1
|
Tan M, Gao Z, Wang X, Wang X, Lin C, Huang Y, Chen W, Zhang Y, Hou Z. MnO 2@CeO x-GAMP radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities for radiosensitization-mediated STING pathway activation. Biomaterials 2025; 314:122797. [PMID: 39255531 DOI: 10.1016/j.biomaterials.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by radiotherapy (RT) has a significant effect on eliciting antitumor immune responses. The generation of hydroxyl radical (·OH) storm and the sensitization of STING-relative catalytic reactions could improve radiosensitization-mediated STING activation. Herein, multi-functional radiosensitizer with oxygen vacancies depended mimicking enzyme-like activities was fabricated to produce more dsDNA which benefits intracellular 2', 3'-cyclic GMP-AMP (cGAMP) generation, together with introducing exogenous cGAMP to activate immune response. MnO2@CeOx nanozymes present enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities due to induced oxygen vacancies accelerate the redox cycles from Ce4+ to Ce3+ via intermetallic charge transfer. CeOx shells not only serve as radiosensitizer, but also provide the conjugation site for AMP/GMP to form MnO2@CeOx-GAMP (MCG). Upon X-ray irradiation, MCG with SOD-like activity facilitates the conversion of superoxide anions generated by Ce-sensitization into H2O2 within tumor microenvironment (TME). The downstream POD-like activity catalyzes the elevated H2O2 into a profusion of ·OH for producing more damage DNA fragments. TME-responsive decomposed MCG could supply exogenous cGAMP, meanwhile the releasing Mn2+ improve the sensitivity of cyclic GMP-AMP synthase to dsDNA for producing more cGAMP, resulting in the promotion of STING pathway activation.
Collapse
Affiliation(s)
- Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinyi Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongxin Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
2
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Song Z, Hao Y, Long Y, Zhang P, Zeng R, Chen S, Chen W. Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications. Molecules 2025; 30:396. [PMID: 39860266 PMCID: PMC11767601 DOI: 10.3390/molecules30020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological and chemical sensing, environmental monitoring, and medical diagnostics due to their narrow-band emission, long fluorescence lifetimes, and excellent resistance to photobleaching. This review focuses on the composition, sensing mechanisms, and applications of ratiometric Ln-CPs. The ratiometric fluorescence mechanism relies on two distinct emission bands, which provides a self-calibrating, reliable, and precise method for detection. The relative intensity ratio between these bands varies with the concentration of the target analyte, enabling real-time monitoring and minimizing environmental interference. This ratiometric approach is particularly suitable for detecting trace analytes and for use in complex environments where factors like background noise, temperature fluctuations, and light intensity variations may affect the results. Finally, we outline future research directions for improving the design and synthesis of ratiometric Ln-CPs, such as incorporating long-lifetime reference luminescent molecules, exploring near-infrared emission systems, and developing up-conversion or two-photon luminescent materials. Progress in these areas could significantly broaden the scope of ratiometric Ln-CP applications, especially in biosensing, environmental monitoring, and other advanced fields.
Collapse
Affiliation(s)
- Ziqin Song
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Yunfei Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Z.S.); (Y.L.); (P.Z.); (R.Z.); (S.C.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
4
|
Zhou QY, Song Y, Yan XX, Yu Y, Liu LL, Qiu HD, Li P, Su XD. A convenient colorimetric assay for Cr(VI) detection based on homogeneous Cu(II)-GMP system with oxidoreductase-like activity. Talanta 2025; 281:126884. [PMID: 39288588 DOI: 10.1016/j.talanta.2024.126884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Hexavalent chromium (Cr(VI)) is an environmental pollutant and recognized as a human carcinogen. Therefore, it is necessary to develop a simple and sensitive detection technique for Cr(VI). Herein, it is found that Cu2+ interacts with guanosine 5'-monophosphate (GMP) to form a homogeneous Cu(II)-GMP complex (Cu2+·GMP) that efficiently displays the oxidoreductase-like catalytic activity. Cu2+·GMP can catalyze the oxidation between Cr(VI) and substrate 3,3',5,5'- tetramethylbenzidine (TMB), resulting in color change recognized by the naked eyes. Base on this, a convenient colorimetric assay for Cr(VI) detection was developed. The detection limit (3σ/s) of this sensor for Cr(VI) was 23 nM with a linear range of 0.1-25 μM. Moreover, the proposed assay was successfully applied to detect Cr(VI) in different environmental water samples with satisfactory recoveries. Our method is simple, efficient, rapid and cost-effective for Cr(VI) detection without the need for complicated material preparation or special separation, which shows great potential in environmental monitoring.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Yi Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xu-Xia Yan
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yan Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Lu-Lu Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Hui-Dong Qiu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ping Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiao-Dong Su
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
5
|
Zhao L, Liu Y, Jin F, Hu K, Lv M, Zhou Y, Zhao W, Hu Y, Wu J, Yang Y, Wang W. Multifunctional nanoparticles potentiate in-situ tumor vaccines via reversing insufficient Photothermal therapy by disrupting tumor vasculature. J Control Release 2024; 376:842-860. [PMID: 39401677 DOI: 10.1016/j.jconrel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Photothermal therapy can trigger immunogenic cell death and release personalized in-situ tumor vaccine, activating immune responses to eliminate systemic tumors beyond the irradiated zone. However, the immune response of the in-situ tumor vaccines is often undermined by the residual tumor cells and their induced immunosuppressive tumor microenvironment (TME), which is attributed to insufficient photothermal effects stemming from the limited accumulation of photosensitizers. To overcome these limitations, we developed multi-functional nanoparticles (VI@Gd-NPs) that integrate a tumor vasculature-specific disrupting agent (Vadimezan, Phase III clinical drug), a photosensitizer (Indocyanine Green, ICG), and a magnetic resonance imaging contrast agent (Gadolinium, Gd) through chemical self-assembly. By selectively disrupting the tumor vasculature, these nanoparticles enhance the intratumoral delivery of photosensitizers (ICG and blood cells), and Gd. With the guidance of Gd-enhanced MRI, the improved delivery facilitates comprehensive photothermal ablation and regulates the TME, further initiating the in-situ tumor vaccine. Notably, this approach significantly enhances anti-tumor immune responses, improves survival rates, and reduces tumor recurrence and metastasis in various animal models. Moreover, depleting CD8+ T cells reverses these therapeutic benefits, highlighting the critical role of adaptive T cell immunity. Therefore, the VI@Gd-NPs treatment holds great potential for reigniting the in-situ tumor vaccine of photothermal therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiran Liu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Fangfei Jin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kaiyuan Hu
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Miao Lv
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yuehua Zhou
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Weijun Zhao
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yong Yang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Wenguang Wang
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Li Y, Wang F, Liang M, Sun M, Xia L, Qu F. Fabrication of a two-dimensional bi-lanthanide metal-organic framework as a ratiometric fluorescent sensor based on energy competition. Talanta 2024; 278:126456. [PMID: 38917551 DOI: 10.1016/j.talanta.2024.126456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Bimetallic lanthanide metal-organic frameworks (bi-Ln-MOFs) exhibit great appeal for ratiometric luminescent sensors due to their unique advantages. Specially, the low-lying energy of the empty 4f band of Ce4+ ions benefits Ce-MOFs with robust and broad fluorescent emission. Therefore, constructing ratiometric sensors based on Ce-MOFs is of significance but remains a challenge. Here, a two-dimensional (2D) bi-Ln-MOF is fabricated using Eu3+/Ce4+ and 5-boronoisophthalic acid (5-bop) via a crystal phase transformation strategy to construct a ratiometric luminescent Hg2+ sensor. Due to the lower energy gap of Ce4+ compared to Eu3+ and the corresponding stronger energy-absorption ability, the Ce4+ in bi-Ln-MOF shows a stronger and broader fluorescent emission than that of Eu3+. The substitution of the boric acid group in the bi-Ln-MOF by Hg2+ amplifies the difference between the two lanthanide ions. Therefore, the fluorescence intensity of Ce4+ increases whereas that of Eu3+ decreases accordingly, a behavior distinct from individual Eu-MOF or Ce-MOF performance. This novel bi-Ln-MOF sensor not only achieves a wide linear response range from 0.5 to 120 μM with a low detection limit of 167 nM for Hg2+, but also demonstrates exceptional selectivity and stability. The intriguing sensing mechanism of energy competition and the novel synthesis approach for 2D bi-Ln-MOF are anticipated to broaden the application possibilities of bi-Ln-MOFs for designing ratiometric sensors.
Collapse
Affiliation(s)
- Yingying Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Maosheng Liang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Mengyu Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Wu X, Ruan C, Zhou S, Zou L, Wang R, Li G. Lanthanide coordination polymers@CuO nanoparticles: Enhanced self-cascade nanoenzyme activity and ratiometric fluorescence assay of glutathione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124410. [PMID: 38718745 DOI: 10.1016/j.saa.2024.124410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 μM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.
Collapse
Affiliation(s)
- Xinru Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Ruan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Rong Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Huang Z, Gu R, Huang S, Chen Q, Yan J, Cui X, Jiang H, Yao D, Shen C, Su J, Liu T, Wu J, Luo Z, Hu Y, Yuan A. Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination. Nat Commun 2024; 15:3902. [PMID: 38724527 PMCID: PMC11082158 DOI: 10.1038/s41467-024-48423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210023, China
| | - Xiaoya Cui
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Dan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiayue Su
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
10
|
Wang Y, Zhao X, Zhou X, Dai J, Hu X, Piao Y, Zu G, Xiao J, Shi K, Liu Y, Li Y, Shi L. A supramolecular hydrogel dressing with antibacterial, immunoregulation, and pro-regeneration ability for biofilm-associated wound healing. J Control Release 2024; 368:740-755. [PMID: 38499092 DOI: 10.1016/j.jconrel.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Chronic wound treatment has emerged as a significant healthcare concern worldwide due to its substantial economic burden and the limited effectiveness of current treatments. Effective management of biofilm infections, regulation of excessive oxidative stress, and promotion of tissue regeneration are crucial for addressing chronic wounds. Hydrogel stands out as a promising candidate for chronic wound treatment. However, its clinical application is hindered by the difficulty in designing and fabricating easily and conveniently. To overcome these obstacles, we present a supermolecular G-quadruplex hydrogel with the desired multifunction via a dynamic covalent strategy and Hoogsteen-type hydrogen bonding. The G-quadruplex hydrogel is made from the self-assembly of guanosine, 2-formylphenyboronic acid, polyethylenimine, and potassium chloride, employing dynamic covalent strategy and Hoogsteen-type hydrogen bonding. In the acidic/oxidative microenvironment associated with bacterial infections, the hydrogel undergoes controlled degradation, releasing the polyethylenimine domain, which effectively eliminates bacteria. Furthermore, nanocomplexes comprising guanosine monophosphate and manganese sulfate are incorporated into the hydrogel skeleton, endowing it with the ability to scavenge reactive oxygen species and modulate macrophages. Additionally, the integration of basic fibroblast growth factor into the G-quadruplex skeleton through dynamic covalent bonds facilitates controlled tissue regeneration. In summary, the facile preparation process and the incorporation of multiple functionalities render the G-quadruplex hydrogel a highly promising candidate for advanced wound dressing. It holds great potential to transition from laboratory research to clinical practice, addressing the pressing needs of chronic wound management.
Collapse
Affiliation(s)
- Yumeng Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingjian Zhou
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juqin Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaowen Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China
| | - Yinzi Piao
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, The Center of Wound Healing and Regenerative Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
12
|
Zhang J, Li X, Yin Y, Cao G, Wang H. A Biodegradable Nucleotide Coordination Polymer for Enhanced NSCLC Therapy in Combination with Metabolic Modulation. Adv Healthc Mater 2023; 12:e2302187. [PMID: 37607115 DOI: 10.1002/adhm.202302187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC) still face challenges of acquired resistance and non-negligible side effects. To overcome these limitations, a biodegradable coordination polymer using guanine deoxynucleotide and ferrous iron (dGNP) is developed for targeted delivery of EGFR-TKIs. dGNPs can efficiently target nucleoside transporters in tumor cells that are regulated by fasting-mimicking diet (FMD). Meanwhile, FMD can augment the therapeutic efficacy of EGFR-TKIs by suppressing EGFR tyrosine kinase phosphorylation and related downstream pathways. In vivo results demonstrate that EGFR-TKIs-laden dGNPs combined with FMD treatment exhibit superior antitumor efficacy and reduced side effect. This study provides an innovative approach to enhance the therapeutic efficacy of EGFR-TKIs through nucleotide nanocarrier and metabolic modulation.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Time-resolved Fluorescence DNA-based Sensors for Reducing Background Fluorescence of Environment. J Fluoresc 2023; 33:2145-2160. [PMID: 37093332 DOI: 10.1007/s10895-023-03239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
The fluorescence assay is one of the popular methods that is applied for detection of different targets. However, this method may show low sensitivity and high background in biological samples due to the natural fluorescence of different compounds in complicated samples. In addition, it inevitably affects the detection results accuracy. A fundamental solution to this problem is the use of the time-resolved fluorescence technique (TRF). The main component of this technique is the use of long fluorescence lifetime reagents. In this review, various time-resolved fluorescent reagents such as complexes of lanthanide ions, lanthanide-doped inorganic nanoparticles; Mn-doped ZnS quantum dots (QDs) and pyrene excimer are introduced. Moreover, TRF sensors, especially TRF aptasensors (DNA-based sensors) are discussed. This review will give new ideas for researchers to develop novel high-sensitive TRF sensors that can remove or decrease background fluorescence and use them for the detection of various targets in complicated samples without treatment.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Yao Y, Wang J, Wang Z, Li S, Tan H. Colorimetric immunoassay of carcinoembryonic antigen based on the glucose oxidase/MnO 2 nanosheet cascade reaction with self-supplying oxygen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5351-5359. [PMID: 37800396 DOI: 10.1039/d3ay01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The detection of carcinoembryonic antigen (CEA) has profound implications in cancer diagnostics and therapeutic monitoring. In this work, we developed a colorimetric immunoassay for the detection of CEA. This assay involves the utilization of zinc(II)-based coordination polymers (ZnCPs) as a host for integrating glucose oxidase (GOx) and anti-carcinoembryonic antigen antibody (anti-CEA), which results in the formation of a detection antibody (anti-CEA/GOx@ZnCPs). The adaptable inclusion properties of ZnCPs enable the preservation of the original catalytic behavior of GOx and antigen capture ability of anti-CEA. Consequently, the anti-CEA/GOx@ZnCPs can act as a detection antibody to facilitate the development of an immunoassay. The combination of anti-CEA/GOx@ZnCPs in the immunoassay triggers a cascade reaction involving GOx and MnO2 nanosheets, leading to the generation of an amplified colorimetric signal through self-supplying oxygen. This colorimetric immunoassay exhibits a linear response ranging from 2 to 180 ng mL-1 CEA and has a detection limit of 50 pg mL-1. The practicality of this colorimetric immunoassay in biological matrices was demonstrated by the successful determination of CEA in serum samples with good recovery and precision. We believe that this study will pave the way to rationally design multifunctional CP-based composites for a wide range of applications in bioanalysis.
Collapse
Affiliation(s)
- Yuanzhi Yao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Jinhong Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ziqi Wang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
15
|
Wang J, Feng Y, Zhao X, Tian Y, Duan Y. Electrospun nanofiber-based indicatorpaper sensing platform for fluorescence and visualization detection of norfloxacin. Biosens Bioelectron 2023; 238:115562. [PMID: 37586262 DOI: 10.1016/j.bios.2023.115562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Norfloxacin (NOR) residues in water pose a serious threat to human health via the food chain, necessitating the development of a rapid on-site antibiotic detection technique. In this work, we utilize electrostatic spinning technology that combines polyacrylonitrile (PAN) fibers and adenosine triphosphate (ATP)-rare earth metal Tb3+ complexes (ATP/Tb) to construct a new ternary film-based sensor for sensitive, quick, and convenient field testing of NOR in water. The operating mechanism is that the ternary system produces gradually enhanced bright green fluorescence at increasing concentrations of NOR. The unique fluorescence property of the ternary systems is attributed to the use of ATP, rather than the commonly used adenosine monophosphate (AMP), to coordinate with Tb3+, which avoided the possible fluorescence quenching from competitive water binding. Benefiting from the PAN nanofiber's superior stability, acid, and alkali resistance, and flexibility as support, the ternary system exhibited a good linear response to NOR in a wide dynamic range of 0.04-30 μM at the detection limit of 16 nM. Additionally, the combination of a smartphone color recognition app allows for quick on-scene NOR detection. This film sensing strategy is instructive for the development of smart and portable sensing platforms for real-time detection of analytes such as antibiotics, pesticide residues, and hazardous materials in water bodies.
Collapse
Affiliation(s)
- Jiayu Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yanting Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xuyang Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| |
Collapse
|
16
|
Liu Y, Gao R, Liu X, Zheng J, Wu X. High-efficiency fluorescent coordination polymer nanoparticles co-doped with Ce 3+/Tb 3+ ions for curcumin detection. Mikrochim Acta 2023; 190:354. [PMID: 37587349 DOI: 10.1007/s00604-023-05933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Curcumin (Cur) possesses diverse biological and pharmacologic effects. It is widely used as a food additive and therapeutic medicine. A study to determine a sensitive detection method for Cur is necessary and meaningful. In this work, double rare earth ions co-doped fluorescent coordination polymer nanoparticles (CPNPs) were developed for the Cur detection. The CPNPs were synthesized by using adenosine monophosphate (AMP) as bridge ligands via coordination self-assembly with Ce3+ and Tb3+. The AMP-Ce/Tb CPNPs exhibited the characteristic green fluorescence of Tb3+ and had high luminescence efficiency. Under the optimal conditions, the fluorescence intensity of AMP-Ce/Tb CPNPs could be significantly quenched by Cur. The fluorescence quenching extent at λex/λem of 300 nm/544 nm showed a good linear relationship with the Cur concentration in the range of 10 to 1000 nM. The detection limit was as low as 8.0 nM (S/N = 3). This method was successfully applied to the determination of Cur in real samples with satisfactory results. The luminescence mechanism of AMP-Ce/Tb CPNPs and the fluorescence quenching mechanism of the CPNPs by Cur were both examined.
Collapse
Affiliation(s)
- Yujie Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Ran Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xingcen Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinhua Zheng
- Tai'an Center for Disease Control and Prevention, Tai'an, 271000, People's Republic of China
| | - Xia Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
17
|
Gao N, Zhang Z, Xiao Y, Huang P, Wu FY. Integrated ratiometric luminescence sensing strategy based on encapsulation of guests in heterobinuclear lanthanide coordination polymer nanoparticles for glucose detection in human serum. Talanta 2023; 265:124854. [PMID: 37413722 DOI: 10.1016/j.talanta.2023.124854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Lanthanide coordination polymers (LnCPs) can be used as a host platform to encapsulate functional guest molecules for the construction of integrated sensing platforms. In this work, two guest molecules, rhodamine B (RhB) and glucose oxidase (GOx), were successfully encapsulated in a heterobinuclear lanthanide coordination polymer synthesized by self-assembly of Ce3+, Tb3+ and adenosine monophosphate (AMP) to form RhB&GOx@AMP-Tb/Ce. Both guest molecules show good storage stability and minimal leakage. The higher catalytic activity and stability of RhB&GOx@AMP-Tb/Ce is obtained due to the confinement effect compared to free GOx. RhB&GOx@AMP-Tb/Ce exhibits superior luminescence based on the internal tandem energy transfer process of the nanoparticles (Ce3+→Tb3+→RhB). Glucose can be oxidized in the presence of GOx to form gluconic acid and H2O2. Subsequently, Ce3+ in the AMP-Tb/Ce host structure can be oxidized by H2O2 to Ce4+, thereby interrupt the internal energy transfer process and cause ratiometric luminescence response. Benefiting from the synergistic effect, the smart integrated luminescent glucose probe exhibits a wide linear range (0.4-80 μM) and a low detection limit (74.3 nM) with high sensitivity, selectivity and simplicity, enabling the quantitative detection of glucose in human serum. This work describes a good strategy to construct an integrated luminescence sensor based on lanthanide coordination polymers.
Collapse
Affiliation(s)
- Nan Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhipeng Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
18
|
Tang Q, Shi L, Yang B, Liu W, Li B, Jin Y. A biomineralized bi-functional hybrid nanoflower to effectively combat bacteria via a glucose-powered cascade catalytic reaction. J Mater Chem B 2023; 11:3413-3421. [PMID: 36994587 DOI: 10.1039/d2tb02704f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bacterial resistance due to the abuse of conventional antibiotics is regarded as a major problem for bacterial-induced infections and chronic wound healing. There is an urgent need to explore alternative antimicrobial strategies and functional materials with excellent antibacterial efficacy. Herein, guanosine monophosphate (GMP) and glucose oxidase (GOD) were coordinated with copper ions to obtain a bi-functional hybrid nanoflower (Cu-GMP/GODNF) as a cascade catalyst for promoting antibacterial efficacy. Besides the efficient conversion of glucose to hydrogen peroxide, the produced gluconic acid by loading GOD can supply a compatible catalytic environment to substantially improve the peroxidase activity for generating more toxic reactive oxygen species (ROS). So, the glucose-powered cascade catalytic reaction effectively killed bacteria. Moreover, H2O2 self-supplied by glucose can reduce harmful side effects of exogenous H2O2. Meanwhile, the adhesion between the Cu-GMP/GODNF and the bacterial membrane can enhance the antibacterial efficacy. Therefore, the achieved bi-functional hybrid nanoflower exhibited high efficiency and biocompatibility for killing bacteria in diabetes-related infections.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
19
|
Sun Z, Li T, Mei T, Liu Y, Wu K, Le W, Hu Y. Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents. J Mater Chem B 2023; 11:3273-3294. [PMID: 36928915 DOI: 10.1039/d3tb00027c] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug. In this review, the advances in delivery systems and applications as therapeutic agents for nanoscale MOF-based materials are summarized. The challenges of MOFs in clinical translation and the future directions in the field of MOFs therapy are also discussed. We hope that more researchers will focus their attention on advancing and translating MOF-based nanodrugs into pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Zeyi Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. .,Shanghai East Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yang Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kerui Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
21
|
Manayia AH, Ilhami FB, Huang SY, Su TH, Huang CW, Chiu CW, Lee DJ, Lai JY, Cheng CC. Photoreactive Mercury-Containing Metallosupramolecular Nanoparticles with Tailorable Properties That Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy. Biomacromolecules 2023; 24:943-956. [PMID: 36645325 DOI: 10.1021/acs.biomac.2c01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.
Collapse
Affiliation(s)
- Abere Habtamu Manayia
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya60231, Indonesia
| | - Sin-Yu Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Ting-Hsuan Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung807618, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei10617, Taiwan, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan32043, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan32023, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| |
Collapse
|
22
|
Li S, Xiao L, Xiao L, Tan H. Coordination polymer nanoprobe integrated carbon dot and phenol red for turn-on fluorescence detection of urease activity. Mikrochim Acta 2023; 190:79. [PMID: 36719487 DOI: 10.1007/s00604-023-05644-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
The potential of coordination polymers (CPs) as a host of integrating multiple guest species to construct a fluorescence resonance energy transfer (FRET) nanoprobe was demonstrated. The ZnCPs built from zinc(II) and adenine was employed as a model of CPs to integrate carbon dot (CD) and phenol red (PR) for producing the FRET nanoprobe (CD/PR@ZnCPs). Benefiting from the confinement effect of ZnCPs, the integrated CD and PR can be brought in close proximity to favor the occurrence of FRET process from CD to PR, which leads to the quenching of CD fluorescence. However, the FRET process was disrupted upon the red-shift of PR absorption from 428 to 562 nm in alkaline medium, and consequently switches on the fluorescence of CD/PR@ZnCPs. Based on this finding, by utilizing urease to hydrolyze urea and mediate medium pH, a turn-on fluorescent method was established for the detection of urease activity. This fluorescent method has a linear response that covers 5 to 150 U/L urease with a detection limit of 0.74 U/L and exhibits an excellent selectivity over other enzymes. The successful determination of urease in saliva samples demonstrates the applicability of the fluorescent nanoprobe in complex biological matrix.
Collapse
Affiliation(s)
- Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Lingyu Xiao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Longqian Xiao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
23
|
Sun S, Zhao Y, Wang J, Pei R. Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 2022; 10:9535-9564. [PMID: 36385652 DOI: 10.1039/d2tb01884e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention as emerging nanomaterials. Based on their tunable size, high porosity, and large specific surface area, MOFs have a wide range of applications in the fields of chemistry, energy, and biomedicine. However, the MOF materials obtained from lanthanides with a unique electronic configuration as inorganic building units have unique properties such as optics, magnetism, and radioactivity. In this study, various synthetic methods for preparing MOF materials using lanthanides as inorganic building units are described. Combined with the characteristics of lanthanides, their application prospects of lanthanide-based MOFs in tumor diagnosis and treatment are emphasized. The authors hope to provide methodological reference for the construction of MOF materials of rare-earth elements, and to provide ideas and inspiration for their practical applications in the field of biomedicine.
Collapse
Affiliation(s)
- Shengkai Sun
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
24
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
A self-assembly lanthanide nanoparticle for ratiometric fluorescence determination of alkaline phosphatase activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Gan Z, Zhang T, An X, Tan Q, Zhen S, Hu Y, Hu X. Dual enzyme-mimicking fluorescent amino terephthalic acid/CuFe/adenosine triphosphate nanoparticles for determination of H2O2 and ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Li Y, Huang Z, Liu B, Huang ZZ, Yang H, Tan H. Portable hydrogel test kit integrated dual-emission coordination polymer nanocomposite for on-site detection of organophosphate pesticides. Biosens Bioelectron 2022; 220:114890. [DOI: 10.1016/j.bios.2022.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
|
28
|
Zhang J, Fan B, Cao G, Huang W, Jia F, Nie G, Wang H. Direct Presentation of Tumor-Associated Antigens to Induce Adaptive Immunity by Personalized Dendritic Cell-Mimicking Nanovaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205950. [PMID: 36217832 DOI: 10.1002/adma.202205950] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Dendritic cells (DCs)-based vaccines are an approved method for inducing potent antigen-specific immune responses to eliminate tumor cells. However, this promising strategy still faces challenges such as tumor-associated antigens (TAAs) loading, lymph node homing, quality control, and other limitations. Here, a personalized DC-mimicking nanovaccine (nanoDC) for stimulation of TAAs-specific T cell populations is developed. The nanoDCs are fabricated using nanoparticles with dendritic structure and membranes from mature bone-marrow-derived cells (BMDCs). Mature BMDCs are stimulated by nanostructures assembled from Escherichia coli and tumor cells to efficiently deliver TAAs and induce BMDCs maturation through the stimulator of interferon genes (STING) pathway. By maintaining co-stimulatory markers, molecules class I (MHC-I) antigen complexes and lymphocyte homing receptors, nanoDCs efficiently migrate to lymph nodes and generate potent antigen-specific T cell responses. Consequently, vaccination with nanoDCs strongly inhibits the tumor growth and metastases formation in vivo. In particular, nanoDCs can also induce memory T cells for long-term protective immunity. This study demonstrates that nanoDCs can trigger adaptive immune protection against tumors for personalized immunotherapy and precision medicine.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Biao Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Lu C, Xu Y, Huang PJJ, Zandieh M, Wang Y, Zheng J, Liu J. Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly. NANOSCALE 2022; 14:14613-14622. [PMID: 36156621 DOI: 10.1039/d2nr03461a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yuancong Xu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Yihao Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
30
|
Cai TT, Tian Y, Huang P, Wu FY. Dual-product synergistically enhanced ratiometric fluorescence assay for alkaline phosphatase activity using core-shell lanthanide-based nanoprobe. Anal Chim Acta 2022; 1235:340550. [DOI: 10.1016/j.aca.2022.340550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/22/2022] [Indexed: 11/01/2022]
|
31
|
Immunoassay based on urease-encapsulated metal-organic framework for sensitive detection of foodborne pathogen with pH meter as a readout. Mikrochim Acta 2022; 189:358. [PMID: 36040541 DOI: 10.1007/s00604-022-05462-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
The potential of enzyme-encapsulated metal-organic framework (MOF) as an antibody label for the construction of enzyme-linked immunosorbent assay (ELISA) is demonstrated. Zeolitic imidazolate framework-90 (ZIF-90) was employed as a MOF model to load urease and pig immunoglobulin G (IgG) antibody. This leads to the production of U@ZIF-90/IgG composite, in which urease was encapsulated in ZIF-90 to form U@ZIF-90 for amplifying the detection signal, while IgG was anchored on the surface of U@ZIF-90 for specifically recognizing Staphylococcus aureus (S. aureus). Benefiting from the unique porous structure of ZIF-90, the U@ZIF-90 not only allows urease to be encapsulated with an ultrahigh loading efficiency, but also shields the loaded urease against harsh environments. The U@ZIF-90 shows a threefold higher catalytic activity than free urease due to the confinement effect. These findings lead to an ELISA with greatly enhanced sensitivity for S. aureus detection. By using a portable pH meter as a readout, the ELISA has a linear response that covers 10 to 109 CFU/mL S. aureus with a detection limit of 1.96 CFU/mL and exhibits high selectivity over other bacteria. The successful determination of S. aureus in milk samples demonstrates the applicability of the ELISA in a complex biological matrix.
Collapse
|
32
|
Luo Z, Liang X, He T, Qin X, Li X, Li Y, Li L, Loh XJ, Gong C, Liu X. Lanthanide-Nucleotide Coordination Nanoparticles for STING Activation. J Am Chem Soc 2022; 144:16366-16377. [PMID: 36037283 DOI: 10.1021/jacs.2c03266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the stimulator of interferon genes (STING) is essential for blocking viral infections and eliciting antitumor immune responses. Local injection of synthetic STING agonists, such as 2'3'-cGAMP [cGAMP = cyclic 5'-guanosine monophosphate (cGMP)-adenosine monophosphate (AMP)], is a promising approach to enhance antiviral functions and cancer immunotherapy. However, the application of such agonists has been hindered by complicated synthetic procedures, high doses, and unsatisfactory systemic immune responses. Herein, we report the design and synthesis of a series of 2'3'-cGAMP surrogates in nanoparticle formulations formed by reactions of AMP, GMP, and coordinating lanthanides. These nanoparticles can stimulate the type-I interferon (IFN) response in both mouse macrophages and human monocytes. We further demonstrate that the use of europium-based nanoparticles as STING-targeted adjuvants significantly promotes the maturation of mouse bone-marrow-derived dendritic cells and major histocompatibility complex class I antigen presentation. Dynamic molecular docking analysis revealed that these nanoparticles bind with high affinity to mouse STING and human STING. Compared with soluble ovalbumin (OVA), subcutaneously immunized europium-based nanovaccines exhibit significantly increased production of primary and secondary anti-OVA antibodies (∼180-fold) in serum, as well as IL-5 (∼28-fold), IFN-γ (∼27-fold), and IFN-α/β (∼4-fold) in splenocytes ex vivo. Compared with the 2'3'-cGAMP/OVA formulation, subcutaneous administration of nanovaccines significantly inhibits B16F10-OVA tumor growth and prolongs the survival of tumor-bearing mice in both therapeutic and protective models. Given the rich supramolecular chemistry with lanthanides, this work will enable a readily accessible platform for potent humoral and cellular immunity while opening new avenues for cost-effective, highly efficient therapeutic delivery of STING agonists.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiuqi Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xian Jun Loh
- Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Singapore 138634, Singapore
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,Agency for Science, Technology and Research, Institute of Materials Research and Engineering, Singapore 138634, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
33
|
Iron-doped cerium/nucleotide coordination polymer as highly efficient peroxidase mimic for colorimetric detection of fluoride ion. Mikrochim Acta 2022; 189:346. [PMID: 36001171 DOI: 10.1007/s00604-022-05410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
A new coordination polymer (Ce-Fe-GMP) with excellent catalytic activity was prepared by a facile route, which was further applied to the detection of F- with high sensitivity and selectivity. The simple doping of Fe3+ into the coordination network can easily modulate the mixing ratio of Ce3+ and Ce4+ in the presence of H2O2, which can extremely improve the catalytic ability of Ce-Fe-GMP. Based on the synergistic effect, the Ce-Fe-GMP with dual-active sites shows better peroxidase activity than that of Ce-GMP. In addition, we found that F- can inhibit the peroxidase activity of Ce-Fe-GMP because of the coordination structure fragmentation and the regulation of Ce3+/Ce4+ ratio. Therefore, different concentrations of F- can be detected by the colorimetric reaction based on this mechanism. The absorption at 652 nm displays a good linear relationship versus the concentration of F- over the range 2.0 to 100.0 μM. Furthermore, F- in real mineral-mixed samples can be measured with satisfactory results. The colorimetric strategy based on the peroxidase activity of Ce-Fe-GMP is simple and low-cost, which shows the potential applications in the field of on-site environment measurement.
Collapse
|
34
|
Han Q, Zhang X, Jia Y, Guo S, Zhu J, Luo S, Na N, Ouyang J. Synthesis and Characteristics of Self‐Assembled Multifunctional Ln
3+
‐DNA Hybrid Coordination Polymers. Chemistry 2022; 28:e202200281. [DOI: 10.1002/chem.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qingzhi Han
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Xinlian Zhang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shaoshi Guo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jiale Zhu
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shirui Luo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
35
|
Bağda E, Kızılyar Y, İnci ÖG, Ghaffarlou M, Barsbay M. One-pot modification of oleate-capped UCNPs with AS1411 G-quadruplex DNA in a fully aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Lanthanide coordination polymer nanoparticles as a ratiometric fluorescence sensor for real-time and visual detection of tetracycline by a smartphone and test paper based on the analyte-triggered antenna effect and inner filter effect. Anal Chim Acta 2022; 1206:339809. [DOI: 10.1016/j.aca.2022.339809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
|
37
|
Gao L, Li Y, Huang ZZ, Tan H. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay. Anal Chim Acta 2022; 1207:339774. [DOI: 10.1016/j.aca.2022.339774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/01/2022]
|
38
|
Wang Y, Li J, Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Universal "Three-in-One" Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15059-15068. [PMID: 35343225 DOI: 10.1021/acsami.2c02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biofilms, an accumulation of microorganisms, cause persistent bacterial infection and low cure rate due to the remarkable drug resistance. Photodynamic inactivation (PDI) is a promising treatment modality for bacterial infections, but the formation of biofilms raises new challenges for photosensitizers (PSs), particularly the reactive oxygen species (ROS) generation efficiency. Herein, through targeting the Jablonski energy diagram, we proposed a universal "three-in-one" matrix of Gd3+-ADP assembly for encapsulation and fixing of PSs to inhibit non-radiative transitions and promoting intersystem crossing (ISC) by the heavy atom and paramagnetic effects of Gd3+, eventually resulted in boosted ROS generation from the existing PSs (1.5-9.0-fold). Particularly, photophysical studies indicated that the matrix resulted in simultaneous ISC promotion and triplet-state lifetime lengthening, which is essential for ROS boosting. The PDI performance of the matrix was confirmed through fast and effective elimination of bacterial biofilms in 10-30 min. Moreover, successful therapy of a Pseudomonas aeruginosa biofilm-infected all-thickness third-degree burn wound was achieved within 11 days with Ce 6@CNs (matrix) but not feasible for matrix-free PSs (Ce 6 only), which highlighted the role of "three-in-one" matrix in ROS boosting.
Collapse
Affiliation(s)
- Ying Wang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiazhuo Li
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
39
|
Chen W, Xu L, Zhong N. Encapsulation of CALB by nucleotide/metal ions coordination nanoparticles: highly selective catalysis of esterification while poor performance in glycerolysis reaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1812-1822. [PMID: 34460944 DOI: 10.1002/jsfa.11516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Enzymatic esterification is attracting for particular high-acid oil deacidification. In this study, Candida antarctica lipase B (CALB) was encapsulated into a series of nucleotide-hybrid metal coordination polymers (CPs), which were constructed by guanosine 5'-monophosphate (GMP) and various metals. RESULTS We here found that, most of the present CPs encapsulated CALB (CALB@CPs) samples were highly selective for esterification while poor in glycerolysis reaction. They exhibited quite poor performance in glycerolysis, with triacylglycerols (TAGs) conversion lower than 5%, despite this considerable enzymatic hydrolysis activities were observed. However, they (most of them) showed good performance in esterification of fatty acids and glycerol for TAG synthesis. In addition, the GMP/Tb (CPs constructed by GMP and Tb3+ ) encapsulated CALB (CALB@GMP/Tb) transformed over 98% of oleic acid into glycerides in the high-acid oil deacidification process, and TAG content from 87 to 89% was obtained. Moreover, the CALB@GMP/Tb showed good reusability in the esterification system. CONCLUSION The present CALB@CPs samples are selective for esterification and suitable for high-acid oils deacidification. This work provides a new system for enzymatic selectivity improvement study. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China
| |
Collapse
|
40
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor-Microenvironment-Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self-Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202116983. [PMID: 35084798 DOI: 10.1002/anie.202116983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/25/2022]
Abstract
Stimuli-responsive nanoagents, which simultaneously satisfy normal tissue clearance and tumor-specific responsive treatment, are highly attractive for precise cancer theranostics. Herein, we develop a unique template-induced self-assembly strategy for the exquisitely controlled synthesis of self-assembled lanthanide (Ln3+ ) nucleotide nanoparticles (LNNPs) with amorphous structure and tunable size from sub-5 nm to 105 nm. By virtue of the low-temperature (10 K) and high-resolution spectroscopy, the local site symmetry of Ln3+ in LNNPs is unraveled for the first time. The proposed LNNPs are further demonstrated to possess the ability for highly efficient loading and tumor-microenvironment-responsive release of doxorubicin. Particularly, sub-5 nm LNNPs not only exhibit excellent biocompatibility and predominant renal-clearance performance, but also enable efficient tumor retention. These findings reveal the great potential of LNNPs as a new generation of therapeutic platform to overcome the dilemma between efficient therapy and long-term toxicity of nanoagents for future clinical applications.
Collapse
Affiliation(s)
- Yingjie Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yunqin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
An X, Zhu X, Liu J, Zou L, Li G, Ye B. Ratiometric fluorescence detection of ciprofloxacin using the terbium-based coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120775. [PMID: 34954482 DOI: 10.1016/j.saa.2021.120775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Herein, a facile self-assembly through adenosine monophosphate (AMP) and luminol with Tb3+ was employed to construct a dual-ligand coordinated AMP-Tb-luminol coordination polymers (CPs), which emitted the typical fluorescence of luminol. Based on the sensitization effect of ciprofloxacin (CIP) on the luminescence of Tb3+, a ratiometric sensor was fabricated using the fluorescence of luminol as an inert reference. The fluorescent intensity ratios of Tb3+ to that of luminol enhanced linearly with the CIP concentration in the range from 5 nM to 2.5 μM with a lower limit of detection of 2 nM. In addition, the proposed ratiometric fluorescent sensor exhibited high selectivity for CIP, which could also be used to detect CIP in human blood serum (HBS) with satisfactory results. To our knowledge, this is the first demonstration of using dual-ligand coordination lanthanide (Ln)-based CPs for ratio-metric CIP assay, and this straightforward strategy may open up a new platform for designing the ratio-metric sensors based on the Ln CPs.
Collapse
Affiliation(s)
- Xinan An
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinyue Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Baoxian Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
42
|
Liu P, Zhao M, Zhu H, Zhang M, Li X, Wang M, Liu B, Pan J, Niu X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127077. [PMID: 34482084 DOI: 10.1016/j.jhazmat.2021.127077] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The great threat of pesticide residues to the environment and human health has drawn widespread interest to explore approaches for pesticide monitoring. Compared to commonly developed single-signal pesticide assays, multi-mode detection with inherent self-validation and self-correction is expected to offer more reliable and anti-interference results. However, how to realize multi-mode analysis of pesticides still remains challenging. Herein, we propose a dual-mode fluorescence and colorimetric method for pesticide determination by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles (CPNs(Ⅳ)). The CPNs(Ⅳ) exhibit good oxidase-like activity of catalyzing the colorless 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to its blue oxide, offering a visible color signal; by employing acid phosphatase (ACP) to hydrolyze ascorbic acid 2-phosphate (AAP), the generated ascorbic acid (AA) can chemically reduce the CPNs(Ⅳ) to CPNs(Ⅲ), which exhibit a remarkable fluorescence signal but lose the oxidase-mimicking ability to trigger the TMB chromogenic reaction; when pesticides exist, the enzymatic activity of ACP is restrained and the hydrolysis of AAP to AA is blocked, leading to the recovery of the catalytic TMB chromogenic reaction but the suppression of the fluorescence signal of CPNs(Ⅲ). According to this principle, by taking malathion as a pesticide model, dual-mode 'off-on-off' fluorescence and 'on-off-on' colorimetric detection of the pesticide with good sensitivity was realized. Excellent interference-tolerance and reliability were verified by applying it to analyze the target in real sample matrices. With good performance and practicability, the proposed dual-mode approach shows great potential in the facile and reliable monitoring of pesticide residues.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Menghao Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingliang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
43
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor‐Microenvironment‐Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self‐Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Yan Liu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Datao Tu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Mingmao Chen
- Fuzhou University College of Biological Science and Engineering CHINA
| | - Yunqin Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Hang Gao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Xueyuan Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 West Yangqiao Road Fuzhou CHINA
| |
Collapse
|
44
|
Ling Y, He LZ, Wan CC, Han L, Wang XH, Xu ZY, Li XL, Li NB, Luo HQ. ZIF-8@GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120230. [PMID: 34358784 DOI: 10.1016/j.saa.2021.120230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Luminescent metal-organic frameworks (LMOFs) and their functional materials with unique characteristics can provide the basis for the construction of new analytical techniques, which can meet the continuous demand for various fields. In this work, guanosine monophosphate (GMP), terbium ion (Tb3+) and zeolitic imidazolate framework-8 (ZIF-8) are self-assembled to form a ZIF-8@GMP-Tb nanocomplex, which can be utilized as a ratiometric fluorescent probe to monitor alkaline phosphatase (ALP) activity. Specifically, with adding ALP, the fluorescence intensity at 547 nm (one of the characteristic emission peaks of Tb3+) obviously decreased. Meanwhile, the conjugated structure of GMP increased the fluorescence of ZIF-8 (located at 330 nm). The possible mechanism was proposed through the characterization of the materials. Based on the variation of the emission peaks at 330 and 547 nm, the ratiometric fluorescent sensor of ALP has a linear range of 0.25-20 U/L. Moreover, applying this sensing system to the detection of ALP in the human serum sample and ALP inhibitor investigation possesses satisfactory results. This work provides a new perspective for the utilization of ZIF-8 and lanthanide ions in manufacturing simple and sensitive sensors.
Collapse
Affiliation(s)
- Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Lin Zhao He
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 400715, People's Republic of China
| | - Chu Chu Wan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Hu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Zi Yi Xu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Lin Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
45
|
Li J, Wang Y, Jiang X, Wu P. An Aqueous Room-Temperature Phosphorescent Probe for Gd3+. Chem Commun (Camb) 2022; 58:2686-2689. [DOI: 10.1039/d1cc06229h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aqueous room-temperature phosphorescent (RTP) probe for Gd3+ is reported, based on Gd3+-induced intersystem promoting and the oxygen-shielding property of the Gd3+/AMP/fluorescein coordination polymer nanoparticles (CPNs). Besides selective Gd3+ detection,...
Collapse
|
46
|
Liu S, Tian J, Zhu L, Tian H, Yang M, Huang K, Xu W. A rapid fluorescent ratiometric Ag+ sensor based on synthesis of a dual-emission ternary nucleotide/terbium complex probe. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Zou Z, He L, Deng X, Wang H, Huang Z, Xue Q, Qing Z, Lei Y, Yang R, Liu J. Zn
2+
‐Coordination‐Driven RNA Assembly with Retained Integrity and Biological Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Zou
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Libei He
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Xiangxi Deng
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Huangxiang Wang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Ziyun Huang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Qian Xue
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Zhihe Qing
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Yanli Lei
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
| | - Ronghua Yang
- School of Chemistry and Food Engineering Hunan Provincial Key Laboratory of Cytochemistry Changsha University of Science and Technology Changsha 410114 China
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research Ministry of Education College of Chemistry and Chemical Engineering Hunan Normal University Changsha 410081 China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
48
|
Zou Z, He L, Deng X, Wang H, Huang Z, Xue Q, Qing Z, Lei Y, Yang R, Liu J. Zn 2+ -Coordination-Driven RNA Assembly with Retained Integrity and Biological Functions. Angew Chem Int Ed Engl 2021; 60:22970-22976. [PMID: 34405498 DOI: 10.1002/anie.202110404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Metal-coordination-directed biomolecule crosslinking in nature has been used for synthesizing various biopolymers, including DNA, peptides, proteins, and polysaccharides. However, the RNA biopolymer has been avoided so far, as due to the poor stability of the RNA molecules, the formation of a biopolymer may alter the biological function of the molecules. Herein, for the first time, we report Zn2+ -driven RNA self-assembly forming spherical nanoparticles while retaining the integrity and biological function of RNA. Various functional RNAs of different compositions, shapes, and lengths from 20 to nearly 1000 nucleotides were used, highlighting the versatility of this approach. The assembled nanospheres possess a superior RNA-loading efficiency, pharmacokinetics, and bioavailability. In-vitro and in-vivo evaluation demonstrated mRNA delivery for expressing GFP proteins, and microRNA delivery to triple-negative breast cancer. This coordination-directed self-assembly behavior amplifies the horizons of RNA coordination chemistry and the application scope of RNA-based therapeutics.
Collapse
Affiliation(s)
- Zhen Zou
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Libei He
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xiangxi Deng
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Huangxiang Wang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Ziyun Huang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Qian Xue
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihe Qing
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Yanli Lei
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China
| | - Ronghua Yang
- School of Chemistry and Food Engineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha, 410114, China.,Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
49
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
50
|
Arroyos G, da Silva CM, Theodoroviez LB, Campanella JEM, Frem RCG. Insights on Luminescent Micro- and Nanospheres of Infinite Coordination Polymers. Chemistry 2021; 28:e202103104. [PMID: 34582106 DOI: 10.1002/chem.202103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Coordination polymers have been extensively studied in recent years. Some of these materials can exhibit several properties such as permanent porosity, high surface area, thermostability and light emission, as well as open sites for chemical functionalization. Concerning the fact that this kind of compounds are usually solids, the size and morphology of the particles are important parameters when an application is desired. Inside this context, there is a subclass of coordination polymers, named infinite coordination polymers (ICPs), which auto-organize as micro- or nanoparticles with low crystallinity. Specifically, the particles exhibiting spherical shapes and reduced sizes can be better dispersed, enter cells much easier than bulk crystals and be converted to inorganic materials by topotactic transformation. Luminescent ICPs, in particular, can find applications in several areas, such as sensing probes, light-emitting devices and bioimaging. In this review, we present the state-of-the-art of ICP-based spherical particles, including the growth mechanisms, some applications for luminescent ICPs and the challenges to overcome in future commercial usage of these materials.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Caroline M da Silva
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Lucas B Theodoroviez
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Jonatas E M Campanella
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Regina C G Frem
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| |
Collapse
|