore, this strategy reveals a potential way to prepare multifunctional wearable devices using other conductive particles and adhesive functional polymer substrates.
Collapse
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Lun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC, Beijing Research Institute of Chemical Industry, Yanshan Branch, Beijing 102500, China
| | - Aimin Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| |
Collapse
|
20
|
Zhang S, Xu XQ, Liao S, Pan Q, Ma X, Wang Y. Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid. ACS Macro Lett 2022; 11:868-874. [PMID: 35762900 DOI: 10.1021/acsmacrolett.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyurethane (PU) thermosets offer great favors to our daily life on account of their excellent mechanical, physical, and chemical properties as well as appreciable biocompatibility. Nevertheless, PU waste is increasingly causing environmental and health-related problems as it is mostly resistant to chemical degradation under mild conditions. Herein, we report a kind of PU thermoset with silaketal leakages in its main chains to enable polymer degradation in response to weak acids, even in edible vinegar. The degradation rate is significantly influenced by the alkyl substituents on the silicon atoms, with entire degradation in hours, days, weeks, or months. Besides controllable degradation, investigations are also provided into the recycling of PU thermosets by means of thermal reprocessing based on carbamate bond exchange or repolymerization of degradation residuals. Because of the controllable degradation and easy recycling, this particular kind of PU thermoset exhibits great potential in manufacturing green polymer products that can be decomposed by nature or reutilized after disposal.
Collapse
Affiliation(s)
- Shoupeng Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiao-Qi Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qianhao Pan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xinlei Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
21
|
Zhang G, Tian C, Feng H, Tan T, Wang R, Zhang L. Thermal Reprocessing and Closed‐Loop Chemical Recycling of Styrene‐Butadiene Rubber Enabled by Exchangeable and Cleavable Acetal Linkages. Macromol Rapid Commun 2022; 43:e2100887. [DOI: 10.1002/marc.202100887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ganggang Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Chenru Tian
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Haoran Feng
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Runguo Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| |
Collapse
|
22
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
23
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polym Chem 2022. [DOI: 10.1039/d1py01066b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently crosslinked stimuli-destructible hydrogels with the ability of irreversible bond dissociation have attracted great attentions due to their biodegradability, stability against hydrolysis, and controlled solubility upon insertion of desired triggers.
Collapse
Affiliation(s)
- Sina Shahi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
24
|
Langsted CR, Paulson SW, Bomann BH, Suhail S, Aguirre JA, Saumer EJ, Baclasky AR, Salmon KH, Law AC, Farmer RJ, Furchtenicht CJ, Stankowski DS, Johnson ML, Corcoran LG, Dolan CC, Carney MJ, Robertson NJ. Isocyanate‐free
synthesis of ureas and polyureas via ruthenium catalyzed dehydrogenation of amines and formamides. J Appl Polym Sci 2021. [DOI: 10.1002/app.52088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Blake H. Bomann
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Shanzay Suhail
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | | | | | | | | | | | | | | | | | | | | - Connor C. Dolan
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Michael J. Carney
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | |
Collapse
|
25
|
Gomez-Lopez A, Elizalde F, Calvo I, Sardon H. Trends in non-isocyanate polyurethane (NIPU) development. Chem Commun (Camb) 2021; 57:12254-12265. [PMID: 34709246 DOI: 10.1039/d1cc05009e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transition towards safer and more sustainable production of polymers has led to a growing body of academic research into non-isocyanate polyurethanes (NIPUs) as potential replacements for conventional, isocyanate-based polyurethane materials. This perspective article focuses on the opportunities and current limitations of NIPUs produced by the reaction between biobased cyclic carbonates with amines, which offers an interesting pathway to renewable NIPUs. While it was initially thought that due to the similarities in the chemical structure, NIPUs could be used to directly replace conventional polyurethanes (PU), this has proven to be more challenging to achieve in practice. As a result, and in spite of the vast amount of academic research into this topic, the market size of NIPUs remains negligible. In this perspective, we will emphasize the main limitations of NIPUs in comparison to conventional PUs and the most significant advances made by others and us to overcome these limitations. Finally, we provide our personal view of where research should be directed to promote the transition from the academic to the industrial sector.
Collapse
Affiliation(s)
- Alvaro Gomez-Lopez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| | - Fermin Elizalde
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| | - Iñigo Calvo
- ORIBAY Group Automotive S.L. R&D Department, Portuetxe bidea 18, 20018, Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
26
|
Li Q, Ma S, Li P, Wang B, Yu Z, Feng H, Liu Y, Zhu J. Fast Reprocessing of Acetal Covalent Adaptable Networks with High Performance Enabled by Neighboring Group Participation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qiong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songqi Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Pengyun Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Zhen Yu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Hongzhi Feng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yanlin Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Division of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
27
|
Ma Y, Liu Z, Zhou S, Jiang X, Shi Z, Yin J. Aminoesterenamide Achieved by Three-Component Reaction Heading toward Tailoring Covalent Adaptable Network with Great Freedom. Macromol Rapid Commun 2021; 42:e2100394. [PMID: 34418207 DOI: 10.1002/marc.202100394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Indexed: 11/11/2022]
Abstract
Covalent adaptable networks (CANs) have recently received extensive interests due to their reprocessability and repairability. Rethinking the libraries of the published CANs, most of them are fabricated by one/two-component reactions and few cases utilize multi-component reactions to construct CANs while multi-component reactions are conductive to tailoring the properties of polymers due to their structural designability and flexible choice of raw materials. A novel kind of dynamic covalent bond named aminoesterenamide is presented through three-component reaction between acetoacetyl, amine and isocyanate. Aminoesterenamide exhibits thermal reversibility through dissociating into vinylogous urethane and isocyanate. When it is used to prepare CANs, the synthesized polymer networks can be reprocessed many times via the exchange reaction between aminoesterenamides. Moreover, the forming of aminoesterenamide involving three starting components imparts CANs with great freedom to tailor their properties. Therefore, the authors believe this method that utilizes three-component reaction to fabricate CANs would bring new stories and perspectives to the exploration of new types of CANs.
Collapse
Affiliation(s)
- Youwei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Shuai Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
29
|
Mohlala RL, Coyanis EM, Fernandes MA, Bode ML. Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4-dihydroquinoxalines using isocyanide-based one-pot, three- and four-component reactions. RSC Adv 2021; 11:24466-24473. [PMID: 35479051 PMCID: PMC9036818 DOI: 10.1039/d1ra04444c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Reaction of benzimidazolone derivatives, or their thio- or aza-counterparts, with an isocyanide in the presence of acetone unexpectedly gave rise to novel tricyclic benzodiazepine derivatives in good yield by means of a four-component reaction incorporating two moles of acetone. Benzimidazole starting substrates bearing an electron-withdrawing group gave rise instead to dihydroquinoxaline derivatives by means of a three-component reaction. Use of deuterated acetone instead of acetone in the reactions significantly affected yield and reactivity in the four-component reaction but not in the three-component reaction. Reaction of benzimidazole derivatives with an isocyanide and acetone led to tricyclic benzodiazepine derivatives or dihydroquinoxalines depending on the nature of the substituents R1 and R2.![]()
Collapse
Affiliation(s)
- Reagan L Mohlala
- Advanced Materials Division, Mintek Private Bag X3015 Randburg 2125 South Africa .,Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| | - E Mabel Coyanis
- Advanced Materials Division, Mintek Private Bag X3015 Randburg 2125 South Africa
| | - Manuel A Fernandes
- Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| | - Moira L Bode
- Molecular Sciences Institute, University of the Witwatersrand PO Wits 2050 South Africa
| |
Collapse
|
30
|
Yang Y, Ying H, Jia Y, Chen Y, Cheng J. Stabilization of the hindered urea bond through de-tert-butylation. Chem Commun (Camb) 2021; 57:3812-3815. [PMID: 33876129 DOI: 10.1039/d1cc00715g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the discovery of an acid-assisted de-tert-butylation reaction that can instantly "turn off" the dynamicity of hindered urea bonds (HUBs) and thus broaden their applications. The reaction is demonstrated to be widely applicable to different hindered urea substrates, leading to improved chemical stabilities and mechanical properties of HUB-containing materials.
Collapse
Affiliation(s)
- Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | |
Collapse
|
31
|
Cuminet F, Caillol S, Dantras É, Leclerc É, Ladmiral V. Neighboring Group Participation and Internal Catalysis Effects on Exchangeable Covalent Bonds: Application to the Thriving Field of Vitrimer Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Éric Dantras
- CIRIMAT Physique des Polymères, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Éric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
32
|
Ye C, Voet VSD, Folkersma R, Loos K. Robust Superamphiphilic Membrane with a Closed-Loop Life Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008460. [PMID: 33682219 PMCID: PMC11468712 DOI: 10.1002/adma.202008460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Oil-spill remediation is an international environmental challenge, and superamphiphilic membranes, as a promising solution, have recently drawn lots of attention. However, the robustness of the conventional membrane design is less satisfying under severe conditions during practical applications. Additionally, it is unavoidable for the membranes to face a series of foulants in their practical working environment, for example, algae and sand. These foulants will block the membrane, which leads to a new economic and environmental problem in terms of waste management at the end of their life. To address the aforementioned challenges, a new generation of superamphiphilic vitrimer epoxy resin membranes (SAVER) to separate oil and water efficiently is reported. Similar to classical epoxy resins, SAVER shows strong mechanical robustness and sustains exposure to aqua regia and sodium hydroxide solutions. Furthermore, the blocked membrane can be easily recovered when contaminated with mixed foulants by using dynamic transesterification reactions in the polymer network. The ease with which biobased SAVER can be manufactured, used, recycled, and re-used without losing value points to new directions in designing a closed-loop superamphiphilic membrane life cycle.
Collapse
Affiliation(s)
- Chongnan Ye
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Vincent S. D. Voet
- Sustainable PolymersNHL Stenden University of Applied SciencesVan Schaikweg 94Emmen7811 KLThe Netherlands
| | - Rudy Folkersma
- Sustainable PolymersNHL Stenden University of Applied SciencesVan Schaikweg 94Emmen7811 KLThe Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
33
|
Meng H, Sun K, Xu Z, Tian L, Wang Y. P(III)‐Assisted Electrochemical Access to Ureas via in situ Generation of Isocyanates from Hydroxamic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiwen Meng
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Kunhui Sun
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Zhimin Xu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
34
|
Wang Z, Gu Y, Ma M, Liu Y, Chen M. Strengthening Polyethylene Thermoplastics through a Dynamic Covalent Networking Additive Based on Alkylboron Chemistry. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yinli Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
35
|
Li Q, Ma S, Li P, Wang B, Feng H, Lu N, Wang S, Liu Y, Xu X, Zhu J. Biosourced Acetal and Diels–Alder Adduct Concurrent Polyurethane Covalent Adaptable Network. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02699] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiong Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songqi Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Pengyun Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Hongzhi Feng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Lu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sheng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiwei Xu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
36
|
Zhang Q, Wang S, Rao B, Chen X, Ma L, Cui C, Zhong Q, Li Z, Cheng Y, Zhang Y. Hindered urea bonds for dynamic polymers: An overview. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Sattar F, Feng Z, Zou H, Ye H, Zhang Y, You L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org Chem Front 2021. [DOI: 10.1039/d1qo00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of organic ureas and dynamic covalent chemistry was demonstrated for multistate switching, thermally induced fluorescence, and signaling cascades.
Collapse
Affiliation(s)
- Fazli Sattar
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yi Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Lei You
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
38
|
Wang Y, Quevedo K, Pentzer E. Inter-capsule fusion and capsule shell destruction using dynamic covalent polymers. Polym Chem 2021. [DOI: 10.1039/d1py00271f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, capsule shells containing hindered urea bonds were prepared using interfacial polymerization in an oil-in-oil Pickering emulsion stabilized by functionalized graphene oxide nanosheets.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| | - Khamila Quevedo
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| | - Emily Pentzer
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| |
Collapse
|
39
|
Shi J, Zheng T, Zhang Y, Guo B, Xu J. Cross-linked polyurethane with dynamic phenol-carbamate bonds: properties affected by the chemical structure of isocyanate. Polym Chem 2021. [DOI: 10.1039/d1py00157d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Based on the phenol–carbamate dynamic bond, we designed a strategy to regulate the rearrangement kinetics of the dynamic covalent network in polyurethanes by adjusting the chemical structure of aliphatic isocyanates.
Collapse
Affiliation(s)
- Jiaxin Shi
- Advanced Materials Laboratory of Ministry of Education (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Tianze Zheng
- Advanced Materials Laboratory of Ministry of Education (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Yao Zhang
- Advanced Materials Laboratory of Ministry of Education (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| |
Collapse
|
40
|
Shen M, Vijjamarri S, Cao H, Solis K, Robertson ML. Degradability, thermal stability, and high thermal properties in spiro polycycloacetals partially derived from lignin. Polym Chem 2021. [DOI: 10.1039/d1py01017d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spiro polycycloacetals were synthesized from vanillin and syringaldehyde, along with high-performance co-monomers, exhibiting high glass transition temperatures and thermal stabilities, and rapid rates of hydrolysis in acidic solutions.
Collapse
Affiliation(s)
- Minjie Shen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Srikanth Vijjamarri
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hongda Cao
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Karla Solis
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
41
|
|
42
|
Kang DH, Cho S, Sung S, Kim YR, Lee H, Choe A, Yeom J, Kim MP, Kim JC, Noh SM, Ko H. Highly Transparent, Flexible, and Self-Healable Thermoacoustic Loudspeakers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53184-53192. [PMID: 33191748 DOI: 10.1021/acsami.0c12199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks. In this study, we present transparent, flexible, and self-healable TA loudspeakers based on silver nanowire (AgNW)-poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit significant self-healing for repairing the surface damages that are caused due to the dynamic reconstruction of reversible bulky urea bonds in PUHU. The fabricated self-healable TA loudspeakers generate a sound pressure level of 61 dB at 10 kHz frequency (alternating current (AC) 7 V/direct current (DC) 1 V). In particular, the TA speakers are able to recover the original sound after healing the surface damages of electrodes at 95 °C and 80% relative humidity within 5 min. We believe that the technique proposed in this study provides a robust and powerful platform for the fabrication of transparent and flexible TA loudspeakers with excellent self-healing, which can be applied in flexible and wearable acoustic electronics.
Collapse
Affiliation(s)
- Dong-Hee Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Sujin Sung
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan Metropolitan City 681-310, Republic of Korea
| | - Young-Ryul Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyejin Lee
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Minsoo P Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jin Chul Kim
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan Metropolitan City 681-310, Republic of Korea
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan Metropolitan City 681-310, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
43
|
Cui C, Chen X, Ma L, Zhong Q, Li Z, Mariappan A, Zhang Q, Cheng Y, He G, Chen X, Dong Z, An L, Zhang Y. Polythiourethane Covalent Adaptable Networks for Strong and Reworkable Adhesives and Fully Recyclable Carbon Fiber-Reinforced Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47975-47983. [PMID: 32986410 DOI: 10.1021/acsami.0c14189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of adhesives with superior optical and mechanical performance, solvent resistance, and reworkability is gaining increasing attention in recent years. However, traditional materials do not possess reprocessability and healing characteristics for sustainable development. Here, a superior dynamic polythiourethane (PTU) adhesive with high reprocessability was developed by introducing covalent adaptable networks (CANs). Specifically, dynamic thiocarbamate bonds (TCB) were used to prepare PTU CANs, which showed dramatically enhanced malleability and recyclability. The Young's modulus of the material was 2.0 GPa and the tensile strength was 62.7 MPa. The reprocessing temperature of CANs was reduced to 80 °C while more than 90% of their mechanical properties were retained, even after being reprocessed several times. Moreover, the highly transparent and water-resistant PTU CANs featured an excellent bonding property and reworkability for various materials including glass, with a lap shear strength of 2.9 MPa, metal (5.1 MPa), and wood (6.3 MPa), compared with commercially available adhesives. Additionally, carbon fiber-reinforced composites constructed with PTU CANs were capable of being fully recycled and reused. Importantly, laminated glass with a toughened PTU-PU elastomer interface exhibited an outstanding impact fatigue-resistance behavior, sustaining thousands of impacts. These features demonstrate that PTU CANs show great potential as sustainable materials.
Collapse
Affiliation(s)
- Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingxing Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianyun Zhong
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhen Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | | | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhen Dong
- Inose Corporation, 72A, Kunminghunanlu, Haidian, Beijing 100089, China
| | - Le An
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
44
|
Pattarawarapan M, Yamano D, Wiriya N, Yimklan S, Phakhodee W. Simultaneous Formation and Functionalization of Aryliminophosphoranes Using 1,3-Dihydro-1 H-benzimidazol-2-ones as Precursors. J Org Chem 2020; 85:13330-13338. [PMID: 33006471 DOI: 10.1021/acs.joc.0c01979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An atom- and step-economic synthesis of aryliminophosphoranes bearing ortho urea was achieved via unprecedented Ph3P-I2 mediated ring-opening of 1,3-dihydro-1H-benzimidazol-2-ones with secondary amines. Tandem aza-Wittig/heterocyclization of the functionalized aryliminophosphoranes upon treatment with isothiocyanates enables a facile access to a single regioisomer of N1-substituted 2-aminobenzimidazoles as well as fused tetracyclic quinazolinone derivatives in one-pot. 31P{1H} NMR studies suggested that the urea C-N bond of benzimidazolone is weakened by N-phosphorylation, leading to aminolysis rather than the expected deoxygenative amination.
Collapse
Affiliation(s)
- Mookda Pattarawarapan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dolnapa Yamano
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nittaya Wiriya
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wong Phakhodee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
45
|
Lai Y, Kuang X, Yang WH, Wang Y, Zhu P, Li JP, Dong X, Wang DJ. Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
47
|
Patel T, Kim MP, Park J, Lee TH, Nellepalli P, Noh SM, Jung HW, Ko H, Oh JK. Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered Urea) Networks. ACS NANO 2020; 14:11442-11451. [PMID: 32840992 DOI: 10.1021/acsnano.0c03819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the advent of highly deformable and healable electronics is exciting and promising for next-generation electronic devices. In particular, self-healable triboelectric nanogenerators (SH-TENGs) serve as promising candidates based on the combination of the triboelectric effect, electrostatic induction, and self-healing action. However, the majority of SH-TENGs have been devised with weak polymeric networks that are healed with reversible supramolecular interactions or disulfides, thus resulting in poor mechanical properties and low resistance to creeping. To address this issue, we demonstrate the integration of mechanically strong and self-healable poly(hindered urea) (PHU) network in the fabrication of effective TENGs. The designed PHU network is flexible but shows greater mechanical property of tensile strength as high as 1.7 MPa at break. The network is capable of self-healing quickly and repeatedly as well as being reprocessable under mild conditions, enabling the recovery of triboelectric performances after the complete healing of the damaged surfaces. Furthermore, the interfacial-polarization-induced enhancement of dielectric constant endows our SH-TENG with the highest triboelectric output performance (169.9 V/cm2) among the reported healable TENGs. This work presents an avenue to the development of mechanical energy-harvesting devices and self-powered sensors with excellent stretchability, high recoverability, and good mechanical strength.
Collapse
Affiliation(s)
- Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec Canada H4B 1R6
| | - Minsoo P Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hee Lee
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | | | - Seung Man Noh
- Research Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec Canada H4B 1R6
| |
Collapse
|
48
|
Wang S, Yang Y, Ying H, Jing X, Wang B, Zhang Y, Cheng J. Recyclable, Self-Healable, and Highly Malleable Poly(urethane-urea)s with Improved Thermal and Mechanical Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35403-35414. [PMID: 32677819 DOI: 10.1021/acsami.0c07553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing recyclable, self-healable, and highly malleable thermosets is one of the keys to relieve environmental pollution and meet our increasing demand for "greener" materials. Hindered urea bonds (HUBs) have been successfully incorporated in preparing dynamic covalent networks with those desirable properties. However, one key drawback is the low thermal stability and poor mechanical performance of previously reported systems. In this work, we demonstrated that the incorporation of aromatic moiety-containing diamine-based HUBs can greatly improve the thermal and mechanical performance of the poly(urethane-urea)s (PUUs) while still maintaining the desirable recycling, self-healing, and reprocessing properties. Studies on model compounds revealed the origin of the thermal stability and demonstrated the dynamic property. The aromatic-containing diamine-based HUBs were then used to prepare a series of catalyst-free PUUs with improved thermal and mechanical properties. The dynamic HUBs significantly reduced the relaxation timescale and allowed the PUU networks to be recycled multiple times. The healed and recycled PUUs regained most of the mechanical strength and integrity of the original material. Therefore, this unique and simple approach is expected to open up new avenues to design PUUs with optimal performance for various applications.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Hanze Ying
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Xinli Jing
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an, Shaanxi 710049, China
| | - Bin Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Ding X, Li G, Zhang P, Xiao C. Constructing Thermally Reversible Dynamic Hydrogels via Catalysis-Free Knoevenagel Condensation. ACS Macro Lett 2020; 9:830-835. [PMID: 35648514 DOI: 10.1021/acsmacrolett.0c00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thermally reversible dynamic covalent bonds (TRDCBs) have attracted great interest for building polymers with self-healing and adaptable properties in bulk. However, none of the developed TRDCBs can be used in aqueous media for the fabrication of thermally reversible dynamic hydrogels due to the requirement of high temperature to initiate the retro-reaction or the susceptibility to hydrolysis. Herein, we report a thermally reversible dynamic covalent C═C double bond that was formed by catalysis-free Knoevenagel condensation (CKC) between benzaldehyde and cyanoacetate end-functionalized polymers in aqueous solution. The as-formed TRDCB shows typical thermal reversibility in the aqueous media under mild temperatures (4-70 °C). Constructing hydrogels with this TRDCB led to the formation of thermally reversible dynamic hydrogels with intriguing self-healing, injectable, thermosensitive, and thermoplastic properties. Overall, this work not only broadens the application of TRDCBs in aqueous media but also provides a thermally reversible dynamic hydrogel for potential use in various biomedical fields.
Collapse
Affiliation(s)
- Xiaoya Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
50
|
Shen M, Cao H, Robertson ML. Hydrolysis and Solvolysis as Benign Routes for the End-of-Life Management of Thermoset Polymer Waste. Annu Rev Chem Biomol Eng 2020; 11:183-201. [PMID: 32250651 DOI: 10.1146/annurev-chembioeng-120919-012253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The production of thermoset polymers is increasing globally owing to their advantageous properties, particularly when applied as composite materials. Though these materials are traditionally used in more durable, longer-lasting applications, ultimately, they become waste at the end of their usable lifetimes. Current recycling practices are not applicable to traditional thermoset waste, owing to their network structures and lack of processability. Recently, researchers have been developing thermoset polymers with the right functionalities to be chemically degraded under relatively benign conditions postuse, providing a route to future management of thermoset waste. This review presents thermosets containing hydrolytically or solvolytically cleavable bonds, such as esters and acetals. Hydrolysis and solvolysis mechanisms are discussed, and various factors that influence the degradation rates are examined. Degradable thermosets with impressive mechanical, thermal, and adhesion behavior are discussed, illustrating that the design of material end-of-life need not limit material performance.
Collapse
Affiliation(s)
- Minjie Shen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA;
| | - Hongda Cao
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA;
| | - Megan L Robertson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA;
| |
Collapse
|