1
|
Zhang J, Yu L, Ogawa H, Nagata Y, Nakamura H. Modular, Scalable Total Synthesis of Lapparbin with a Noncanonical Biaryl Linkage. Angew Chem Int Ed Engl 2024; 63:e202409987. [PMID: 39008709 DOI: 10.1002/anie.202409987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
We report the development of a novel synthetic approach for the highly strained atrop-Tyr C-6-to-Trp N-1' linkage, which can be executed on a decagram scale using a modular strategy involving palladium-catalyzed C-H arylation followed by Larock macrocyclization. The first total synthesis of lapparbin (1) was achieved by applying this synthetic strategy. Furthermore, the modular synthesis utilizing C-H arylation and Larock macrocyclization, discovered in the total synthesis of lapparbin (1), was demonstrated to be applicable to various arbitrary biaryl linkages, including non-natural types.
Collapse
Affiliation(s)
- Jie Zhang
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Longhui Yu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Hiroshige Ogawa
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hugh Nakamura
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| |
Collapse
|
2
|
Zhang Y, Saha S, Esser YCC, Ting CP. Total Synthesis and Stereochemical Assignment of Enteropeptin A. J Am Chem Soc 2024; 146:17629-17635. [PMID: 38909357 PMCID: PMC11459435 DOI: 10.1021/jacs.4c06126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The total synthesis and structural elucidation of the antimicrobial sactipeptide enteropeptin A is reported. Enteropeptin A contains a thioaminoketal group with an unassigned stereochemical configuration that is embedded in a highly unusual thiomorpholine ring. In this synthesis, a linear peptide containing a dehydroamino acid and a pendant cysteine residue is subjected to Markovnikov hydrothiolation by a dithiophosphoric acid catalyst. This cyclization reaction forms the central thiomorpholine ring found in the enteropeptins. Both diastereomers at the unassigned thioaminoketal stereocenter of enteropeptin A were prepared, and their comparison to an authentic standard allowed for the unambiguous stereochemical assignment of the natural product to be of the D configuration. This inaugural total synthesis of enteropeptin A represents the first total synthesis of a sactipeptide reported to date. Moreover, the strategy disclosed herein serves as a general platform for the synthesis of stereochemically defined thiomorpholine-containing peptides, which may enable the discovery of new cyclic peptide antibiotics.
Collapse
Affiliation(s)
- Yiwei Zhang
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Shuvendu Saha
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Yannik C. C. Esser
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Chi P. Ting
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| |
Collapse
|
3
|
Liu J, Yao J, Du J, Yu L, Duan W, Xiao Y, Lei Z. Direct Synthesis of α-Ketoamides via Copper-Catalyzed Reductive Amidation of Nitroarenes with α-Oxocarboxylic Acids. J Org Chem 2024; 89:6575-6583. [PMID: 38656973 DOI: 10.1021/acs.joc.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nitroarenes are known for their stability, low toxicity, easy availability, and cost-effectiveness, making them one of the most fundamental chemical feedstocks. The direct utilization of nitroarenes as nitrogen sources in amidation reactions offers significant advantages over using arylamines. Herein, we disclose a streamlined method for constructing α-ketoamides through the direct coupling of nitroarenes with α-oxocarboxylic acids. This transformation obviates the need for preparing, isolating, and purifying arylamines, leading to improved efficiency, cost-effectiveness, and time savings.
Collapse
Affiliation(s)
- Jialing Liu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhiguo Lei
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
4
|
Liu CL, Wang ZJ, Shi J, Yan ZY, Zhang GD, Jiao RH, Tan RX, Ge HM. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides. Angew Chem Int Ed Engl 2024; 63:e202314046. [PMID: 38072825 DOI: 10.1002/anie.202314046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 01/24/2024]
Abstract
Cyclic peptides with cyclophane linkers are an attractive compound type owing to the fine-tuned rigid three-dimensional structures and unusual biophysical features. Cytochrome P450 enzymes are capable of catalyzing not only the C-C and C-O oxidative coupling reactions found in vancomycin and other nonribosomal peptides (NRPs), but they also exhibit novel catalytic activities to generate cyclic ribosomally synthesized and post-translationally modified peptides (RiPPs) through cyclophane linkage. To discover more P450-modified multicyclic RiPPs, we set out to find cryptic and unknown P450-modified RiPP biosynthetic gene clusters (BGCs) through genome mining. Synergized bioinformatic analysis reveals that P450-modified RiPP BGCs are broadly distributed in bacteria and can be classified into 11 classes. Focusing on two classes of P450-modified RiPP BGCs where precursor peptides contain multiple conserved aromatic amino acid residues, we characterized 11 novel P450-modified multicyclic RiPPs with different cyclophane linkers through heterologous expression. Further mutation of the key ring-forming residues and combinatorial biosynthesis study revealed the order of bond formation and the specificity of P450s. This study reveals the functional diversity of P450 enzymes involved in the cyclophane-containing RiPPs and indicates that P450 enzymes are promising tools for rapidly obtaining structurally diverse cyclic peptide derivatives.
Collapse
Affiliation(s)
- Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zi Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Guo Dong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Yu L, Nagata Y, Nakamura H. Atroposelective Total Synthesis of Cihunamide B. J Am Chem Soc 2024; 146:2549-2555. [PMID: 38240691 DOI: 10.1021/jacs.3c11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A short, atroposelective synthesis of cihunamide B (1) is reported. The feature of this report is the decagram-scale SNAr reaction of l-tryptophan derivatives, followed by atroposelective Larock macrocyclization. This strategy allowed the construction of a Trp-Trp cross-linkage with unprecedented atropisomerism. The atroposelectivity of this Larock macrocyclization has been investigated through a combination of experimental and computational chemistry, yielding detailed insights into the synthesis of biaryl linkages. It also enabled the concise synthesis of cihunamide B (1), which is expected to be a potential antibacterial agent.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hugh Nakamura
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
6
|
Meena R, Shekhar S, Ansari SB, Tiwari A, Lal J, Reddy DN. Metal-free sp 2 -C7-H Borylation of Tryptophan Containing Peptides and Late-stage Modification. Chem Asian J 2023; 18:e202300638. [PMID: 37847482 DOI: 10.1002/asia.202300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The discovery of milder and robust strategies to enable the introduction of organoboronates in peptides remains conspicuously underdeveloped. Herein, we demonstrate an efficient method for the site-selective sp2 -C7-H borylation of tryptophan under metal-free condition using BBr3 directed by pivaloyl group. The versatility of this approach is that gram scale synthesis and C7-borylated N-Phth-Trp(N-Piv)(C7-BPin)-OMe was modified into various C7-substituted derivatives. Moreover, the strategy enables for the peptide elongation and late-stage borylation of peptides, natural product Brevianamide F and drug Oglufanide.
Collapse
Affiliation(s)
- Rachana Meena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shabina B Ansari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashwani Tiwari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| |
Collapse
|
7
|
Walker KL, Loach RP, Movassaghi M. Total synthesis of complex 2,5-diketopiperazine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:159-206. [PMID: 37716796 PMCID: PMC10955524 DOI: 10.1016/bs.alkal.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.
Collapse
Affiliation(s)
- Katherine L Walker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
8
|
An J, Jackson RK, Tuccinardi JP, Wood JL. Pyrroloiminoquinone Alkaloids: Total Synthesis of Makaluvamines A and K. Org Lett 2023; 25:1868-1871. [PMID: 36913953 PMCID: PMC10044305 DOI: 10.1021/acs.orglett.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Herein, an efficient, scalable, and concise approach to an advanced pyrroloiminoquinone synthetic intermediate (6b) by way of a Larock indole synthesis is reported. The synthetic utility of this intermediate is demonstrated by its ready conversion to makaluvamines A (1) and K (4).
Collapse
Affiliation(s)
- Jason An
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Richard K Jackson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - Joseph P Tuccinardi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Thangsan P, Rukkijakan T, Thanaussavadate B, Yiamsawat K, Sirijaraensre J, Gable KP, Chuawong P. Quantitative analysis of steric effects on the regioselectivity of the Larock heteroannulation reaction. Org Biomol Chem 2023; 21:1501-1513. [PMID: 36688538 DOI: 10.1039/d2ob02089k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alkylphenylacetylene derivatives were synthesized and used as reactants in the Larock heteroannulation reaction to investigate the steric influence on regioselectivity. Large alkyl groups preferentially yielded 2-alkyl-3-phenylindole products, while smaller alkyl groups provided 3-alkyl-2-phenylindole as major products. The logarithm of regioisomeric product ratios exhibited good correlations with various steric parameters. Notably, the Charton values provided the best correlation when excluding the cyclopropyl group. In addition, the Boltzmann-weighted Sterimol parameter (wSterimol) was utilized to generate a good predictive model, indicating the B1 wSterimol as the significant regiochemical determining parameter with no obvious deviation for the cyclopropyl group. Relative atomic distances within the DFT-optimized transition state structures revealed good correlations with the logarithm of regioisomeric ratios. Furthermore, the cyclopropyl adsorption complex indicated electronic contribution, explaining the peculiar behavior of this substituent in the experimental observation.
Collapse
Affiliation(s)
- Poomsith Thangsan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Thanya Rukkijakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Bongkotrat Thanaussavadate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Kanyapat Yiamsawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| | - Jakkapan Sirijaraensre
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kevin P Gable
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
10
|
Fan L, Zhu X, Liu X, He F, Yang G, Xu C, Yang X. Recent Advances in the Synthesis of 3,n-Fused Tricyclic Indole Skeletons via Palladium-Catalyzed Domino Reactions. Molecules 2023; 28:molecules28041647. [PMID: 36838635 PMCID: PMC9964631 DOI: 10.3390/molecules28041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
3,n-fused (n = 4-7) tricyclic indoles are pervasive motifs, embedded in a variety of biologically active molecules and natural products. Thus, numerous catalytic methods have been developed for the synthesis of these skeletons over the past few decades. In particular, palladium-catalyzed transformations have received much attention in recent years. This review summarizes recent developments in the synthesis of these tricyclic indoles with palladium-catalyzed domino reactions and their applications in the total synthesis of representative natural products.
Collapse
Affiliation(s)
- Liangxin Fan
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xinxin Zhu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingyuan Liu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangyu He
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoyu Yang
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Cuilian Xu
- Department of Chemical Biology, School of Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| | - Xifa Yang
- Institute of Pesticide, School of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (L.F.); (C.X.); (X.Y.)
| |
Collapse
|
11
|
Huang R, Wang M, Deng H, Xu J, Yan H, Zhao Y, Shi Z. Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. SCIENCE ADVANCES 2023; 9:eade8638. [PMID: 36638162 PMCID: PMC9839338 DOI: 10.1126/sciadv.ade8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Enantioenriched phosphorus compounds play crucial roles in many fields ranging from catalyst to materials science to drug development. Despite advances in the construction of phosphacycles, incorporation of a P-chirogenic center into heterocycles remains challenging. Here, we report an effective method for the preparation of phosphacycles through nickel-catalyzed [4+2] heteroannulation of internal alkynes with aminophosphanes derived from o-haloanilines. Notably, chiral 2-λ5-phosphaquinolines can be prepared from P-stereogenic substrates via NH/PH tautomeric equilibrium without loss of stereochemical integrity. The strategy is found to exhibit a broad scope in terms of both reaction components, enabling modular construction of libraries of 2-λ5-phosphaquinolines with different steric and electronic properties for fine-tuning photophysical properties, where some of these compounds showed distinct fluorescence with high quantum yields. A series of mechanistic studies further shed light on the pathway of the heteroannulation and reasons for stereospecificity.
Collapse
Affiliation(s)
- Ronghui Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Deng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Li X, Ma S, Zhang Q. Chemical Synthesis and Biosynthesis of Darobactin. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Lin YC, Schneider F, Eberle KJ, Chiodi D, Nakamura H, Reisberg SH, Chen J, Saito M, Baran PS. Atroposelective Total Synthesis of Darobactin A. J Am Chem Soc 2022; 144:14458-14462. [PMID: 35926121 PMCID: PMC9829381 DOI: 10.1021/jacs.2c05892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A concise, modular synthesis of the novel antibiotic darobactin A is disclosed. The synthesis successfully forges the hallmark strained macrocyclic ring systems in a sequential fashion. Key transformations include two atroposelective Larock-based macrocyclizations, one of which proceeds with exquisite regioselectivity despite bearing an unprotected alkyne. The synthesis is designed with medicinal chemistry considerations in mind, appending key portions of the molecule at a late stage. Requisite unnatural amino acid building blocks are easily prepared in an enantiopure form using C-H activation and decarboxylative cross-coupling tactics.
Collapse
Affiliation(s)
- You-Chen Lin
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Schneider
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelly J Eberle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Chiodi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hugh Nakamura
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Solomon H Reisberg
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason Chen
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Masato Saito
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Nesic M, Ryffel DB, Maturano J, Shevlin M, Pollack SR, Gauthier DR, Trigo-Mouriño P, Zhang LK, Schultz DM, McCabe Dunn JM, Campeau LC, Patel NR, Petrone DA, Sarlah D. Total Synthesis of Darobactin A. J Am Chem Soc 2022; 144:14026-14030. [PMID: 35900216 DOI: 10.1021/jacs.2c05891] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The collaborative total synthesis of darobactin A, a recently isolated antibiotic that selectively targets Gram-negative bacteria, has been accomplished in a convergent fashion with a longest linear sequence of 16 steps from d-Garner's aldehyde and l-serine. Scalable routes toward three non-canonical amino acids were developed to enable the synthesis. The closure of the bismacrocycle was realized through sequential, halogen-selective Larock indole syntheses, where the proper order of cyclizations proved crucial for the formation of the desired atropisomer of the natural product.
Collapse
Affiliation(s)
- Marko Nesic
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David B Ryffel
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan Maturano
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael Shevlin
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Scott R Pollack
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Donald R Gauthier
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Pablo Trigo-Mouriño
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Li-Kang Zhang
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Danielle M Schultz
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Jamie M McCabe Dunn
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Niki R Patel
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - David A Petrone
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - David Sarlah
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Song J, Lu G, Yang B, Bai M, Li J, Wang F, Lei T, Jiang S. A concise first total synthesis of luteoride A and luteoride B. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Zhao F, Ai HJ, Wu XF. Copper-Catalyzed Substrate-Controlled Carbonylative Synthesis of α-Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022; 61:e202200062. [PMID: 35175679 DOI: 10.1002/anie.202200062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Controllable production of α-keto amides and amides from the same substrates is an attractive goal in the field of transition-metal-catalyzed (double-)carbonylation. Herein, a novel copper-catalyzed highly selective double carbonylation of alkyl bromides has been developed. Moderate to good yields of α-keto amides were obtained as the only products. In the case of alkyl iodides, double- and mono-carbonylation can be achieved controllably under different conditions.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
17
|
Singh S, Sureshbabu P, Sabiah S, Kandasamy J. Synthesis of N‐Aryl α–Ketoamides, α–Ketoesters, α–Ketothioesters and Their Applications in Quinoxalinone Preparation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Popuri Sureshbabu
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
18
|
Zhao F, Ai H, Wu X. Copper‐Catalyzed Substrate‐Controlled Carbonylative Synthesis of α‐Keto Amides and Amides from Alkyl Halides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Han‐Jun Ai
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
19
|
Yiamsawat K, Gable KP, Chuawong P. Dissecting the Electronic Contribution to the Regioselectivity of the Larock Heteroannulation Reaction in the Oxidative Addition and Carbopalladation Steps. J Org Chem 2022; 87:1218-1229. [PMID: 34989564 DOI: 10.1021/acs.joc.1c02560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substituted 2-iodoaniline derivatives were prepared and utilized as reactants, along with asymmetric diarylacetylenes, to synthesize a series of 6-substituted-2,3-diarylindole derivatives via the Larock heteroannulation reaction. Electron-donating substituents on the 2-iodoaniline derivatives retarded the reaction, while electron-withdrawing substituents provided a complete conversion to the indole products. In addition, the electronic properties of the substituted 2-iodoaniline reactants displayed no influence toward regioselectivity. On the contrary, the electronic effect from unsymmetrical diarylacetylenes significantly influenced the regiochemical outcome of the reaction. Density functional theory calculations of the oxidative addition and carbopalladation steps revealed the electronic influences of the substituted 2-iodoaniline derivatives toward the overall rate of the reaction. In contrast, the electronic properties of the asymmetric diarylacetylene remained the critical product-determining factor of regioselectivity.
Collapse
Affiliation(s)
- Kanyapat Yiamsawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| | - Kevin P Gable
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
21
|
Swain JA, Walker SR, Calvert MB, Brimble MA. The tryptophan connection: cyclic peptide natural products linked via the tryptophan side chain. Nat Prod Rep 2021; 39:410-443. [PMID: 34581375 DOI: 10.1039/d1np00043h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: from 1938 up to March 2021The electron-rich indole side chain of tryptophan is a versatile substrate for peptide modification. Upon the action of various cyclases, the tryptophan side chain may be linked to a nearby amino acid residue, opening the door to a diverse range of cyclic peptide natural products. These compounds exhibit a wide array of biological activity and possess fascinating molecular architectures, which have made them popular targets for total synthesis studies. This review examines the isolation and bioactivity of tryptophan-linked cyclic peptide natural products, along with a discussion of their first total synthesis, and biosynthesis where this has been studied.
Collapse
Affiliation(s)
- Jonathan A Swain
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Stephen R Walker
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Matthew B Calvert
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
23
|
Singh S, Popuri S, Junaid QM, Sabiah S, Kandasamy J. Diversification of α-ketoamides via transamidation reactions with alkyl and benzyl amines at room temperature. Org Biomol Chem 2021; 19:7134-7140. [PMID: 34355726 DOI: 10.1039/d1ob01021b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A wide range of N-tosyl α-ketoamides underwent transamidation with various alkyl amines in the absence of a catalyst, base, or additive. On the other hand, transamidation in N-Boc α-ketoamides was achieved in the presence of Cs2CO3. The reactions proceeded at room temperature and provided good to excellent yields of transamidation products under the optimized conditions. Broad substrate scope, functional group tolerance and quick conversions are the important features of the developed methodology.
Collapse
Affiliation(s)
- Shweta Singh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | | | | | | | | |
Collapse
|
24
|
Baranwal S, Gupta S, Kandasamy J. Selenium Dioxide Promoted
α
‐Keto
N
‐Acylation of Sulfoximines Under Mild Reaction Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siddharth Baranwal
- Department of Chemistry Indian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| | - Surabhi Gupta
- Department of Chemistry Indian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| | - Jeyakumar Kandasamy
- Department of Chemistry Indian Institute of Technology (BHU)-Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
25
|
Kamo N, Hayashi G, Okamoto A. Silyl-protected propargyl glycine for multiple labeling of peptides by chemoselective silyl-deprotection. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
|
27
|
Holman KR, Stanko AM, Reisman SE. Palladium-catalyzed cascade cyclizations involving C–C and C–X bond formation: strategic applications in natural product synthesis. Chem Soc Rev 2021; 50:7891-7908. [DOI: 10.1039/d0cs01385d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This tutorial review highlights the use of palladium-catalyzed cascade cyclizations in natural product synthesis, focusing on cascades that construct multiple rings and form both C–C and C–X (X = O, N) bonds in a single synthetic operation.
Collapse
Affiliation(s)
- K. R. Holman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - A. M. Stanko
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - S. E. Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| |
Collapse
|
28
|
Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Peptide macrocyclization by transition metal catalysis. Chem Soc Rev 2020; 49:2039-2059. [PMID: 32142086 DOI: 10.1039/c9cs00366e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne-azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C-H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.
Collapse
Affiliation(s)
- Daniel G Rivera
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Gerardo M Ojeda-Carralero
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
29
|
Wu ZC, Boger DL. Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin. Acc Chem Res 2020; 53:2587-2599. [PMID: 33138354 DOI: 10.1021/acs.accounts.0c00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 μg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
30
|
Fan L, Hao J, Yu J, Ma X, Liu J, Luan X. Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. J Am Chem Soc 2020; 142:6698-6707. [PMID: 32182059 DOI: 10.1021/jacs.0c00403] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional approaches on using hydroxylamine derivatives as single nitrogen sources, for the construction of n-membered (n > 3) N-heterocycles, rely upon two chemical operations by involving sequential nucleophilic and electrophilic C-N bond formations. Here, we report a highly efficient cascade of alkyne insertion/C-H activation/amination for the rapid preparation of a myriad of tricyclic indoles, in a single-step transformation, by using bifunctional secondary hydroxylamines. It is noteworthy that judicious selection of applicable amino agents, for enabling the prior oxidative addition of aryl iodide to initial Pd(0) species and subsequent two C-N bonds formation, was the key to the success of this reaction. Control experiments indicated that a five-membered palladacyclic intermediate played a crucial role in promoting the final aminative ring closure.
Collapse
Affiliation(s)
- Liangxin Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiamao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingxun Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaojun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
31
|
Zhao X, Li B, Xia W. Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl2·DME. Org Lett 2020; 22:1056-1061. [DOI: 10.1021/acs.orglett.9b04595] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinxin Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
32
|
Yang Q, Babij NR, Good S. Potential Safety Hazards Associated with Pd-Catalyzed Cross-Coupling Reactions. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Yang
- Crop Protection Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Nicholas R. Babij
- Crop Protection Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Steffen Good
- Crop Protection Product Design & Process R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
33
|
Isley NA, Endo Y, Wu ZC, Covington BC, Bushin LB, Seyedsayamdost MR, Boger DL. Total Synthesis and Stereochemical Assignment of Streptide. J Am Chem Soc 2019; 141:17361-17369. [PMID: 31577142 DOI: 10.1021/jacs.9b09067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Streptide (1) is a peptide-derived macrocyclic natural product that has attracted considerable attention since its discovery in 2015. It contains an unprecedented post-translational modification that intramolecularly links the β-carbon (C3) of a residue 2 lysine with the C7 of a residue 6 tryptophan, thereby forming a 20-membered cyclic peptide. Herein, we report the first total synthesis of streptide that confirms the regiochemistry of the lysine-tryptophan cross-link and provides an unambiguous assignment of the stereochemistry (3R vs 3S) of the lysine-2 C3 center. Both the 3R and the originally assigned 3S lysine diastereomers were independently prepared by total synthesis, and it is the former, not the latter, that was found to correlate with the natural product. The approach enlists a powerful Pd(0)-mediated indole annulation for the key macrocyclization of the complex core peptide, utilizes an underdeveloped class of hypervalent iodine(III) aryl substrates in a palladium-catalyzed C-H activation/β-arylation reaction conducted on a lysine derivative, and provides access to material with which the role of streptide and related natural products may be examined.
Collapse
Affiliation(s)
- Nicholas A Isley
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Yusuke Endo
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Brett C Covington
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Leah B Bushin
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | | | - Dale L Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
34
|
Xu F, Wang Y, Xun X, Huang Y, Jin Z, Song B, Wu J. Diverse Oxidative C(sp 2)-N Bond Cleavages of Aromatic Fused Imidazoles for Synthesis of α-Ketoamides and N-(pyridin-2-yl)arylamides. J Org Chem 2019; 84:8411-8422. [PMID: 30977657 DOI: 10.1021/acs.joc.9b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient and chemoselective C(sp2)-N bond cleavage of aromatic imidazo[1,2- a]pyridine molecules is developed. A broad scope of amide compounds such as α-ketoamides and N-(pyridin-2-yl)arylamides are afforded as the final products in up to quantitative yields. Diverse C-N bond cleavages are controlled by the oxidative species used in this transformation, with various amide products afforded in a chemoselective fashion. A preliminary study indicated that some α-ketoamides exhibit anti-Tobacco Mosaic Virus activity for potential use in plant protection.
Collapse
Affiliation(s)
- Fangzhou Xu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yanyan Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Xiwei Xun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yun Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
35
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
36
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
37
|
Sultan S, Shah BA. Carbon‐Carbon and Carbon‐Heteroatom Bond Formation Reactions Using Unsaturated Carbon Compounds. CHEM REC 2018; 19:644-660. [DOI: 10.1002/tcr.201800095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shaista Sultan
- Natural Product Chemistry Division and AcSIRCSIR-Indian Institute of Integrative Medicine Jammu- 180001
| | - Bhahwal Ali Shah
- Natural Product Chemistry Division and AcSIRCSIR-Indian Institute of Integrative Medicine Jammu- 180001
| |
Collapse
|
38
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
39
|
Yang Y, Shi Z. Regioselective direct arylation of indoles on the benzenoid moiety. Chem Commun (Camb) 2018; 54:1676-1685. [DOI: 10.1039/c7cc08752g] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in transition metal-catalyzed selective C–H functionalization of indoles have garnered tremendous attention.
Collapse
Affiliation(s)
- Youqing Yang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
40
|
Muthukumar A, Sangeetha S, Sekar G. Recent developments in functionalization of acyclic α-keto amides. Org Biomol Chem 2018; 16:7068-7083. [DOI: 10.1039/c8ob01423j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the synthetic utility of α-keto amides to synthesize various important molecules via mono, dual and triple functionalization reactions.
Collapse
Affiliation(s)
- Alagesan Muthukumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Subramani Sangeetha
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| |
Collapse
|
41
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
42
|
Okano A, Isley NA, Boger DL. Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Chem Rev 2017; 117:11952-11993. [PMID: 28437097 DOI: 10.1021/acs.chemrev.6b00820] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A review of efforts that have provided total syntheses of vancomycin and related glycopeptide antibiotics, their agylcons, and key analogues is provided. It is a tribute to developments in organic chemistry and the field of organic synthesis that not only can molecules of this complexity be prepared today by total synthesis but such efforts can be extended to the preparation of previously inaccessible key analogues that contain deep-seated structural changes. With the increasing prevalence of acquired bacterial resistance to existing classes of antibiotics and with the emergence of vancomycin-resistant pathogens (VRSA and VRE), the studies pave the way for the examination of synthetic analogues rationally designed to not only overcome vancomycin resistance but provide the foundation for the development of even more powerful and durable antibiotics.
Collapse
Affiliation(s)
- Akinori Okano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas A Isley
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Mollo A, von Krusenstiern AN, Bulos JA, Ulrich V, Åkerfeldt KS, Cryle MJ, Charkoudian LK. P450 monooxygenase ComJ catalyses side chain phenolic cross-coupling during complestatin biosynthesis. RSC Adv 2017. [DOI: 10.1039/c7ra06518c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
P450 monooxygenase enzyme ComJ catalyzed biaryl ether bond formation with high efficiency and low stereoselectivity on selected complestatin-like peptide substrates.
Collapse
Affiliation(s)
- Aurelio Mollo
- Department of Chemistry
- Haverford College
- Haverford
- USA
| | | | | | - Veronika Ulrich
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69121 Heidelberg
- Germany
| | | | - Max J. Cryle
- Department of Biomolecular Mechanisms
- Max Planck Institute for Medical Research
- 69121 Heidelberg
- Germany
- EMBL Australia
| | | |
Collapse
|
44
|
Chuang KV, Kieffer ME, Reisman SE. A Mild and General Larock Indolization Protocol for the Preparation of Unnatural Tryptophans. Org Lett 2016; 18:4750-3. [PMID: 27598827 DOI: 10.1021/acs.orglett.6b02477] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild and general protocol for the Pd(0)-catalyzed heteroannulation of o-bromoanilines and alkynes is described. Application of a Pd(0)/P((t)Bu)3 catalyst system enables the efficient coupling of o-bromoanilines at 60 °C, mitigating deleterious side reactions and enabling access to a broad range of useful unnatural tryptophans. The utility of this new protocol is demonstrated in the highly convergent total synthesis of the bisindole natural product (-)-aspergilazine A.
Collapse
Affiliation(s)
- Kangway V Chuang
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Madeleine E Kieffer
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| |
Collapse
|
45
|
Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis. Molecules 2016; 21:E951. [PMID: 27455209 PMCID: PMC6274556 DOI: 10.3390/molecules21070951] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.
Collapse
Affiliation(s)
- Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Yu Mi Heo
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju daero, Jinju 52828, Korea.
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
46
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
47
|
De Risi C, Pollini GP, Zanirato V. Recent Developments in General Methodologies for the Synthesis of α-Ketoamides. Chem Rev 2016; 116:3241-305. [DOI: 10.1021/acs.chemrev.5b00443] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Carmela De Risi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Gian Piero Pollini
- Istituto Universitario
di Studi Superiori “IUSS−Ferrara 1391”, Via delle Scienze 41/b, 44121 Ferrara, Italy
| | - Vinicio Zanirato
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|
48
|
Noichl BP, Durkin PM, Budisa N. Toward intrinsically colored peptides: Synthesis and investigation of the spectral properties of methylated azatryptophans in tryptophan-cage mutants. Biopolymers 2015; 104:585-600. [DOI: 10.1002/bip.22709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin P. Noichl
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Patrick M. Durkin
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Nediljko Budisa
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| |
Collapse
|
49
|
Kang BC, Nam DG, Hwang GS, Ryu DH. Catalytic Asymmetric Formal Insertion of Aryldiazoalkanes into the C–H Bond of Aldehydes: Synthesis of Enantioenriched Acyclic α-Tertiary Aryl Ketones. Org Lett 2015; 17:4810-3. [DOI: 10.1021/acs.orglett.5b02370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Byung Chul Kang
- Department
of Chemistry, Sungkyunkwan University, Suwon, 440-746, Korea
| | - Dong Guk Nam
- Department
of Chemistry, Sungkyunkwan University, Suwon, 440-746, Korea
| | - Geum-Sook Hwang
- Western
Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea
| | - Do Hyun Ryu
- Department
of Chemistry, Sungkyunkwan University, Suwon, 440-746, Korea
| |
Collapse
|
50
|
Lee K, Poudel YB, Glinkerman CM, Boger DL. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs. Tetrahedron 2015; 71:5897-5905. [PMID: 26273113 PMCID: PMC4528678 DOI: 10.1016/j.tet.2015.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N-methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.
Collapse
Affiliation(s)
- Kiyoun Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yam B. Poudel
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M. Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|