1
|
Wang J, Yuan Y, Su C, Bao Y, Xu W, Yao Y, Liang L, Zeng Y, Xiong M. pH-Ultrasensitive Membranolytic Polyesters with Alternating Sequence of Ionizable and Hydrophobic Groups for Selective Oncolytic Therapy. J Am Chem Soc 2024. [PMID: 39731565 DOI: 10.1021/jacs.4c14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups. This design enables a refined "OFF" to "ON" switch within 0.2 pH units, ensuring high selectivity in membranolytic activity and cytotoxicity of pOPs between the pH levels of normal tissues and tumor acidity. The top-performing pOP, P(P-AC7), demonstrated a maximum tolerated dose of >100 mg kg-1 after intravenous administration and potent cytotoxicity at pH 6.8. Notably, the molecular weight of P(P-AC7) had a minimal effect on its pH-dependent cytotoxicity once the degree of polymerization was ≥49, ensuring consistency in properties across batches. P(P-AC7) exerts membranolytic activity by interacting with phosphatidylserine at pH 6.8 and shows high antitumor efficacy in various tumor models. Overall, we developed a strategy to develop oncolytic polymers with a precise structure for selective oncolytic therapy.
Collapse
Affiliation(s)
- Jihong Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yueling Yuan
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chanjuan Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Medical Research Center, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Weide Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yandan Yao
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lifang Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuxuan Zeng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Fernandes MCS, Branco R, Pereira P, Coelho JFJ, Morais PV, Serra AC. Antimicrobial Activity of Copolymer Structures from Bio-Based Monomers. Biomacromolecules 2024; 25:7915-7925. [PMID: 39540900 DOI: 10.1021/acs.biomac.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol-1). Hydrophobicity was evaluated using the theoretical Log Poct values and surface areas (SAs). Biological assays included antimicrobial activity against Escherichia coli and Staphylococcus aureus standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.
Collapse
Affiliation(s)
- Mónica C S Fernandes
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Rita Branco
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Patrícia Pereira
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Paula V Morais
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Arménio C Serra
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
3
|
Gao R, Xue M, Shen N, Zhao X, Zhang JC, Cao C, Cai J. Development of Low-Toxicity Antimicrobial Polycarbonates Bearing Lysine Residues. Chemistry 2024; 30:e202402302. [PMID: 39327935 PMCID: PMC11537833 DOI: 10.1002/chem.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Antibiotic resistance has been threatening public health for a long period, while the COVID pandemic aggravated the scenario. To combat antibiotic resistance strains, host defense peptides (HDPs) mimicking molecules have attracted considerable attention. Herein, we reported a series of polycarbonates bearing cationic lysine amino acid residues that could mimic the mechanism of action of HDPs and possess broad-spectrum antimicrobial activity. Moreover, those polymers had negligible toxicity toward red blood cells and mammalian cells. The membrane-disruption mechanism endows the lysine-containing polycarbonates with low possibility of resistance development and the fast killing kinetics, making them promising candidates for antimicrobial development.
Collapse
Affiliation(s)
- Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Justin C Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Chuanhai Cao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| |
Collapse
|
4
|
Aquib M, Yang W, Yu L, Kannaujiya VK, Zhang Y, Li P, Whittaker A, Fu C, Boyer C. Effect of cyclic topology versus linear terpolymers on antibacterial activity and biocompatibility: antimicrobial peptide avatars. Chem Sci 2024:d4sc05797j. [PMID: 39479165 PMCID: PMC11520352 DOI: 10.1039/d4sc05797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Host-defense peptides (HDPs) and their analogs hold significant potential for combating multidrug-resistant (MDR) bacterial infections. However, their clinical use has been hindered by susceptibility to proteases, high production costs, and cytotoxicity towards mammalian cells. Synthetic polymers with diverse topologies and compositions, designed to mimic HDPs, show promise for treating bacterial infections. In this study, we explored the antibacterial activity and biocompatibility of synthetic amphiphilic linear (LPs) and cyclic terpolymers (CPs) containing hydrophobic groups 2-ethylhexyl (E) and 2-phenylethyl (P) at 20% and 30% content. LPs were synthesized via RAFT polymerization and then cyclized into CPs through a hetero-Diels-Alder click reaction. The bioactivity of these terpolymers was correlated with their topology (LPs vs. CPs) and hydrophobic composition. LPs demonstrated superior antibacterial efficacy compared to CPs against four Gram-negative bacterial strains, with terpolymers containing (P) outperforming those with (E). Increasing the hydrophobicity from 20% to 30% in the terpolymers increased toxicity to both bacterial and mammalian cells. Notably, our terpolymers inhibited the MDR Gram-negative bacterial strain PA37 more effectively than gentamicin and ciprofloxacin. Furthermore, our terpolymers were able to disrupt cell membranes and rapidly eliminate Gram-negative bacteria (99.99% within 15 minutes). Interestingly, CPs exhibited higher hemocompatibility and biocompatibility with mammalian macrophage cells compared to LPs, showcasing a better safety profile (CPs > LPs). These findings underscore the importance of tailoring polymer architectures and optimizing the hydrophilic/hydrophobic balance to address challenges related to toxicity and selectivity in developing antimicrobial polymers.
Collapse
Affiliation(s)
- Md Aquib
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Wenting Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Luofeng Yu
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Vinod Kumar Kannaujiya
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Andrew Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
5
|
Wu Y, Chen K, Wang J, Dai W, Yu H, Xie X, Chen M, Liu R. Open-vessel polymerization of N-carboxyanhydride (NCA) for polypeptide synthesis. Nat Protoc 2024:10.1038/s41596-024-01062-3. [PMID: 39379616 DOI: 10.1038/s41596-024-01062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/07/2024] [Indexed: 10/10/2024]
Abstract
Synthetic polypeptides, also known as poly(α-amino acids), have the same polyamide backbone structures as natural proteins and peptides. As an important class of biomaterials, polypeptides have been widely used because of their biocompatibility, bioactivity and biodegradability. Ring-opening polymerization of N-carboxyanhydride (NCA) is a classical and widely used method for the synthesis of polypeptides. The dominantly used primary amine-initiated NCA polymerization can yield well-defined polymers and complex macromolecular architectures, but the reaction is slow and sensitive to moisture, making it necessary to use anhydrous solvents and a glovebox. One solution is to use lithium hexamethyldisilazide (LiHMDS) as the initiator, as described in this protocol. LiHMDS-initiated NCA polymerization is less sensitive to moisture and can be carried out in an open vessel outside the glovebox. It is also very fast; the reaction can be complete within 5 min to produce 30-mer polypeptides. In this protocol, poly(γ-benzyl-L-glutamate) is prepared as an example, but the protocol can easily be adapted to the synthesis of other polypeptides by generating NCAs from different amino acids, making it particularly suitable for the efficient parallel synthesis of polypeptide libraries. We provide detailed procedures for NCA synthesis and purification, the method of polymer end-group modification and measurement of polymerization kinetics and reactivity ratio. The procedure for synthesis of monomers and polymerization to form polypeptides requires <1 d. The superfast and open-vessel NCA polymerization method described here will probably enable a wide range of applications in the synthesis and functional study of polypeptide biomaterials.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| | - Kang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiangzhou Wang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenhui Dai
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Haowen Yu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinyi Xie
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Minzhang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
6
|
Liang Y, Zhang Y, Huang Y, Xu C, Chen J, Zhang X, Huang B, Gan Z, Dong X, Huang S, Li C, Jia S, Zhang P, Yuan Y, Zhang H, Wang Y, Yuan B, Bao Y, Xiao S, Xiong M. Helicity-directed recognition of bacterial phospholipid via radially amphiphilic antimicrobial peptides. SCIENCE ADVANCES 2024; 10:eadn9435. [PMID: 39213359 PMCID: PMC11364095 DOI: 10.1126/sciadv.adn9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The fundamental differences in phospholipids between bacterial and mammalian cell membranes present remarkable opportunities for antimicrobial design. However, it is challenging to distinguish bacterial anionic phospholipid phosphatidylglycerol (PG) from mammalian anionic phosphatidylserine (PS) with the same net charge. Here, we report a class of radially amphiphilic α helix antimicrobial peptides (RAPs) that can selectively discriminate PG from PS, relying on the helix structure. The representative RAP, L10-MMBen, can direct the rearrangement of PG vesicles into a lamellar structure with its helix axis parallel to the PG membrane surface. The helical structure imparts both the thermodynamic and kinetic advantages of L10-MMBen/PG assembly, and the hiding of hydrophobic regions in RAPs is crucial for PG recognition. L10-MMBen exhibits high selectivity against bacteria depending on PG recognition, showing low in vivo toxicity and significant treatment efficacy in mice infection models. Our study introduces a helicity-direct bacterial phospholipid recognition paradigm for designing highly selective antimicrobial peptides.
Collapse
Affiliation(s)
- Yangbin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yu Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Jingxian Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinshuang Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Bingchuan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xuehui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Songyin Huang
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chengrun Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuyi Jia
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Pengfei Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yueling Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Houbing Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, P. R. China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Wu T, Zhou M, Zou J, Chen Q, Qian F, Kurths J, Liu R, Tang Y. AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria. Nat Commun 2024; 15:6288. [PMID: 39060236 PMCID: PMC11282099 DOI: 10.1038/s41467-024-50533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Host defense peptide (HDP)-mimicking polymers are promising therapeutic alternatives to antibiotics and have large-scale untapped potential. Artificial intelligence (AI) exhibits promising performance on large-scale chemical-content design, however, existing AI methods face difficulties on scarcity data in each family of HDP-mimicking polymers (<102), much smaller than public polymer datasets (>105), and multi-constraints on properties and structures when exploring high-dimensional polymer space. Herein, we develop a universal AI-guided few-shot inverse design framework by designing multi-modal representations to enrich polymer information for predictions and creating a graph grammar distillation for chemical space restriction to improve the efficiency of multi-constrained polymer generation with reinforcement learning. Exampled with HDP-mimicking β-amino acid polymers, we successfully simulate predictions of over 105 polymers and identify 83 optimal polymers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find that this polymer exhibits broad-spectrum and potent antibacterial activity against multiple clinically isolated antibiotic-resistant pathogens, validating the effectiveness of AI-guided design strategy.
Collapse
Affiliation(s)
- Tianyu Wu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Qian
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, 14473, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yang Tang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Su M, Su Y. Recent Advances in Amphipathic Peptidomimetics as Antimicrobial Agents to Combat Drug Resistance. Molecules 2024; 29:2492. [PMID: 38893366 PMCID: PMC11173824 DOI: 10.3390/molecules29112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.
Collapse
Affiliation(s)
- Ma Su
- College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Yongxiang Su
- College of Chemistry and Environmental Engineering, Jiaozuo University, Ren-Min Road, Jiaozuo 454000, China;
| |
Collapse
|
9
|
Shao WB, Luo RS, Meng J, Lv XK, Xiang HM, Xiao WL, Zhou X, Liu LW, Wu ZB, Yang S. Engineering Phenothiazine-Based Functional Mimics of Host Defense Peptides as New Agrochemical Candidates: Design, Synthesis, and Antibacterial Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906428 DOI: 10.1021/acs.jafc.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the protracted "arms race" between host and plant pathogenic bacteria, host organisms have evolved powerful weapons known as host defense peptides (HDPs). However, natural HDPs are not suitable for large-scale applications; therefore, researchers have chosen to develop bespoke small-molecule functional mimics. Phenothiazine derivatives were developed as functional HDPs mimics, owing to their broad biological activity and high lipophilicity. The phenothiazine analogues designed in this study exhibited excellent in vitro bioactivity against the three Gram-negative bacteria Xanthomonas oryzae pv oryzae, Xanthomonas axonopodis pv citri, and Pseudomonas syringae pv actinidiae, with optimal EC50 values of 0.80, 0.31, and 1.91 μg/mL, respectively. Preliminary evidence suggests that compound C2 may act on bacterial cell membranes and interact with bacterial Deoxyribonucleic acid in the groove binding mode. In vivo trials showed that compound C2 was highly effective against rice leaf blight (51.97-56.69%), with activity superior to those of bismerthiazol (40.7-43.4%) and thiodiazole copper (30.2-37.1%). Our study provides strong evidence to support the development of phenothiazine derivatives into pesticide candidates.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Kang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Mei Xiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Pachla J, Kopiasz RJ, Marek G, Tomaszewski W, Głogowska A, Drężek K, Kowalczyk S, Podgórski R, Butruk-Raszeja B, Ciach T, Mierzejewska J, Plichta A, Augustynowicz-Kopeć E, Jańczewski D. Polytrimethylenimines: Highly Potent Antibacterial Agents with Activity and Toxicity Modulated by the Polymer Molecular Weight. Biomacromolecules 2023; 24:2237-2249. [PMID: 37093622 PMCID: PMC10170506 DOI: 10.1021/acs.biomac.3c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cationic polymers have been extensively investigated as a potential replacement for traditional antibiotics. Here, we examined the effect of molecular weight (MW) on the antimicrobial, cytotoxic, and hemolytic activity of linear polytrimethylenimine (L-PTMI). The results indicate that the biological activity of the polymer sharply increases as MW increases. Thanks to a different position of the antibacterial activity and toxicity thresholds, tuning the MW of PTMI allows one to achieve a therapeutic window between antimicrobial activity and toxicity concentrations. L-PTMI presents significantly higher antimicrobial activity against model microorganisms than linear polyethylenimine (L-PEI) when polymers with a similar number of repeating units are compared. For the derivatives of L-PTMI and L-PEI, obtained through N-monomethylation and partial N,N-dimethylation of linear polyamines, the antimicrobial activity and toxicity were both reduced; however, resulting selectivity indices were higher. Selected materials were tested against clinical isolates of pathogens from the ESKAPE group and Mycobacteria, revealing good antibacterial properties of L-PTMI against antibiotic-resistant strains of Gram-positive and Gram-negative bacteria but limited antibacterial properties against Mycobacteria.
Collapse
Affiliation(s)
- Julita Pachla
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Gabriela Marek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
11
|
Zhou W, Shi G, Zhao P, Zhang G, Yang P, Li B, Li B, Wan X, Zheng Y. Dynamic helical cationic polyacetylenes for fast and highly efficient killing of bacteria. Acta Biomater 2023; 161:134-143. [PMID: 36804537 DOI: 10.1016/j.actbio.2023.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
The antimicrobial activity of native antimicrobial peptides (AMPs) is often attributed to their helical structure, but the effectiveness of synthetic mimics with dynamic helical conformations, such as antimicrobial cationic polymers (ACPs), has not been well studied. Herein we demonstrate the antimicrobial activity of pyrrolidinium-pendant polyacetylenes (PAs) with dynamic helical conformations. The PAs exhibit fast and efficient antimicrobial activity against a wide range of pathogens, with low toxicity to mammalian cells and minimal risk of antibiotic resistance. In addition, the full-thickness wound infection model in mice has demonstrated the favorable biocompatibility and effective in vivo antibacterial capabilities of these PAs. Our data suggest that the dynamic helical structure of these PAs allows them to adapt and form pores in the bacterial membrane upon interaction, leading to their potent antimicrobial activity. This work investigated the antibacterial mechanism of dynamic helical ACPs, which provides valuable guidance for the rational design of high-performance antimicrobial agents. STATEMENT OF SIGNIFICANCE: Our study represents a significant contribution to the literature on antimicrobial cationic polymers (ACPs) as alternatives to antibiotics. Through a systematic investigation of the role of dynamic helical conformation in polyacetylenes (PAs) and the use of PAs with adaptive structure for the first time, we have provided valuable insights into the bacterial membrane action and killing mechanisms of these polymers. The results of our study, including fast killing rates and minimum inhibitory concentrations as low as 4-16 µg/mL against a broad range of pathogens and strong in vivo antibacterial activity, demonstrate the potential of these ACPs as high-performance antimicrobials. Our findings may guide the design of future ACPs with enhanced antimicrobial activity.
Collapse
Affiliation(s)
- Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gai Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bowen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
12
|
Buzoglu Kurnaz L, Luo Y, Yang X, Alabresm A, Leighton R, Kumar R, Hwang J, Decho AW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilicity index correlating chemical structures with antimicrobial efficacy. Bioact Mater 2023; 20:519-527. [PMID: 35846842 PMCID: PMC9253162 DOI: 10.1016/j.bioactmat.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides. Established a numerical index to quantify the effect of facial amphiphilicity on antimicrobial efficacy. Evaluated the facial amphiphilicity index of multicyclic compounds possessing various rings and cationic charges. Provided this index a new tool toward more quantitative designs of AMP mimics.
Collapse
Affiliation(s)
- Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Yuanyuan Luo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Rani Kumar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - JiHyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
- Corresponding author.
| |
Collapse
|
13
|
Zhang H, Chen Q, Xie J, Cong Z, Cao C, Zhang W, Zhang D, Chen S, Gu J, Deng S, Qiao Z, Zhang X, Li M, Lu Z, Liu R. Switching from membrane disrupting to membrane crossing, an effective strategy in designing antibacterial polypeptide. SCIENCE ADVANCES 2023; 9:eabn0771. [PMID: 36696494 PMCID: PMC9876554 DOI: 10.1126/sciadv.abn0771] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Drug-resistant bacterial infections have caused serious threats to human health and call for effective antibacterial agents that have low propensity to induce antimicrobial resistance. Host defense peptide-mimicking peptides are actively explored, among which poly-β-l-lysine displays potent antibacterial activity but high cytotoxicity due to the helical structure and strong membrane disruption effect. Here, we report an effective strategy to optimize antimicrobial peptides by switching membrane disrupting to membrane penetrating and intracellular targeting by breaking the helical structure using racemic residues. Introducing β-homo-glycine into poly-β-lysine effectively reduces the toxicity of resulting poly-β-peptides and affords the optimal poly-β-peptide, βLys50HG50, which shows potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) and MRSA persister cells, excellent biosafety, no antimicrobial resistance, and strong therapeutic potential in both local and systemic MRSA infections. The optimal poly-β-peptide demonstrates strong therapeutic potential and implies the success of our approach as a generalizable strategy in designing promising antibacterial polypeptides.
Collapse
Affiliation(s)
- Haodong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuntao Cao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongqian Qiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ziyi Lu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Lehnen AC, Gurke J, Bapolisi AM, Reifarth M, Bekir M, Hartlieb M. Xanthate-supported photo-iniferter (XPI)-RAFT polymerization: facile and rapid access to complex macromolecules. Chem Sci 2023; 14:593-603. [PMID: 36741515 PMCID: PMC9847670 DOI: 10.1039/d2sc05197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Xanthate-supported photo-iniferter (XPI)-reversible addition-fragmentation chain-transfer (RAFT) polymerization is introduced as a fast and versatile photo-polymerization strategy. Small amounts of xanthate are added to conventional RAFT polymerizations to act as a photo-iniferter under light irradiation. Radical exchange is facilitated by the main CTA ensuring control over the molecular weight distribution, while xanthate enables an efficient photo-(re)activation. The photo-active moiety is thus introduced into the polymer as an end group, which makes chain extension of the produced polymers possible directly by irradiation. This is in sharp contrast to conventional photo-initiators, or photo electron transfer (PET)-RAFT polymerizations, where radical generation depends on the added small molecules. In contrast to regular photo-iniferter-RAFT polymerization, photo-activation is decoupled from polymerization control, rendering XPI-RAFT an elegant tool for the fabrication of defined and complex macromolecules. The method is oxygen tolerant and robust and was used to perform screenings in a well-plate format, and it was even possible to produce multiblock copolymers in a coffee mug under open-to-air conditions. XPI-RAFT does not rely on highly specialized equipment and qualifies as a universal tool for the straightforward synthesis of complex macromolecules. The method is user-friendly and broadens the scope of what can be achieved with photo-polymerization techniques.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Johannes Gurke
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Alain M Bapolisi
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam, Institute of Physics and Astronomy Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| |
Collapse
|
15
|
Li N, Luo HK, Chen AX, Tan JPK, Yang C, Ang MJY, Zeng H, Yang YY. Guanidinium-Perfunctionalized Polyhedral Oligomeric Silsesquioxanes as Highly Potent Antimicrobials against Planktonic Microbes, Biofilms, and Coronavirus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:354-363. [PMID: 36534480 DOI: 10.1021/acsami.2c16493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecules have been drawing increasing attention recently in addressing healthcare challenges caused by infectious pathogens. We herein report a novel class of guanidinium-perfunctionalized polyhedral oligomeric silsesquioxane (Gua-POSS) supramolecules with highly potent antimicrobial activities. The modular structure of Gua-POSS Tm-Cn consists of an inorganic T10 or T8 core (m = 10 or 8), flexible linear linkers of varying lengths (n = 1 or 3), and peripherally aligned cationic guanidinium groups as the membrane-binding units. Such Gua-POSS supramolecules with spherically arrayed guanidinium cations display high antimicrobial potency against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, as well as fungus (Candida albicans), with the best showing excellently low minimal inhibitory concentrations (MICs) of 1.7-6.8 μM in media, yet with negligible hemolytic activity and low in vitro cytotoxicity to mammalian cells. More significantly, they can inhibit biofilm formation at around their MICs and near-completely break down preestablished difficult-to-break biofilms at 250 μg mL-1 (∼50 μM). Their strong antiviral efficacy was also experimentally demonstrated against the enveloped murine hepatitis coronavirus as a surrogate of the SARS-CoV species. Overall, this study provides a new design approach to novel classes of sphere-shaped organic-inorganic hybrid supramolecular materials, especially for potent antimicrobial, anti-biofilm, and antiviral applications.
Collapse
Affiliation(s)
- Ning Li
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833
| | - Adrielle Xianwen Chen
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| | - Chuan Yang
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| | - Melgious Jin Yan Ang
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging, A*STAR, 31 Biopolis Way, Singapore 138669
| |
Collapse
|
16
|
Li W, Xiao X, Qi Y, Lin X, Hu H, Shi M, Zhou M, Jiang W, Liu L, Chen K, Wang K, Liu R, Zhou M. Host-Defense-Peptide-Mimicking β-Peptide Polymer Acting as a Dual-Modal Antibacterial Agent by Interfering Quorum Sensing and Killing Individual Bacteria Simultaneously. RESEARCH (WASHINGTON, D.C.) 2023; 6:0051. [PMID: 36930779 PMCID: PMC10014070 DOI: 10.34133/research.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Host defense peptides (HDPs) are one of the potentially promising agents for infection diseases due to their broad spectrum and low resistance rate, but their clinical applications are limited by proteolytic instability, high-cost, and complicated synthesis process. Here, we report a host-defense-peptide-mimicking β-peptide polymer that resists proteolysis to have enhanced the activity under physiological conditions, excellent antimicrobial efficiency even at high density of bacteria, and low cost for preparation. The β-peptide polymer demonstrated quorum sensing (QS) interference and bactericidal effect against both bacterial communities and individual bacterium to simultaneously block bacterial communication and disrupt bacterial membranes. The hierarchical QS network was suppressed, and main QS signaling systems showed considerably down-regulated gene expression, resulting in excellent biofilm eradication and virulence reduction effects. The dual-modal antibacterial ability possessed excellent therapeutic effects in Pseudomonas aeruginosa pneumonia, which could inhibit biofilm formation and exhibit better antibacterial and anti-inflammatory efficiency than clinically used antibiotics, levofloxacin. Furthermore, the β-peptide polymer also showed excellent therapeutic effect Escherichia coli pyogenic liver abscess. Together, we believed that the β-peptide polymer had a feasible clinical potential to treat bacterial infection diseases.
Collapse
Affiliation(s)
- Wanlin Li
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 223300, China.,University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minqi Shi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Wang
- University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 223300, China.,University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
18
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Varghese M, Grinstaff MW. Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chem Soc Rev 2022; 51:8258-8275. [PMID: 36047318 PMCID: PMC9856205 DOI: 10.1039/d1cs00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Affiliation(s)
- Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
22
|
Pham P, Oliver S, Nguyen DT, Boyer C. Effect of Cationic Groups on the Selectivity of Ternary Antimicrobial Polymers. Macromol Rapid Commun 2022; 43:e2200377. [PMID: 35894165 DOI: 10.1002/marc.202200377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Antimicrobial polymers (AMPs) have emerged as a promising approach to combat multidrug-resistant pathogens. Developed from binary polymers, which contain cationic and hydrophobic groups, ternary polymers are enhanced by adding neutral hydrophilic monomers to improve their biocompatibility. Cationic groups have attracted significant attention owing to their pivotal role in AMPs. Although many studies have investigated the effect of cationic groups on antimicrobial activity of binary AMPs, there is a lack of comprehensive and systematic evaluation for ternary AMPs. Therefore, a library of 31 statistical amphiphilic ternary polymers containing different cationic groups, including primary amine, guanidine and sulfonium groups was prepared to investigate the impact of cationic groups on antimicrobial activity and biocompatibility. We show that the cationic balance appears to be a critical factor influencing polymers' antibacterial activity and selectivity. Our results reveal that the polymers that have the ratio of the cationic groups ranging between 50-60%, coupled with a cationic/hydrophobic ratio in the range of [1.4-2] and an appropriate neutral hydrophilic/hydrophobic balance, exhibited the highest selectivity toward mammalian cells. Furthermore, selectivity can be improved with suitable cationic moieties and good neutral hydrophilic candidates. In the present study, a lysine-mimicking monomer and PEG chain were the best choices for cationic and hydrophilic sources to develop the most selective AMPs, displaying an impressive selectivity for HC50 and IC50 greater than 83 and 21, respectively. This study elucidates a structure-property-performance relationship for ternary AMPs, which contributes to the development of AMPs capable of selectively targeting gram-negative pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Phuong Pham
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Duong Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
23
|
Bapolisi AM, Kielb P, Bekir M, Lehnen AC, Radon C, Laroque S, Wendler P, Müller-Werkmeister HM, Hartlieb M. Antimicrobial Polymers of Linear and Bottlebrush Architecture: Probing the Membrane Interaction and Physicochemical Properties. Macromol Rapid Commun 2022; 43:e2200288. [PMID: 35686622 DOI: 10.1002/marc.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs.
Collapse
Affiliation(s)
| | - Patrycja Kielb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115, Bonn, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Anne-Catherine Lehnen
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| | - Christin Radon
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam, Germany
| | - Sophie Laroque
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam, Germany
| | | | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
24
|
Rao Y, Wang J, Wang H, Wang H, Gu R, Shen J, Hao Q, Brash JL, Chen H. Optimizing the Bacteriostatic and Cytocompatibility Properties of Poly(hexamethylene guanidine) Hydrochloride (PHMG) via the Guanidine/Alkane Ratio. Biomacromolecules 2022; 23:2170-2183. [PMID: 35465654 DOI: 10.1021/acs.biomac.2c00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of "superbugs" is not only problematic and potentially lethal for infected subjects but also poses serious challenges for the healthcare system. Although existing antibacterial agents have been effective in some cases, the side effects and biocompatibility generally present difficulties. The development of new antibacterial agents is therefore urgently required. In this work, we have adapted a strategy for the improvement of poly(hexamethylene guanidine) hydrochloride (PHMG), a common antibacterial agent. This involves copolymerization of separate monomer units in varying ratios to find the optimum ratio of the hydrocarbon to guanidine units for antibacterial activity. A series of these copolymers, designated as PGB, was synthesized. By varying the guanidine/hydrophobic ratio and the copolymer molecular weight, a structure-optimized PGB was identified that showed broad-spectrum antibacterial activity and excellent biocompatibility in solution. In an antibacterial assay, the copolymer with the optimum composition (hydrophobic unit content 25%) inhibited >99% Staphylococcus aureus and was compatible with mammalian cells. A polyurethane emulsion containing this PGB component formed transparent, flexible films (PGB-PU films) on a wide range of substrate surfaces, including soft polymers and metals. The PGB-PU films showed excellent bacteriostatic efficiency against nosocomial drug-resistant bacteria, such as Pseudomonas aeruginosa and methicillin-resistant S. aureus (MRSA). It is concluded that our PGB polymers can be used as bacteriostatic agents generally and in particular for the design of antibacterial surfaces in medical devices.
Collapse
Affiliation(s)
- Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Rong Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jie Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Qing Hao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - John L Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.,School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Liu M, Huang L, Zhang W, Wang X, Geng Y, Zhang Y, Wang L, Zhang W, Zhang YJ, Xiao S, Bao Y, Xiong M, Wang J. A transistor-like pH-sensitive nanodetergent for selective cancer therapy. NATURE NANOTECHNOLOGY 2022; 17:541-551. [PMID: 35332294 DOI: 10.1038/s41565-022-01085-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
Plasma membrane rupture is a promising strategy for drug-resistant cancer treatment, but its application is limited by the low tumour selectivity of membranolytic molecules. Here we report the design of 'proton transistor' nanodetergents that can convert the subtle pH perturbation signals of tumour tissues into sharp transition signals of membranolytic activity for selective cancer therapy. Our top-performing 'proton transistor' nanodetergent, P(C6-Bn20), can achieve a >32-fold change in cytotoxicity with a 0.1 pH input signal. At physiological pH, P(C6-Bn20) self-assembles into neutral nanoparticles with inactive membranolytic blocks shielded by poly(ethylene glycol) shells, exhibiting low toxicity. At tumour acidity, a sharp transition in its protonation state induces a morphological transformation and an activation of the membranolytic blocks, and the cation-π interaction facilitates the insertion of benzyl groups-containing hydrophobic domains into the cell membranes, resulting in potent membranolytic activity. P(C6-Bn20) is well tolerated in mice and shows high anti-tumour efficacy in various mouse tumour models.
Collapse
Affiliation(s)
- Mingdong Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Liangqi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Weinan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Xiaochuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Yuanyuan Geng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, P. R. China
| | - Li Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Wenbin Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Yun-Jiao Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Shiyan Xiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, P. R. China.
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China.
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
| |
Collapse
|
26
|
Lin M, Sun J. Antimicrobial peptide–inspired antibacterial polymeric materials for biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
28
|
Wan P, Wang Y, Guo W, Song Z, Zhang S, Wu H, Yan W, Deng M, Xiao C. Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS Biomater Sci Eng 2022; 8:903-911. [PMID: 35050580 DOI: 10.1021/acsbiomaterials.1c01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The steady development of bacterial resistance has become a global public health issue, and new antibacterial agents that are active against drug-resistant bacteria and less susceptible to bacterial resistance are urgently needed. Here, a series of low-molecular-weight cationic polylysines (Cx-PLLn) with different hydrophobic end groups (Cx) and degrees of polymerization (PLLn) was synthesized and used in antibacterial applications. All the obtained Cx-PLLn have antibacterial activity. Among them, C6-PLL13 displays the best antibacterial effect for Gram-positive bacteria, that is, Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA), and highest selectivity against Gram-positive bacteria. A mechanistic study revealed that the C6-PLL13 destroys the integrity of the bacterial cell membrane and causes effective bacterial death. Owing to this membrane-disrupting property, C6-PLL13 showed rapid bacterial killing kinetics and was not likely to develop resistance after repeat treatment (up to 13 generations). Moreover, C6-PLL13 demonstrated a significant therapeutic effect on an MRSA infection mouse model, which further proved that this synthetic polymer could be used as an effective weapon against bacterial infections.
Collapse
Affiliation(s)
- Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhengwei Song
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Wei Yan
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
29
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
30
|
Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides. Polym Chem 2022. [DOI: 10.1039/d1py01324f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organocatalyst 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (U–O) accelerates the ring-opening polymerization of α-amino acid N-substituted N-carboxyanhydrides (NNCAs) for the rapid synthesis of polypeptoids bearing bulky sidechains.
Collapse
Affiliation(s)
- Kang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ruiyi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
32
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
33
|
Tyagi A, Mishra A. Optimal Balance of Hydrophobic Content and Degree of Polymerization Results in a Potent Membrane-Targeting Antibacterial Polymer. ACS OMEGA 2021; 6:34724-34735. [PMID: 34963955 PMCID: PMC8697380 DOI: 10.1021/acsomega.1c05148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 05/09/2023]
Abstract
Globally, excessive use of antibiotics has drastically raised the resistance frequency of disease-causing microorganisms among humans, leading to a scarcity of efficient and biocompatible drugs. Antimicrobial polymers have emerged as a promising candidate to combat drug-resistance pathogens. Along with the amphiphilic balance, structural conformation and molecular weight (M n) play an indispensable role in the antimicrobial potency and cytotoxic activity of polymers. Here, we synthesize cationic and amphiphilic methacrylamide random copolymers using free-radical copolymerization. The mole fraction of the hydrophobic groups is kept constant at approximately 20%, while the molecular weight (average number of linked polymeric units) is varied and the antibacterial and cytotoxic activities are studied. The chemical composition of the copolymers is characterized by 1H NMR spectroscopy. We observe that the average number of linked units in a polymer chain (i.e., molecular weight) significantly affects the polymer activity and selectivity. The antibacterial efficacy against both of the examined bacteria, Escherichia coli and Staphylococcus aureus, increases with increasing molecular weight. The bactericidal activity of polymers is confirmed by live/dead cell viability assay. Polymers with high molecular weight display high antibacterial activity, yet are highly cytotoxic even at 1 × MIC. However, low-molecular-weight polymers are biocompatible while retaining antibacterial potency. Furthermore, no resistance acquisition is observed against the polymers in E. coli and S. aureus. A comprehensive analysis using confocal and scanning electron microscopy (SEM) techniques shows that the polymers target bacterial membranes, resulting in membrane permeabilization that leads to cell death.
Collapse
Affiliation(s)
- Anju Tyagi
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Abhijit Mishra
- Department
of Materials Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
- . Tel: (+91-79) 2395 2422
| |
Collapse
|
34
|
Zhu Y, Liu L, Mustafi M, Rank LA, Gellman SH, Weisshaar JC. Local rigidification and possible coacervation of the Escherichia coli DNA by cationic nylon-3 polymers. Biophys J 2021; 120:5243-5254. [PMID: 34757079 DOI: 10.1016/j.bpj.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Synthetic, cationic random nylon-3 polymers (β-peptides) show promise as inexpensive antimicrobial agents less susceptible to proteolysis than normal peptides. We have used superresolution, single-cell, time-lapse fluorescence microscopy to compare the effects on live Escherichia coli cells of four such polymers and the natural antimicrobial peptides LL-37 and cecropin A. The longer, densely charged monomethyl-cyclohexyl (MM-CH) copolymer and MM homopolymer rapidly traverse the outer membrane and the cytoplasmic membrane. Over the next ∼5 min, they locally rigidify the chromosomal DNA and slow the diffusive motion of ribosomal species to a degree comparable to LL-37. The shorter dimethyl-dimethylcyclopentyl (DM-DMCP) and dimethyl-dimethylcyclohexyl (DM-DMCH) copolymers, and cecropin A are significantly less effective at rigidifying DNA. Diffusion of the DNA-binding protein HU and of ribosomal species is hindered as well. The results suggest that charge density and contour length are important parameters governing these antimicrobial effects. The data corroborate a model in which agents having sufficient cationic charge distributed across molecular contour lengths comparable to local DNA-DNA interstrand spacings (∼6 nm) form a dense network of multivalent, electrostatic "pseudo-cross-links" that cause the local rigidification. In addition, at times longer than ∼30 min, we observe that the MM-CH copolymer and the MM homopolymer (but not the other four agents) cause gradual coalescence of the two nucleoid lobes into a single dense lobe localized at one end of the cell. We speculate that this process involves coacervation of the DNA by the cationic polymer, and may be related to the liquid droplet coacervates observed in eukaryotic cells.
Collapse
Affiliation(s)
- Yanyu Zhu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Lei Liu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Leslie A Rank
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
35
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021; 60:26063-26071. [PMID: 34569145 DOI: 10.1002/anie.202103540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/23/2021] [Indexed: 01/16/2023]
Abstract
We design the tetraalkylammonium carboxylate-initiated superfast polymerization on α-amino acid N-carboxyanhydrides (NCA) for efficient synthesis of polypeptides. Carboxylates, as a new class of initiator for NCA polymerization, can initiate the superfast NCA polymerization without the need of extra catalysts and the polymerization can be operated in open vessels at ambient condition without the use of glove box. Tetraalkylammonium carboxylate-initiated polymerization on NCA easily affords block copolymers with at least 15 blocks. Moreover, this method avoids tedious purification steps and enables direct polymerization on crude NCAs in aqueous environments to prepare polypeptides and one-pot synthesis of polypeptide nanoparticles. These advantages and the mild polymerization condition of tetraalkylammonium carboxylate-initiated NCA polymerization imply its great potential in functional exploration and application of polypeptides.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacheng Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
36
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water‐Insensitive Polymerization on α‐Amino Acid
N
‐Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Jiacheng Chen
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Minghui Zhu
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
37
|
Konuk Tokak E, Çetin Altındal D, Akdere ÖE, Gümüşderelioğlu M. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112528. [PMID: 34857307 DOI: 10.1016/j.msec.2021.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
In skeletal muscle tissue engineering, success has not been achieved yet, since the properties of the tissue cannot be fully mimicked. The aim of this study is to investigate the potential use of poly-3-hydroxybutyrate (P3HB)/poly-β-alanine (PBA) fibrous tissue scaffolds with piezoelectric properties for skeletal muscle regeneration. Random and aligned P3HB/PBA (5:1) fibrous matrices were prepared by electrospinning with average diameters of 951 ± 153 nm and 891 ± 247 nm, respectively. X-ray diffraction (XRD) analysis showed that PBA reinforcement and aligned orientation of fibers reduced the crystallinity and brittleness of P3HB matrix. While tensile strength and elastic modulus of random fibrous matrices were determined as 3.9 ± 1.0 MPa and 86.2 ± 10.6 MPa, respectively, in the case of aligned fibers they increased to 8.5 ± 1.8 MPa and 378.2 ± 4.2 MPa, respectively. Aligned matrices exhibited a soft and an elastic behaviour with ~70% elongation in similar to the natural tissue. For the first time, d33 piezoelectric modulus of P3HB/PBA matrices were measured as 5 pC/N and 5.3 pC/N, for random and aligned matrices, respectively. Cell culture studies were performed with C2C12 myoblastic cell line. Both of random and aligned P3HB/PBA fibrous matrices supported attachment and proliferation of myoblasts, but cells cultured on aligned fibers formed regular and thick myofibril structures similar to the native muscle tissue. Reverse transcription polymerase chain reaction (RT-qPCR) analysis indicated that MyoD gene was expressed in the cells cultured on both fiber orientation, however, on the aligned fibers significant increase was determined in Myogenin and Myosin Heavy Chain (MHC) gene expressions, which indicate functional tubular structures. The results of RT-qPCR analysis were also supported with immunohistochemistry for myogenic markers. These in vitro studies have shown that piezoelectric P3HB/PBA aligned fibrous scaffolds can successfully mimic skeletal muscle tissue with its superior chemical, morphological, mechanical, and electroactive properties.
Collapse
Affiliation(s)
- Elvan Konuk Tokak
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Damla Çetin Altındal
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Özge Ekin Akdere
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey; Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey.
| |
Collapse
|
38
|
Ganewatta MS, Wang Z, Tang C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat Rev Chem 2021; 5:753-772. [PMID: 36238089 PMCID: PMC9555244 DOI: 10.1038/s41570-021-00325-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
The rich structures and hierarchical organizations in nature provide many sources of inspiration for advanced material designs. We wish to recapitulate properties such as high mechanical strength, colour-changing ability, autonomous healing and antimicrobial efficacy in next-generation synthetic materials. Common in nature are non-covalent interactions such as hydrogen bonding, ionic interactions and hydrophobic effects, which are all useful motifs in tailor-made materials. Among these are biobased components, which are ubiquitously conceptualized in the space of recently developed bioinspired and biomimetic materials. In this regard, sustainable organic polymer chemistry enables us to tune the properties and functions of such materials that are essential for daily life. In this Review, we discuss recent progress in bioinspired and biomimetic polymers and provide insights into biobased materials through the evolution of chemical approaches, including networking/crosslinking, dynamic interactions and self-assembly. We focus on advances in biobased materials; namely polymeric mimics of resilin and spider silk, mechanically and optically adaptive materials, self-healing elastomers and hydrogels, and antimicrobial polymers.
Collapse
Affiliation(s)
- Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
39
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
40
|
Xie J, Zhou M, Qian Y, Cong Z, Chen S, Zhang W, Jiang W, Dai C, Shao N, Ji Z, Zou J, Xiao X, Liu L, Chen M, Li J, Liu R. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat Commun 2021; 12:5898. [PMID: 34625571 PMCID: PMC8501045 DOI: 10.1038/s41467-021-26221-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) induced infection calls for antibacterial agents that are not prone to antimicrobial resistance. We prepare protease-resistant peptoid polymers with variable C-terminal functional groups using a ring-opening polymerization of N-substituted N-carboxyanhydrides (NNCA), which can provide peptoid polymers easily from the one-pot synthesis. We study the optimal polymer that displays effective activity against MRSA planktonic and persister cells, effective eradication of highly antibiotic-resistant MRSA biofilms, and potent anti-infectious performance in vivo using the wound infection model, the mouse keratitis model, and the mouse peritonitis model. Peptoid polymers show insusceptibility to antimicrobial resistance, which is a prominent merit of these antimicrobial agents. The low cost, convenient synthesis and structure diversity of peptoid polymers, the superior antimicrobial performance and therapeutic potential in treating MRSA infection altogether imply great potential of peptoid polymers as promising antibacterial agents in treating MRSA infection and alleviating antibiotic resistance. Antibiotic resistance is a major issue in medicine and new antimicrobials for treating resistant infection are needed. Here, the authors report on antibacterial peptoid polymers, prepared via NNCA ring-opening polymerization, demonstrating antibacterial function against MRSA in vitro and in in vivo infection models.
Collapse
Affiliation(s)
- Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuxin Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Sheng Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Chengzhi Dai
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China. .,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
41
|
Shi Y, Feng X, Lin L, Wang J, Chi J, Wu B, Zhou G, Yu F, Xu Q, Liu D, Quan G, Lu C, Pan X, Cai J, Wu C. Virus-inspired surface-nanoengineered antimicrobial liposome: A potential system to simultaneously achieve high activity and selectivity. Bioact Mater 2021; 6:3207-3217. [PMID: 33723524 PMCID: PMC7947718 DOI: 10.1016/j.bioactmat.2021.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 01/06/2023] Open
Abstract
Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity. Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches, we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects. Herein, a surface-nanoengineered antimicrobial liposome (SNAL) is developed with the morphological features of enveloped viruses, including a moderate size range, lipid-based membrane structure, and highly lipopeptide-enriched bilayer surface. The SNAL possesses virus-like infection to bacterial cells, which can mediate high-efficiency and high-selectivity bacteria binding, rapidly attack and invade bacteria via plasma membrane fusion pathway, and induce a local "burst" release of lipopeptide to produce irreversible damage of cell membrane. Remarkably, viral mimics are effective against multiple pathogens with low minimum inhibitory concentrations (1.6-6.3 μg mL-1), high bactericidal efficiency of >99% within 2 h, >10-fold enhanced selectivity over free lipopeptide, 99.8% reduction in skin MRSA load after a single treatment, and negligible toxicity. This bioinspired design has significant potential to enhance the therapeutic efficacy of lipopeptides and may create new opportunities for designing next-generation antimicrobials.
Collapse
Affiliation(s)
- Yin Shi
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xiaoqian Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Liming Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Biyuan Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Guilin Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Feiyuan Yu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Qian Xu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Daojun Liu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, United States
| | - Xin Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, United States
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| |
Collapse
|
42
|
Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics (Basel) 2021; 10:antibiotics10080948. [PMID: 34438998 PMCID: PMC8388953 DOI: 10.3390/antibiotics10080948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridioides difficile, a spore-forming bacterium, is a nosocomial infectious pathogen which can be found in animals as well. Although various antibiotics and disinfectants were developed, C. difficile infection (CDI) remains a serious health problem. C. difficile spores have complex structures and dormant characteristics that contribute to their resistance to harsh environments, successful transmission and recurrence. C. difficile spores can germinate quickly after being exposed to bile acid and co-germinant in a suitable environment. The vegetative cells produce endospores, and the mature spores are released from the hosts for dissemination of the pathogen. Therefore, concurrent elimination of C. difficile vegetative cells and inhibition of spore germination is essential for effective control of CDI. This review focused on the molecular pathogenesis of CDI and new trends in targeting both spores and vegetative cells of this pathogen, as well as the potential contribution of nanotechnologies for the effective management of CDI.
Collapse
|
43
|
Influence of lipid bilayer composition on the activity of antimicrobial quaternary ammonium ionenes, the interplay of intrinsic lipid curvature and polymer hydrophobicity, the role of cardiolipin. Colloids Surf B Biointerfaces 2021; 207:112016. [PMID: 34364250 DOI: 10.1016/j.colsurfb.2021.112016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Incorporation of hydrophobic component into amphiphilic polycations structure is frequently accompanied by an increase of antimicrobial activity. There is, however, a group of relatively hydrophilic polycations containing quaternary ammonium moieties along mainchain, ionenes, which also display strong antimicrobial and limited hemolytic properties. In this work, an influence of a hydrophobic side group length on antimicrobial mechanism of action is investigated in a series of novel amphiphilic ionenes. High antimicrobial activity was found by determination of minimum inhibitory concentration (MIC) and minimum bactericidal, and fungicidal concentration (MBC and MFC) in both growth media and a buffer. Biocompatibility was estimated by hemolytic and mammalian cells viability assays. Mechanistic studies were performed using large unilamellar vesicles (LUVs) with different lipid composition, as simplified models of cell membranes. The investigated ionenes are potent and selective antimicrobial molecules displaying a decrease of antimicrobial activity correlated with increase of hydrophobicity. Studies using LUVs revealed that the cardiolipin is an essential component responsible for the lipid bilayer permeabilization by investigated ionens. In contrast to relatively hydrophilic ionenes, more hydrophobic polymers showed an ability to stabilize membranes composed of lipids with negative spontaneous curvature in a certain range of polymer to lipid ratio. The results substantially contribute to the understanding of antimicrobial activity of the investigated class of polymers.
Collapse
|
44
|
Wang M, Feng X, Gao R, Sang P, Pan X, Wei L, Lu C, Wu C, Cai J. Modular Design of Membrane-Active Antibiotics: From Macromolecular Antimicrobials to Small Scorpionlike Peptidomimetics. J Med Chem 2021; 64:9894-9905. [PMID: 33789422 PMCID: PMC8886609 DOI: 10.1021/acs.jmedchem.1c00312] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infections caused by multidrug-resistant bacteria have emerged in recent decades, leading to escalating interest in host defense peptides (HDPs) to reverse this dangerous trend. Inspired by the modular design in bioengineering, herein we report a new class of small amphiphilic scorpionlike peptidomimetics based on this strategy. These HDP mimics show potent antimicrobial activity against both Gram-positive and Gram-negative bacteria without drug resistance but with a high therapeutic index. The membrane-compromising action mode was suggested to be their potential bactericidal mechanism. Pharmacodynamic experiments were conducted using a murine abscess model of methicillin-resistant Staphylococcus aureus (MRSA) infections. The lead compound 12 showed impressive in vivo therapeutic efficacy with ∼99.998% (4.7log) reduction in skin MRSA burden, a significantly higher bactericidal efficiency than ciprofloxacin, and good biocompatibility. These results highlight the potential of these HDP mimics as novel antibiotic therapeutics.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaoqian Feng
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China
- Department of Pharmaceutics, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xin Pan
- Department of Pharmaceutics, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
45
|
Ramchuran EJ, Pérez-Guillén I, Bester LA, Khan R, Albericio F, Viñas M, de la Torre BG. Super-Cationic Peptide Dendrimers-Synthesis and Evaluation as Antimicrobial Agents. Antibiotics (Basel) 2021; 10:695. [PMID: 34200662 PMCID: PMC8228121 DOI: 10.3390/antibiotics10060695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial infections are a major public health concern. Antimicrobial peptides (AMPs) have been demonstrated to be a plausible alternative to the current arsenal of drugs that has become inefficient due to multidrug resistance. Herein we describe a new AMP family, namely the super-cationic peptide dendrimers (SCPDs). Although all members of the series exert some antibacterial activity, we propose that special attention should be given to (KLK)2KLLKLL-NH2 (G1KLK-L2KL2), which shows selectivity for Gram-negative bacteria and virtually no cytotoxicity in HepG2 and HEK293. These results reinforce the validity of the SCPD family as a valuable class of AMP and support G1KLK-L2KL2 as a strong lead candidate for the future development of an antibacterial agent against Gram-negative bacteria.
Collapse
Affiliation(s)
- Estelle J. Ramchuran
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (E.J.R.); (L.A.B.)
- Peptide Sciences Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa
| | - Isabel Pérez-Guillén
- Lab Molecular Microbiology & Antimicrobials, Department of Pathology and Experimental Therapeutics, Medical School-IDIBELL, University of Barcelona, Hospitalet, 08907 Barcelona, Spain;
| | - Linda A. Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (E.J.R.); (L.A.B.)
| | - René Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Fernando Albericio
- Peptide Sciences Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Miguel Viñas
- Lab Molecular Microbiology & Antimicrobials, Department of Pathology and Experimental Therapeutics, Medical School-IDIBELL, University of Barcelona, Hospitalet, 08907 Barcelona, Spain;
| | - Beatriz G. de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| |
Collapse
|
46
|
Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers (Basel) 2021; 13:polym13111888. [PMID: 34204165 PMCID: PMC8201166 DOI: 10.3390/polym13111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Approximately 200,000 tons of water contaminated with dyes are discharged into effluents annually, which in addition to infectious diseases constitute problems that afflict the population worldwide. This study evaluated the mechanical properties, surface structure, antimicrobial performance, and methylene blue dye-contaminant adsorption using the non-woven fabrics manufactured by melt-blowing. The non-woven fabrics are composed of nylon 6 (Ny 6) and zinc oxide nanoparticles (ZnO NPs). The polymer nanocomposites were previously fabricated using variable frequency ultrasound assisted-melt-extrusion to be used in melt-blowing. Energy dispersion spectroscopy (SEM-EDS) images showed a homogeneous dispersion of the ZnO nanoparticles in nylon 6. The mechanical properties of the composites increased by adding ZnO compared to the nylon 6 matrix, and sample Ny/ZnO 0.5 showed the best mechanical performance. All fabric samples exhibited antimicrobial activity against S. aureus and fungus C. albicans, and the incorporation of ZnO nanoparticles significantly improved this property compared to pure nylon 6. The absorption efficiency of methylene blue (MB), during 60 min, for the samples Ny/ZnO 0.05 and Ny/ZnO 0.25 wt%, were 93% and 65%, respectively. The adsorption equilibrium data obeyed the Langmuir isotherm.
Collapse
|
47
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
48
|
Wang J, Yang X, Zhao P, Deng H, Zhuo LG, Wang G, Yang Y, Wei H, Zhou Z, Liao W. Investigating Antibacterial Efficiency and Mechanism of Oligo-thiophenes under White Light and Specific Biocidal Activity against E. coli in Dark. ACS APPLIED BIO MATERIALS 2021; 4:3561-3570. [DOI: 10.1021/acsabm.1c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jing Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Xia Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Peng Zhao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People’s Republic of China
| | - Lian-Gang Zhuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Guanquan Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Hongyuan Wei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| | - Zhijun Zhou
- Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Suzhou, Sichuan 215123, People’s Republic of China
| | - Wei Liao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, People’s Republic of China
- Key Laboratory of Nuclear Medicine and Molecular Imaging of Sichuan Province, Mianyang, Sichuan 621900, People’s Republic of China
| |
Collapse
|
49
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Liu L, Courtney KC, Huth SW, Rank LA, Weisblum B, Chapman ER, Gellman SH. Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers. J Am Chem Soc 2021; 143:3219-3230. [PMID: 33611913 PMCID: PMC7944571 DOI: 10.1021/jacs.0c12731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Amphiphilic nylon-3 polymers have been reported to mimic the biological activities of natural antimicrobial peptides, with high potency against bacteria and minimal toxicity toward eukaryotic cells. Amphiphilic balance, determined by the proportions of hydrophilic and lipophilic subunits, is considered one of the most important features for achieving this activity profile for nylon-3 polymers and many other antimicrobial polymers. Insufficient hydrophobicity often correlates with weak activities against bacteria, whereas excessive hydrophobicity correlates with high toxicity toward eukaryotic cells. To ask whether factors beyond amphiphilic balance influence polymer activities, we synthesized and evaluated new nylon-3 polymers with two stereoisomeric subunits, each bearing an ethyl side chain and an aminomethyl side chain. Subunits that differ only in stereochemistry are predicted to contribute equally to amphiphilic balance, but we observed that the stereochemical difference correlates with significant changes in biological activity profile. Antibacterial activities were not strongly affected by subunit stereochemistry, but the ability to disrupt eukaryotic cell membranes varied considerably. Experiments with planar lipid bilayers and synthetic liposomes suggested that eukaryotic membrane disruption results from polymer-mediated formation of large pores. Collectively, our results suggest that factors other than amphiphilic balance influence the membrane activity profile of synthetic polymers. Subunits that differ in stereochemistry are likely to have distinct conformational propensities, which could potentially lead to differences in the average shapes of polymer chains, even when the subunits are heterochiral. These findings highlight a dimension of polymer design that should be considered more broadly in efforts to improve specificity and efficacy of antimicrobial polymers.
Collapse
Affiliation(s)
- Lei Liu
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kevin C. Courtney
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sean W. Huth
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Leslie A. Rank
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Bernard Weisblum
- Department
of Pharmacology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Edwin R. Chapman
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Samuel H. Gellman
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|