1
|
Lu Y, Tian Y, Liu J, Wang Y, Wang X. A De novo Mutation in the COL1A1 Gene Leading to Severe Osteogenesis Imperfecta: Case Report and Review of the Literature. AJP Rep 2024; 14:e215-e223. [PMID: 39268228 PMCID: PMC11392588 DOI: 10.1055/a-2388-3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is the most common monogenic inherited skeletal dysplasia disorder. Mutations in the COL1A1/COL1A2 gene cause ∼85 to 90% of OI. Studies of cases have demonstrated that missense mutations are the primary cause of OI, with poor prognosis. Case Description We report the case of a fetus with skeletal abnormalities and subcutaneous edema. Ultrasound imaging revealed suspected skeletal malformations, including hypoplastic long bones of all four limbs, poorly ossified calvarium, unrevealing nasal bones, and generalized subcutaneous edema. Whole-exome sequencing revealed a heterozygous mutation in COL1A1 (c.2174G > T/p.(G725V), NM_000088.3). According to the American College of Medical Genetics and Genomics guidelines, it was determined to be a pathogenic variant and identified as a de novo variant (PS2 + PP3_strong + PM2_supporting), which has not been reported in the HGMD, gnomAD, ClinVar, or other databases. This variation causes a glycine-to-valine substitution at position 725, located within the Gly-Xaa-Yaa repeat in the helical domain of the collagen molecule. Conclusion The COL1A1 mutation (c.2174G > T/p.(G725V), NM_000088.3) is a novel pathogenic variant of severe OI. Our study expanded the OI COL1A1 gene variation profiles in the Chinese population and provided a theoretical foundation for prenatal diagnosis, genetic counseling, and obstetric management.
Collapse
Affiliation(s)
- Yurong Lu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yijia Tian
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jinxiu Liu
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Yifan Wang
- Testing Center, Yinfeng Medical Laboratory, Jinan, Shandong, People's Republic of China
| | - Xietong Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Qingdao University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Taylor PA, Kloxin AM, Jayaraman A. Impact of collagen-like peptide (CLP) heterotrimeric triple helix design on helical thermal stability and hierarchical assembly: a coarse-grained molecular dynamics simulation study. SOFT MATTER 2022; 18:3177-3192. [PMID: 35380571 PMCID: PMC9909704 DOI: 10.1039/d2sm00087c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collagen-like peptides (CLP) are multifunctional materials garnering a lot of recent interest from the biomaterials community due to their hierarchical assembly and tunable physicochemical properties. In this work, we present a computational study that links the design of CLP heterotrimers to the thermal stability of the triple helix and their self-assembly into fibrillar aggregates and percolated networks. Unlike homotrimeric helices, the CLP heterotrimeric triple helices in this study are made of CLP strands of different chain lengths that result in 'sticky' ends with available hydrogen bonding groups. These 'sticky' ends at one end or both ends of the CLP heterotrimer then facilitate inter-helix hydrogen bonding leading to self-assembly into fibrils (clusters) and percolated networks. We consider the cases of three sticky end lengths - two, four, and six repeat units - present entirely on one end or split between two ends of the CLP heterotrimer. We observe in CLP heterotrimer melting curves generated using coarse grained Langevin dynamics simulations at low CLP concentration that increasing sticky end length results in lower melting temperatures for both one and two sticky ended CLP designs. At higher CLP concentrations, we observe non-monotonic trends in cluster sizes with increasing sticky end length with one sticky end but not for two sticky ends with the same number of available hydrogen bonding groups as the one sticky end; this nonmonotonicity stems from the formation of turn structures stabilized by hydrogen bonds at the single, sticky end for sticky end lengths greater than four repeat units. With increasing CLP concentration, heterotrimers also form percolated networks with increasing sticky end length with a minimum sticky end length of four repeat units required to observe percolation. Overall, this work informs the design of thermoresponsive, peptide-based biomaterials with desired morphologies using strand length and dispersity as a handle for tuning thermal stability and formation of supramolecular structures.
Collapse
Affiliation(s)
- Phillip A Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Fuji S, Tanaka K, Kishikawa S, Morita S, Doi M. Quartz crystal microbalance sensor for the detection of collagen model peptides based on the formation of triple helical structure. J Biosci Bioeng 2021; 133:168-173. [PMID: 34872873 DOI: 10.1016/j.jbiosc.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
Collagen is a major structural protein, and abnormalities in collagen structure can lead to several connective tissue diseases such as osteoporosis. We report the preparation of a collagen sensor using a synthetic peptide as proof of concept for detecting the collagen like peptides. The synthetic peptide 9-fluorenylmethyloxycarbonyl (Fmoc)-(prolyl-prolyl-glycine)7-OH was coupled to thiazolidine, which gets adsorbed on metal surfaces. Fmoc-(prolyl-prolyl-glycine)7-thiazolidine was immobilized on the surface of a quartz crystal microbalance (QCM) electrode used as a sensor probe. The collagen model peptide (prolyl-prolyl-glycine)10 could be detected, and the model peptide was directly adsorbed onto the surface of the electrode and was not removed by washing with hot water. Additionally, it was proved that the sensitivity of the probe could be enhanced to nanogram order by immobilizing the blocking reagent, Fmoc-prolyl-prolyl-glycine, within the gap of sensor probes on the electrode. The detectable mass of the model peptide decreased as the probe gap became narrower because of self-association of the probes. Moreover, the sensitivity of sensor probes also decreases as the gap between the probes becomes wider. Therefore, the optimum distance between the immobilized probes was determined from the simulation based on the experimental values. The association rate of the model peptide with sensor probes could be quantitatively determined when the distance between the probes was optimum, and this result suggested that most sensor probes could form a triple helical structure with the model peptide.
Collapse
Affiliation(s)
- Sota Fuji
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Kotaro Tanaka
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Shiho Kishikawa
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Seiichi Morita
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan
| | - Masamitsu Doi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Noshima 77, Nada, Gobo, Wakayama 644-0023, Japan.
| |
Collapse
|
5
|
Walker DR, Alizadehmojarad AA, Kolomeisky AB, Hartgerink JD. Charge-Free, Stabilizing Amide-π Interactions Can Be Used to Control Collagen Triple-Helix Self-Assembly. Biomacromolecules 2021; 22:2137-2147. [PMID: 33881314 DOI: 10.1021/acs.biomac.1c00234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a noted lack of understood, controllable interactions for directing the organization of collagen triple helices. While the field has had success using charge-pair interactions and cation-π interactions in helix design, these alone are not adequate for achieving the degree of specificity desirable for these supramolecular structures. Furthermore, because of the reliance on electrostatic interactions, designed heterotrimeric systems have been heavily charged, a property undesirable in some applications. Amide-π interactions are a comparatively understudied class of charge-free interactions, which could potentially be harnessed for triple-helix design. Herein, we propose, validate, and utilize pairwise amino acid amide-π interactions in collagen triple-helix design. Glutamine-phenylalanine pairs, when arranged in an axial geometry, are found to exhibit a moderately stabilizing effect, while in the lateral geometry, this pair is destabilizing. Together this allows glutamine-phenylalanine pairs to effectively set the register of triple helices. In contrast, interactions between asparagine and phenylalanine appear to have little effect on triple-helical stability. After deconvoluting the contributions of these amino acids to triple-helix stability, we demonstrate these new glutamine-phenylalanine interactions in the successful design of a heterotrimeric triple helix. The results of all of these analyses are used to update our collagen triple-helix thermal stability prediction algorithm, Scoring function for Collagen Emulating Peptides' Temperature of Transition (SCEPTTr).
Collapse
|
6
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|
7
|
Sun X, Li W, Yu J, Luo L, Wang J, Xiao J. Ln 3+-Triggered self-assembly of a heterotrimer collagen mimetic peptide into luminescent nanofibers. Chem Commun (Camb) 2020; 56:15141-15144. [PMID: 33174875 DOI: 10.1039/d0cc06185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type I collagen, the most abundant and arguably the most complex molecule in the human body, is an ABB heterotrimer that self-assembles to form well-defined nanofibers. We herein for the first time report the construction of peptides that could simultaneously mimic the heterotrimer composition and the self-assembly features of Type I collagen.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Ju M, Bai X, Zhang T, Lin Y, Yang L, Zhou H, Chang X, Guan S, Ren X, Li K, Wang Y, Li G. Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta. J Bone Miner Metab 2020; 38:188-197. [PMID: 31414283 DOI: 10.1007/s00774-019-01039-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Abstract
High-resolution melting (HRM) analysis has been shown to be a time-saving method for the screening of genetic variants. To increase the precision of the diagnosis of osteogenesis imperfecta (OI), we used HRM to explore COL1A1/COL1A2 mutations in 87 Chinese OI patients and to perform population-based studies of the relationships between their genotypes and phenotypes. Peripheral blood samples were collected from the 87 non-consanguineous probands. The coding regions and exon boundaries of COL1A1/COL1A2 were detected by HRM and confirmed by Sanger sequencing. The functional effects of mutations were predicted through bioinformatic tools. Mutations were detected in 70.3% of familial cases and 40% of sporadic cases (p < 0.01). Compared with COL1A1 mutations, patients with COL1A2 mutations were more prone to severe phenotypes. Helical mutations (caused by substitution of the glycine within the Gly-X-Y triplet domain) were more likely to occur in patients with type III and IV (p < 0.05). Haploinsufficiency mutations (caused by frameshift, nonsense, and splice-site mutations) appeared more frequently in patients with type I (p < 0.05). Compared with the Sanger sequencing and whole exome sequencing (WES), HRM was found to reduce total costs by 78%- 80% in patients who had a positive HRM separate melting curve. Our findings suggest that HRM would greatly benefit small and understaffed hospitals and laboratories, and would facilitate the accurate diagnosis and early treatment of OI in remote and less developed regions.
Collapse
Affiliation(s)
- Mingyan Ju
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xue Bai
- Department of Medical Laboratory, Tianjin Hospital, Tianjin, 300000, People's Republic of China
| | - Tianke Zhang
- Colorectal Surgery, Tianjin People's Hospital, Tianjin, 300000, People's Republic of China
| | - Yunshou Lin
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Li Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Huaiyu Zhou
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaoli Chang
- Department of Medical Laboratory, Tianjin Hospital, Tianjin, 300000, People's Republic of China
| | - Shizhen Guan
- Department of Medical Laboratory, Tianjin Hospital, Tianjin, 300000, People's Republic of China
| | - Xiuzhi Ren
- Orthopedic Ward III, Wuqing People's Hospital, Tianjin, 300000, People's Republic of China
| | - Keqiu Li
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yi Wang
- Department of Medical Laboratory, Tianjin Hospital, Tianjin, 300000, People's Republic of China
| | - Guang Li
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
9
|
Yao L, Liu Z, Yu J, Luo L, Wang J, Xiao J. Morphology of Osteogenesis Imperfecta Collagen Mimetic Peptide Assemblies Correlates with the Identity of Glycine-Substituting Residue. Chembiochem 2019; 20:3013-3019. [PMID: 31237990 DOI: 10.1002/cbic.201900114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/02/2019] [Indexed: 11/07/2022]
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disorder with various phenotypes ranging from mild multiple fractures to perinatal lethal cases, and it mainly results from the substitution of Gly by a bulkier residue in type I collagen. Triple-helical peptide models of Gly mutations have been widely utilized to decipher the etiology of OI, although these studies are mainly limited to characterizing the peptide features, such as stability and conformation in the solution state. Herein, we have constructed a new series of triple-helical peptides DD(GPO)5 ZPO(GPO)4 DD (Z=Ala, Arg, Asp, Cys, Glu, Ser, and Val) mimicking the most common types of observed OI cases. The inclusion of special terminal aspartic acids enables these collagen mimetic peptides to self-assemble to form nanomaterials upon the trigger of lanthanide ions. We have for the first time systematically evaluated the effect of different OI mutations on the aggregated state of collagen mimetic peptides. We have revealed that the identity of the Gly-substituting residue plays a determinant role in the morphology and secondary structure of the collagen peptide assemblies, showing that bulkier residues tend to result in a disruptive secondary structure and defective morphology, which lead to more severe OI phenotypes. These findings of osteogenesis imperfecta collagen mimetic peptides in the aggregation state provide novel perspectives on the molecular mechanism of osteogenesis imperfecta, and may aid the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and, Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and, Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jingyuan Yu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and, Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liting Luo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and, Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and, Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and, Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
10
|
Sun X, Liu Z, Zhao S, Xu X, Wang S, Guo C, Xiao J. A self-assembling collagen mimetic peptide system to simultaneously characterize the effects of osteogenesis imperfecta mutations on conformation, assembly and activity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00086k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have created a self-assembling collagen mimetic peptide system which for the first time facilitates simultaneous characterization of the effects of osteogenesis imperfecta mutations on stability, conformation, assembly and activity.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Zhao Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Sha Zhao
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Xiaojun Xu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Beijing NMR Centre
| | - Chengchen Guo
- Department of Biomedical Engineering
- Tufts University
- Medford
- USA
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
11
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
12
|
|
13
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
14
|
Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules 2017; 7:biom7040076. [PMID: 29104255 PMCID: PMC5745458 DOI: 10.3390/biom7040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ana Monica Nunes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Egli J, Siebler C, Maryasin B, Erdmann RS, Bergande C, Ochsenfeld C, Wennemers H. pH-Responsive Aminoproline-Containing Collagen Triple Helices. Chemistry 2017; 23:7938-7944. [DOI: 10.1002/chem.201701134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Egli
- Laboratory of Organic Chemistry; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Christiane Siebler
- Laboratory of Organic Chemistry; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Boris Maryasin
- Chair of Theoretical Chemistry; Department of Chemistry; University of Munich (LMU); Butenandtstr. 7 81377 Munich Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry; University of Munich (LMU); Butenandtstr. 5-13 81377 Munich Germany
| | - Roman S. Erdmann
- Laboratory of Organic Chemistry; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Cedric Bergande
- Laboratory of Organic Chemistry; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry; Department of Chemistry; University of Munich (LMU); Butenandtstr. 7 81377 Munich Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry; University of Munich (LMU); Butenandtstr. 5-13 81377 Munich Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
16
|
Mullen AM, Álvarez C, Zeugolis DI, Henchion M, O'Neill E, Drummond L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci 2017; 132:90-98. [PMID: 28502588 DOI: 10.1016/j.meatsci.2017.04.243] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Opportunities for exploiting the inherent value of protein-rich meat processing co-products, in the context of increased global demand for protein and for sustainable processing systems, are discussed. While direct consumption maybe the most profitable route for some, this approach is influenced greatly by local and cultural traditions. A more profitable and sustainable approach may be found in recognizing this readily available and under-utilised resource can provide high value components, such as proteins, with targeted high value functionality of relevance to a variety of sectors. Applications in food & beverages, petfood biomedical and nutrition arenas are discussed. Utilization of the raw material in its entirety is a necessary underlying principle in this approach to help maintain minimum waste generation. Understanding consumer attitudes to these products, in particular when used in food or beverage systems, is critical in optimizing commercialization strategies.
Collapse
Affiliation(s)
- Anne Maria Mullen
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland.
| | - Carlos Álvarez
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Maeve Henchion
- Teagasc Food Research Centre, Dep't Agrifood Business and Spatial Analysis, Ashtown, Dublin 15, Ireland
| | - Eileen O'Neill
- University College Cork, Department of Food & Nutritional Sciences, Cork, Dublin, Ireland
| | - Liana Drummond
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| |
Collapse
|
17
|
|
18
|
Clements KA, Acevedo-Jake AM, Walker DR, Hartgerink JD. Glycine Substitutions in Collagen Heterotrimers Alter Triple Helical Assembly. Biomacromolecules 2017; 18:617-624. [DOI: 10.1021/acs.biomac.6b01808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine A. Clements
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Amanda M. Acevedo-Jake
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Chhum P, Yu H, An B, Doyon BR, Lin YS, Brodsky B. Consequences of Glycine Mutations in the Fibronectin-binding Sequence of Collagen. J Biol Chem 2016; 291:27073-27086. [PMID: 27799304 DOI: 10.1074/jbc.m116.753566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
Collagen and fibronectin (Fn) are two key extracellular matrix proteins, which are known to interact and jointly shape matrix structure and function. Most proteins that interact with collagen bind only to the native triple-helical form, whereas Fn is unusual in binding strongly to denatured collagen and more weakly to native collagen. The consequences of replacing a Gly by Ser at each position in the required (Gly-Xaa-Yaa)6 Fn-binding sequence are probed here, using model peptides and a recombinant bacterial collagen system. Fluorescence polarization and solid-state assays indicated that Gly replacements at four sites within the Fn-binding sequence led to decreased Fn binding to denatured collagen. Molecular dynamics simulations showed these Gly replacements interfered with the interaction of a collagen β-strand with the β-sheet structure of Fn modules seen in the high resolution crystal structure. Whereas previous studies showed that Gly to Ser mutations within an integrin-binding site caused no major structural perturbations, mutations within the Fn-binding site caused the triple helix to become highly sensitive to trypsin digestion. This trypsin susceptibility is consistent with the significant local unfolding and loss of hydrogen bonding seen in molecular dynamics simulations. Protease sensitivity resulting from mutations in the Fn-binding sequence could lead to degradation of type I collagen, early embryonic lethality, and the scarcity of reported osteogenesis imperfecta mutations in this region.
Collapse
Affiliation(s)
| | - Hongtao Yu
- From the Departments of Biomedical Engineering and.,Chemistry, Tufts University, Medford, Massachusetts 02155
| | - Bo An
- From the Departments of Biomedical Engineering and
| | | | - Yu-Shan Lin
- Chemistry, Tufts University, Medford, Massachusetts 02155
| | | |
Collapse
|
20
|
Pike DH, Nanda V. Empirical estimation of local dielectric constants: Toward atomistic design of collagen mimetic peptides. Biopolymers 2016; 104:360-70. [PMID: 25784456 DOI: 10.1002/bip.22644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides.
Collapse
Affiliation(s)
- Douglas H Pike
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854
| |
Collapse
|
21
|
Acevedo-Jake AM, Clements KA, Hartgerink JD. Synthetic, Register-Specific, AAB Heterotrimers to Investigate Single Point Glycine Mutations in Osteogenesis Imperfecta. Biomacromolecules 2016; 17:914-21. [DOI: 10.1021/acs.biomac.5b01562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amanda M. Acevedo-Jake
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| | - Katherine A. Clements
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| |
Collapse
|
22
|
Fu I, Case DA, Baum J. Dynamic Water-Mediated Hydrogen Bonding in a Collagen Model Peptide. Biochemistry 2016; 54:6029-37. [PMID: 26339765 DOI: 10.1021/acs.biochem.5b00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the canonical (G-X-Y)(n) sequence of the fibrillar collagen triple helix, stabilizing direct interchain hydrogen bonding connects neighboring chains. Mutations of G can disrupt these interactions and are linked to connective tissue diseases. Here we integrate computational approaches with nuclear magnetic resonance (NMR) to obtain a dynamic view of hydrogen bonding distributions in the (POG)(4)(-)(POA)-(POG)(5) peptide, showing that the solution conformation, dynamics, and hydrogen bonding deviate from the reported X-ray crystal structure in many aspects. The simulations and NMR data provide clear evidence of inequivalent environments in the three chains. Molecular dynamics (MD) simulations indicate direct interchain hydrogen bonds in the leading chain, water bridges in the middle chain, and nonbridging waters in the trailing chain at the G → A substitution site. Theoretical calculations of NMR chemical shifts using a quantum fragmentation procedure can account for the unusual downfield NMR chemical shifts at the substitution sites and are used to assign the resonances to the individual chains. The NMR and MD data highlight the sensitivity of amide shifts to changes in the acceptor group from peptide carbonyls to water. The results are used to interpret solution NMR data for a variety of glycine substitutions and other sequence triplet interruptions to provide new connections between collagen sequences, their associated structures, dynamical behavior, and their ability to recognize collagen receptors.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry 2015; 54:4987-97. [PMID: 26225466 PMCID: PMC5335877 DOI: 10.1021/acs.biochem.5b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.
Collapse
Affiliation(s)
- Avanish S. Parmar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, INDIA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Fei Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sandeep V. Belure
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nida F. Hasan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kathryn E. Drzewiecki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
24
|
Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control. J Am Chem Soc 2015; 137:7793-802. [DOI: 10.1021/jacs.5b03326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Jiang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Owen A. Vail
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | |
Collapse
|
25
|
Xiao J, Yang Z, Sun X, Addabbo R, Baum J. Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease Osteogenesis Imperfecta resulting from Gly mutations. J Struct Biol 2015; 192:127-37. [PMID: 25980613 DOI: 10.1016/j.jsb.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 12/30/2022]
Abstract
Osteogenesis Imperfecta (OI), a hereditary connective tissue disease in collagen that arises from a single Gly → X mutation in the collagen chain, varies widely in phenotype from perinatal lethal to mild. It is unclear why there is such a large variation in the severity of the disease considering the repeating (Gly-X-Y)n sequence and the uniform rod-like structure of collagen. We systematically evaluate the effect of local (Gly-X-Y)n sequence around the mutation site on OI phenotype using integrated bio-statistical approaches, including odds ratio analysis and decision tree modeling. We show that different Gly → X mutations have different local sequence patterns that are correlated with lethal and nonlethal phenotypes providing a mechanism for understanding the sensitivity of local context in defining lethal and non-lethal OI. A number of important trends about which factors are related to OI phenotypes are revealed by the bio-statistical analyses; most striking is the complementary relationship between the placement of Pro residues and small residues and their correlation to OI phenotype. When Pro is present or small flexible residues are absent nearby a mutation site, the OI case tends to be lethal; when Pro is present or small flexible residues are absent further away from the mutation site, the OI case tends to be nonlethal. The analysis also reveals the dominant role of local sequence around mutation sites in the Major Ligand Binding Regions that are primarily responsible for collagen binding to its receptors and shows that non-lethal mutations are highly predicted by local sequence considerations alone whereas lethal mutations are not as easily predicted and may be a result of more complex interactions. Understanding the sequence determinants of OI mutations will enhance genetic counseling and help establish which steps in the collagen hierarchy to target for drug therapy.
Collapse
Affiliation(s)
- Jianxi Xiao
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States; State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhangfu Yang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Rayna Addabbo
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
26
|
Bhowmick M, Stawikowska R, Tokmina-Roszyk D, Fields GB. Matrix metalloproteinase inhibition by heterotrimeric triple-helical Peptide transition state analogues. Chembiochem 2015; 16:1084-92. [PMID: 25766890 PMCID: PMC4415627 DOI: 10.1002/cbic.201402716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active-site-targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analogue inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki values spanning 100-400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches such as this provide inhibitors with desired MMP selectivities.
Collapse
Affiliation(s)
- Manishabrata Bhowmick
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
- Organix Inc., 240 Salem Street, Woburn, MA 01801 USA
| | - Roma Stawikowska
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| | - Dorota Tokmina-Roszyk
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 USA
- Departments of Chemistry and Biology, Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987 USA
- Department of Chemistry, The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
27
|
Stephen J, Shukla A, Dalal A, Girisha KM, Shah H, Gupta N, Kabra M, Dabadghao P, Hasegawa K, Tanaka H, Phadke SR. Mutation spectrum of COL1A1 and COL1A2 genes in Indian patients with osteogenesis imperfecta. Am J Med Genet A 2014; 164A:1482-9. [PMID: 24668929 DOI: 10.1002/ajmg.a.36481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/31/2013] [Indexed: 01/23/2023]
Abstract
Osteogenesis imperfecta (OI) is a condition of decreased bone density with heterogeneous etiologies. Most of the cases are inherited in an autosomal dominant fashion and are caused by mutations in the COL1A1 or COL1A2 genes. Since these two genes are very large, there are no data about mutations in Indian patients with OI. We selected 35 Indian patients who were clinically diagnosed with OI and all exons of both the genes were sequenced. Mutations in COL1A1 (14 cases, 6 novel) and COL1A2 (11 cases, 7 novel) were identified in 25 patients. A total of 55 polymorphisms were identified in both the genes with eight novel variants in the coding region, and nine novel variants in the non-coding regions. No mutation was detected in 10 patients. Six of them were from consanguineous families, with one or two similarly affected siblings suggesting possible autosomal recessive inheritance. If we exclude families with consanguinity, mutations were identified in 25 out of 29 families giving 86% mutation detection rate. Mutations in COL1A1 accounted for 56% of the cases and COL1A2 44%, which is similar to the reported rate worldwide.
Collapse
Affiliation(s)
- Joshi Stephen
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang T, Xu C, Liu Y, Liu Z, Wall JS, Zuo X, Lian T, Salaita K, Ni C, Pochan D, Conticello VP. Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 2014; 136:4300-8. [PMID: 24571053 DOI: 10.1021/ja412867z] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the design of two collagen-mimetic peptide sequences, NSI and NSII, that self-assemble into structurally defined nanoscale sheets. The underlying structure of these nanosheets can be understood in terms of the layered packing of collagen triple helices in two dimensions. These nanosheet assemblies represent a novel morphology for collagen-based materials, which, on the basis of their defined structure, may be envisioned as potentially biocompatible platforms for controlled presentation of chemical functionality at the nanoscale. The molecularly programmed self-assembly of peptides NSI and NSII into nanosheets suggests that sequence-specific macromolecules offer significant promise as design elements for two-dimensional (2D) assemblies. This investigation provides a design rubric for fabrication of structurally defined, peptide-based nanosheets using the principles of solution-based self-assembly facilitated through complementary electrostatic interactions.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemistry, Emory University , Atlanta, Georgia 30322
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fuchs SM. Chemically modified tandem repeats in proteins: natural combinatorial peptide libraries. ACS Chem Biol 2013; 8:275-82. [PMID: 23157399 DOI: 10.1021/cb3005066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many proteins composed of tandem repeats (a linear motif, directly repeated within the sequence) are substrates for post-translational modifications (PTMs). Tandem repeats are also dynamic in number, presumably due to instability in the underlying DNA sequence. These observations lead to a hypothesis that cells use a combination of PTMs and variability in repeat number to mediate protein function. Evidence of these processes co-regulating diverse aspects of cellular function can be found in all organisms from bacteria to humans, suggesting a common but poorly described mechanism for regulating and diversifying protein function. This review highlights several examples whereby protein modifications and repetitive protein domains impart diversity. Lastly, it speculates on the possibility of using chemically modified repetitive amino acid sequences to develop peptide-based biomolecules with novel functions.
Collapse
Affiliation(s)
- Stephen M. Fuchs
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, Massachusetts
02155, United States
| |
Collapse
|
30
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Giddu S, Xu F, Nanda V. Sequence recombination improves target specificity in a redesigned collagen peptide abc-type heterotrimer. Proteins 2012; 81:386-93. [PMID: 23042255 DOI: 10.1002/prot.24194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 11/11/2022]
Abstract
Stability of the collagen triple helix is largely governed by its imino acid content, namely the occurrence of proline and 4R-hydroxyproline at the X and Y positions, respectively, of the periodic (Gly-X-Y)(n) sequence. Although other amino acids at these positions reduce stability of the triple helix, this can be partially compensated by introducing intermolecular side-chain salt bridges. This approach was previously used to design an abc-type heterotrimer composed of one basic, one acidic, and one neutral imino acid rich chain (Gauba and Hartgerink, J Am Chem Soc 2007;129:15034-15041). In this study, an abc-type heterotrimer was designed to be the most stable species using a sequence recombination strategy that preserved both the amino acid composition and the network of interchain salt bridges of the original design. The target heterotrimer had the highest T(m) of 50 °C, 7 °C greater than the next most stable species. Stability of the heterotrimer decreased with increasing ionic strength, consistent with the role of intermolecular salt bridges in promoting stability. Quantitative meta-analysis of these results and published stability measurements on closely related peptides was used to discriminate the contributions of backbone propensity and side-chain electrostatics to collagen stability.
Collapse
Affiliation(s)
- Sumana Giddu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
32
|
Erdmann RS, Wennemers H. Effect of Sterically Demanding Substituents on the Conformational Stability of the Collagen Triple Helix. J Am Chem Soc 2012; 134:17117-24. [DOI: 10.1021/ja3066418] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Roman S. Erdmann
- Laboratory of Organic Chemistry,
D-CHAB, ETH Zurich, Wolfgang-Pauli-Strasse
10, 8093 Zurich,
Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry,
D-CHAB, ETH Zurich, Wolfgang-Pauli-Strasse
10, 8093 Zurich,
Switzerland
| |
Collapse
|
33
|
Boyle AL, Bromley EHC, Bartlett GJ, Sessions RB, Sharp TH, Williams CL, Curmi PMG, Forde NR, Linke H, Woolfson DN. Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design. J Am Chem Soc 2012; 134:15457-67. [PMID: 22917063 DOI: 10.1021/ja3053943] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of bioinspired nanostructures and materials of defined size and shape is challenging as it pushes our understanding of biomolecular assembly to its limits. In such endeavors, DNA is the current building block of choice because of its predictable and programmable self-assembly. The use of peptide- and protein-based systems, however, has potential advantages due to their more-varied chemistries, structures and functions, and the prospects for recombinant production through gene synthesis and expression. Here, we present the design and characterization of two complementary peptides programmed to form a parallel heterodimeric coiled coil, which we use as the building blocks for larger, supramolecular assemblies. To achieve the latter, the two peptides are joined via peptidic linkers of variable lengths to produce a range of assemblies, from flexible fibers of indefinite length, through large colloidal-scale assemblies, down to closed and discrete nanoscale objects of defined stoichiometry. We posit that the different modes of assembly reflect the interplay between steric constraints imposed by short linkers and the bulk of the helices, and entropic factors that favor the formation of many smaller objects as the linker length is increased. This approach, and the resulting linear and proteinogenic polypeptides, represents a new route for constructing complex peptide-based assemblies and biomaterials.
Collapse
Affiliation(s)
- Aimee L Boyle
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singam ERA, Balamurugan K, Gopalakrishnan R, Subramanian SR, Subramanian V, Ramasami T. Molecular dynamic simulation studies on the effect of one residue chain staggering on the structure and stability of heterotrimeric collagen-like peptides with interruption. Biopolymers 2012; 97:847-63. [DOI: 10.1002/bip.22085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Wei F, Fallas JA, Hartgerink JD. Sequence Position and Side Chain Length Dependence of Charge Pair Interactions in Collagen Triple Helices. Macromol Rapid Commun 2012; 33:1445-52. [DOI: 10.1002/marc.201200221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/04/2012] [Indexed: 12/15/2022]
|
36
|
Matsui S, Yamazaki CM, Koide T. Surface-Modifiable Free-Floating Films Formed by Multiway Connection of Collagen-Like Triple-Helical Peptides. Macromol Rapid Commun 2012; 33:911-5. [DOI: 10.1002/marc.201100764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/17/2012] [Indexed: 12/28/2022]
|
37
|
Fallas JA, Lee MA, Jalan AA, Hartgerink JD. Rational design of single-composition ABC collagen heterotrimers. J Am Chem Soc 2012; 134:1430-3. [PMID: 22239117 DOI: 10.1021/ja209669u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of heterotrimeric ABC collagen triple helices is challenging due to the large number of competing species that may be formed. Given the required one amino acid stagger between adjacent peptide strands in this fold, a ternary mixture of peptides can form as many as 27 triple helices with unique composition or register. Previously we have demonstrated that electrostatic interactions can be used to bias the helix population toward a desired target. However, homotrimeric assemblies have always remained the most thermally stable species in solution and therefore comprised a significant component of the peptide mixture. In this work we incorporate complementary modifications to this triple-helical design strategy to destabilize an undesirable competing state while compensating for this destabilization in the desired ABC composition. The result of these modifications is a new ABC triple-helical system with high thermal stability and control over composition, as observed by NMR. An additional set of modifications, which exchanges aspartate for glutamate, results in an overall lowering of stability of the ABC triple helix yet shows further improvement in the system's specificity. This rationally designed system helps to elucidate the rules governing the self-assembly of synthetic collagen triple helices and sheds light on the biological mechanisms of collagen assembly.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
38
|
Fallas JA, Dong J, Tao YJ, Hartgerink JD. Structural insights into charge pair interactions in triple helical collagen-like proteins. J Biol Chem 2011; 287:8039-47. [PMID: 22179819 DOI: 10.1074/jbc.m111.296574] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The collagen triple helix is the most abundant protein fold in humans. Despite its deceptively simple structure, very little is understood about its folding and fibrillization energy landscape. In this work, using a combination of x-ray crystallography and nuclear magnetic resonance spectroscopy, we carry out a detailed study of stabilizing pair-wise interactions between the positively charged lysine and the negatively charged amino acids aspartate and glutamate. We find important differences in the side chain conformation of amino acids in the crystalline and solution state. Structures from x-ray crystallography may have similarities to the densely packed triple helices of collagen fibers whereas solution NMR structures reveal the simpler interactions of isolated triple helices. In solution, two distinct types of contacts are observed: axial and lateral. Such register-specific interactions are crucial for the understanding of the registration process of collagens and the overall stability of proteins in this family. However, in the crystalline state, there is a significant rearrangement of the side chain conformation allowing for packing interactions between adjacent helices, which suggests that charged amino acids may play a dual role in collagen stabilization and folding, first at the level of triple helical assembly and second during fibril formation.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
39
|
Xiao J, Madhan B, Li Y, Brodsky B, Baum J. Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility. Biophys J 2011; 101:449-58. [PMID: 21767498 DOI: 10.1016/j.bpj.2011.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022] Open
Abstract
Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.
Collapse
Affiliation(s)
- Jianxi Xiao
- Department of Chemistry and Chemical Biology, BIOMAPS Institute, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
40
|
Yu SM, Li Y, Kim D. Collagen Mimetic Peptides: Progress Towards Functional Applications. SOFT MATTER 2011; 7:7927-7938. [PMID: 26316880 PMCID: PMC4548921 DOI: 10.1039/c1sm05329a] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traditionally, collagen mimetic peptides (CMPs) have been used for elucidating the structure of the collagen triple helix and the factors responsible for its stabilization. The wealth of fundamental knowledge on collagen structure and cell-extracellular matrix (ECM) interactions accumulated over the past decades has led to a recent burst of research exploring the potential of CMPs to recreate the higher order assembly and biological function of natural collagens for biomedical applications. Although a large portion of such research is still at an early stage, the collagen triple helix has become a promising structural motif for engineering self-assembled, hierarchical constructs similar to natural tissue scaffolds which are expected to exhibit unique or enhanced biological activities. This paper reviews recent progress in the field of collagen mimetic peptides that bears both direct and indirect implications to engineering collagen-like materials for potential biomedical use. Various CMPs and collagen-like proteins that mimic either structural or functional characteristics of natural collagens are discussed with particular emphasis on providing helpful information to bioengineers and biomaterials scientists interested in collagen engineering.
Collapse
Affiliation(s)
- S Michael Yu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 ; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Yang Li
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Daniel Kim
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
41
|
Xu F, Zahid S, Silva T, Nanda V. Computational design of a collagen A:B:C-type heterotrimer. J Am Chem Soc 2011; 133:15260-3. [PMID: 21902217 DOI: 10.1021/ja205597g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have successfully designed an A:B:C collagen peptide heterotrimer using an automated computational approach. The algorithm maximizes the energy gap between the target and competing misfolded states while enforcing a minimum target stability. Circular dichroism (CD) measurements confirm that all three peptides are required to form a stable, structured triple helix. This study highlights the power of automated computational design, providing model systems to probe the biophysics of collagen assembly and developing general methods for the design of fibrous proteins.
Collapse
Affiliation(s)
- Fei Xu
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ and the Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|
42
|
Kushner AM, Guan Z. Modulares Design in natürlichen und biomimetischen elastischen Materialien. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Kushner AM, Guan Z. Modular design in natural and biomimetic soft materials. Angew Chem Int Ed Engl 2011; 50:9026-57. [PMID: 21898722 DOI: 10.1002/anie.201006496] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Indexed: 11/09/2022]
Abstract
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.
Collapse
Affiliation(s)
- Aaron M Kushner
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
44
|
Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 2011; 3:821-8. [PMID: 21941256 DOI: 10.1038/nchem.1123] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline-hydroxyproline-glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.
Collapse
|
45
|
Chen YS, Chen CC, Horng JC. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers 2011; 96:60-8. [PMID: 20560144 DOI: 10.1002/bip.21470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A glycine occurs at every third residue in the X-Y-Gly repeat of natural collagen. Replacing Gly residues destabilizes collagen and is often associated with many diseases. We present a comprehensive study on the thermodynamic and kinetic consequences of replacing Gly residues at different sites in collagen. For this, we prepared a series of peptides that contain a single substitution of Gly with L-Ala, D-Ala, β-Ala, or sarcosine (Sar), at different positions in a host peptide (Pro-Hyp-Gly)(8) . Circular dichroism measurements showed that peptides with the mutation site near the C-terminus (C-terminal mutations) form a more stable collagen triple helix than those with the substitution near the N-terminus (N-terminal mutations), which is consistent with the known in vivo folding mechanism of collagen, from the C to the N-terminus. Thermodynamic analysis indicated that the destabilization in C-terminal mutations is due to entropic effects, while that in N-terminal mutations is mainly from enthalpic effects. The destabilization order is L-Ala < Sar < β-Ala < D-Ala substitution in both the N and C-terminal mutations, suggesting that residues with normal torsion angles are less destabilizing at either position. Moreover, Sar was shown to be a better substituent than the other three amino acids at the central site of collagen strands. Kinetic studies further demonstrated that steric strains imposed by the side chains may be the most critical factor affecting the folding rate of collagen. Our data provide valuable insights into how backbone conformation, side chains, and interstrand hydrogen bonds affect the collagen triple helix at different positions.
Collapse
Affiliation(s)
- Yi-Shan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | |
Collapse
|
46
|
Krow GR, Edupuganti R, Gandla D, Yu F, Sender M, Sonnet PE, Zdilla MJ, DeBrosse C, Cannon KC, Ross CW, Choudhary A, Shoulders MD, Raines RT. Synthesis of conformationally constrained 5-fluoro- and 5-hydroxymethanopyrrolidines. Ring-puckered mimics of gauche- and anti-3-fluoro- and 3-hydroxypyrrolidines. J Org Chem 2011; 76:3626-34. [PMID: 21500838 PMCID: PMC3304449 DOI: 10.1021/jo200117p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-acetylmethanopyrrolidine methyl ester and its four 5-syn/anti-fluoro and hydroxy derivatives have been synthesized from 2-azabicyclo[2.2.0]hex-5-ene, a 1,2-dihydropyridine photoproduct. These conformationally constrained mimics of idealized C(β)-gauche and C(β)-anti conformers of pyrrolidines were prepared in order to determine the inherent bridge bias and subsequent heteroatom substituent effects upon trans/cis amide preferences. The bridgehead position and also the presence of gauche(syn)/anti-5-fluoro or 5-hydroxy substituents have minimal influence upon the K(T/C) values of N-acetylamide conformers in both CDCl(3) (43-54% trans) and D(2)O (53-58% trans). O-Benzoylation enhances the trans amide preferences in CDCl(3) (65% for a syn-OBz, 61% for an anti-OBz) but has minimal effect in D(2)O. The synthetic methods developed for N-BOC-methanopyrrolidines should prove useful in the synthesis of more complex derivatives containing α-ester substituents. The K(T/C) results obtained in this study establish baseline amide preferences that will enable determination of contributions of α-ester substituents to trans-amide preferences in methanoprolines.
Collapse
Affiliation(s)
- Grant R Krow
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The ability to engineer novel proteins using the principles of molecular structure and energetics is a stringent test of our basic understanding of how proteins fold and maintain structure. The design of protein self-assembly has the potential to impact many fields of biology from molecular recognition to cell signaling to biomaterials. Most progress in computational design of protein self-assembly has focused on α-helical systems, exploring ways to concurrently optimize the stability and specificity of a target state. Applying these methods to collagen self-assembly is very challenging, due to fundamental differences in folding and structure of α- versus triple-helices. Here, we explore various computational methods for designing stable and specific oligomeric systems, with a focus on α-helix and collagen self-assembly.
Collapse
|
48
|
O'Leary LER, Fallas JA, Hartgerink JD. Positive and negative design leads to compositional control in AAB collagen heterotrimers. J Am Chem Soc 2011; 133:5432-43. [PMID: 21428435 DOI: 10.1021/ja111239r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although collagen is the most abundant protein in the human body and has at least 28 types, research involving collagen mimetic systems only recently began to consider the innate ability of collagen to control helix composition and register. Collagen triple helices can be homotrimeric or heterotrimeric, and while some types of natural collagen form only one specific composition of helix, others can form multiple compositions. It is critical to fully understand and, if possible, reproduce the control that native collagen has on helix composition and register. In this Article, we utilize both positive and negative design for the assembly of specific AAB heterotrimers using charged amino acids to form intrahelix electrostatic interactions, which promote heterotrimer formation and simultaneously discourage homotrimers. Homotrimers are further discouraged by reducing hydroxyproline content, which would otherwise lead to nonspecific promotion of triple helix formation. We combine peptides in a 2:1 ratio in which the more abundant peptide has a charge 1/2 and opposite of the less abundant peptide, which can result in the formation of a zwitterionically neutral AAB heterotrimer. Using this approach, we are able to design collagen mimetic systems with full control over the composition of the resulting triple helix. All previous reports on synthetic collagen heterotrimers have shown mixed populations with respect to composition due to varying amounts of residual homotrimers. Our results yield a greater understanding of the self-assembly of collagenous sequences as well as provide a novel design scheme, both positive and negative, for the synthesis of extracellular matrix mimetics.
Collapse
Affiliation(s)
- Lesley E R O'Leary
- Department of Chemistry, Rice University, 6100 Main Street, Mail Stop 602, Houston, Texas 77005, USA
| | | | | |
Collapse
|
49
|
Cheng H, Rashid S, Yu Z, Yoshizumi A, Hwang E, Brodsky B. Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation. J Biol Chem 2011; 286:2041-6. [PMID: 21071452 PMCID: PMC3023501 DOI: 10.1074/jbc.m110.153965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/06/2010] [Indexed: 11/06/2022] Open
Abstract
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.
Collapse
Affiliation(s)
- Haiming Cheng
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shayan Rashid
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Zhuoxin Yu
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ayumi Yoshizumi
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Eileen Hwang
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Barbara Brodsky
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
50
|
Bryan MA, Cheng H, Brodsky B. Sequence environment of mutation affects stability and folding in collagen model peptides of osteogenesis imperfecta. Biopolymers 2011; 96:4-13. [PMID: 20235194 PMCID: PMC2980582 DOI: 10.1002/bip.21432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteogenesis imperfecta (OI), a disorder characterized by fragile bones, is often a consequence of missense mutations in type I collagen, which change one Gly in the repeating (Gly-Xaa-Yaa)(n) sequence to a larger amino acid. The impact of local environment and the identity of the residue replacing Gly were investigated using two sets of triple-helical peptides. Gly mutations in the highly stable (Pro-Hyp-Gly)(10) system are compared with mutations in T1-865 peptides where the mutation is located within a less stable natural collagen sequence. Replacement of a Gly residue by Ala, Ser, or Arg leads to significant triple-helical destabilization in both peptide systems. The loss of stability (ΔT(m) ) due to a Gly to Ala or Gly to Ser change was greater in the more rigid (Pro-Hyp-Gly)(10) peptides than in the T1-865 set, as expected. But the final T(m) values, which may be the more biologically meaningful parameters, were higher for the (Pro-Hyp-Gly)(10) mutation peptides than for the corresponding T1-865 mutation peptides. In both peptide environments, a Gly to Arg replacement prevented the formation of a fully folded triple-helix. Monitoring of folding by differential scanning calorimetry showed a lower stability species as well as the fully folded triple-helical molecules for T1-865 peptides with Gly to Ala or Ser replacements, and this lower stability species disappears as a function of time. The difficulty in propagation through a mutation site in T1-865 peptides may relate to the delayed folding seen in OI collagens and indicates a dependence of folding mechanism on the local sequence environment.
Collapse
Affiliation(s)
- Michael A. Bryan
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Haiming Cheng
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Barbara Brodsky
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|