1
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Han D, Lu J, Fan B, Lu W, Xue Y, Wang M, Liu T, Cui S, Gao Q, Duan Y, Xu Y. Lysine-Specific Demethylase 1 Inhibitors: A Comprehensive Review Utilizing Computer-Aided Drug Design Technologies. Molecules 2024; 29:550. [PMID: 38276629 PMCID: PMC10821146 DOI: 10.3390/molecules29020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Wenfeng Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yiwei Xue
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Meiting Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Shaoli Cui
- School of Forensic, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| |
Collapse
|
3
|
Baby S, Shinde SD, Kulkarni N, Sahu B. Lysine-Specific Demethylase 1 (LSD1) Inhibitors: Peptides as an Emerging Class of Therapeutics. ACS Chem Biol 2023; 18:2144-2155. [PMID: 37812385 DOI: 10.1021/acschembio.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Aberrant expression of the epigenetic regulator lysine-specific demethylase 1 (LSD1) has been associated with the incidence of many diseases, particularly cancer, and it has evolved as a promising epigenetic target over the years for treatment. The advent of LSD1 inhibitor-based clinical utility began with tranylcypromine, and it is now considered an inevitable scaffold in the search for other irreversible novel LSD1 inhibitors (IMG-7289 or bomedemstat, ORY1001 or iadademstat, ORY-2001 or vafidemstat, GSK2879552, and INCB059872). Moreover, numerous reversible inhibitors for LSD1 have been reported in the literature, including clinical candidates CC-90011 (pulrodemstat) and SP-2577 (seclidemstat). There is parallel mining for peptide-based LSD1 inhibitors, which exploits the opportunities in the LSD1 substrate binding pocket. This Review highlights the research progress on reversible and irreversible peptide/peptide-derived LSD1 inhibitors. For the first time, we comprehensively organized the peptide-based LSD1 inhibitors from the design strategy. Peptide inhibitors of LSD1 are classified as H3 peptide and SNAIL1 peptide derivatives, along with miscellaneous peptides that include naturally occurring LSD1 inhibitors.
Collapse
Affiliation(s)
- Stephin Baby
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
4
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Van Holsbeeck K, Elsocht M, Ballet S. Propargylamine Amino Acids as Constrained Nε-Substituted Lysine Mimetics. Org Lett 2023; 25:130-133. [PMID: 36546856 DOI: 10.1021/acs.orglett.2c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, alkylated propargylamines are reported as constrained lysine mimetics and constructed in a single step using a copper(I)-catalyzed A3-coupling reaction. Using multiple secondary amines, the reaction allowed the generation of a structurally diverse set of N-Fmoc protected amino acid derivatives. In addition, the A3-reaction was applied on solid phase via the assembly of short model tripeptides. Moreover, the internal alkyne moiety allowed further functionalization toward novel 1,4,5-trisubstituted 1,2,3-triazole-based amino acids.
Collapse
Affiliation(s)
- Kevin Van Holsbeeck
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Mathias Elsocht
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| |
Collapse
|
6
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Cavalcanti F, Gonzalez-Rey E, Delgado M, Falo CP, Mestre L, Guaza C, O’Valle F, Lufino MMP, Xaus J, Mascaró C, Lunardi S, Sacilotto N, Dessanti P, Rotllant D, Navarro X, Herrando-Grabulosa M, Buesa C, Maes T. Efficacy of Vafidemstat in Experimental Autoimmune Encephalomyelitis Highlights the KDM1A/RCOR1/HDAC Epigenetic Axis in Multiple Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14071420. [PMID: 35890315 PMCID: PMC9323733 DOI: 10.3390/pharmaceutics14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral administration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes concordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.
Collapse
Affiliation(s)
- Fernando Cavalcanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Mario Delgado
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Clara P. Falo
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS-Granada, 18016 Granada, Spain; (E.G.-R.); (M.D.)
| | - Leyre Mestre
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), 28034 Madrid, Spain; (L.M.); (C.G.)
| | - Carmen Guaza
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), 28034 Madrid, Spain; (L.M.); (C.G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18071 Granada, Spain;
| | - Michele M. P. Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Jordi Xaus
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - David Rotllant
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Xavier Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain; (X.N.); (M.H.-G.)
| | - Mireia Herrando-Grabulosa
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Barcelona, Spain; (X.N.); (M.H.-G.)
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain; (F.C.); (M.M.P.L.); (J.X.); (C.M.); (N.S.); (P.D.); (D.R.); (C.B.)
- Correspondence:
| |
Collapse
|
8
|
Liu X, Zhang Z, She N, Zhai J, Zhao Y, Wang C. Combination of multiple methods and views for recognition, transportation, and structure-guided modification of lysine-specific demethylase phenylcyclopropylamine inhibitor. Phys Chem Chem Phys 2022; 24:13806-13823. [PMID: 35612608 DOI: 10.1039/d2cp01197b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine-Specific Demethylase 1 (LSD1) is a typical histone-specific demethylase, which plays an important role in protein methylation modification. It is a member of the amine oxidase family (MAO) that specifically removes methyl groups from monomethylated H3K4, dimethylated H3K4 and H3K9 sites associated with tumorigenesis. Phenylcyclopropylamine derivatives are a class of specific LSD1 inhibitors, drawing attention due to their high efficiency. Here, extensive molecular dynamics (MD) simulations are combined with a three-dimensional quantitative structure-activity relationship (3D-QSAR) in order to design a new phenylcyclopropylamine inhibitor from multiple perspectives. In a ligand-oriented point of view, a 3D-QSAR model with comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) can be built based on the 55 phenylcyclopropylamine compounds targeting LSD1 obtained experimentally. The aromatic and piperazine rings are identified as the potential key groups regulating the activity of the compounds. In an interaction-oriented view, the representative compound is defined with the highest inhibitory efficiency. The binding and delivery mechanism and conformational dependence of activity, including channel and dynamic properties, are studied using RAMD and umbrella sampling technologies. The direct hydrogen bond and conjugated interactions are identified as a major driving force in this procedure. The dominant region of the phenylcyclopropylamine influences the free energy and detects the key residues in recognition and delivery. On the basis of both the ligand and interaction, a series of new inhibitor structures were designed, and two of them showed better efficiency. In order to select the inhibitor with a longer residence time, a comparison is conducted between the designed inhibitors and the experimentally obtained inhibitor from the perspective of static binding and dynamic delivery properties. This work creates new guidance for the phenylcyclopropylamine inhibitor design of LDS1 by combining the ligand and receptor, considering both static and dynamic properties. This scheme could be applied in other inhibitor design systems.
Collapse
Affiliation(s)
- Xiaoyuan Liu
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Nai She
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| |
Collapse
|
9
|
LI ZR, GU MZ, XU X, ZHANG JH, ZHANG HL, HAN C. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med 2022; 20:241-257. [DOI: 10.1016/s1875-5364(22)60141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/24/2022]
|
10
|
Sacilotto N, Dessanti P, Lufino MMP, Ortega A, Rodríguez-Gimeno A, Salas J, Maes T, Buesa C, Mascaró C, Soliva R. Comprehensive in Vitro Characterization of the LSD1 Small Molecule Inhibitor Class in Oncology. ACS Pharmacol Transl Sci 2021; 4:1818-1834. [PMID: 34927013 DOI: 10.1021/acsptsci.1c00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 01/10/2023]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies. Additionally, several optimized new chemical entities have reached clinical trials in oncology such as ORY-1001 (iadademstat), GSK2879552, SP-2577 (seclidemstat), IMG-7289 (bomedemstat), INCB059872, and CC-90011 (pulrodemstat). Despite this, no single study exists that characterizes them all under the same experimental conditions, preventing a clear interpretation of published results. Herein, we characterize the whole LSD1 small molecule compound class as inhibitors of LSD1 catalytic activity, disruptors of SNAIL/GFI1 (SNAG)-scaffolding protein-protein interactions, inducers of cell differentiation, and potential anticancer treatments for hematological and solid tumors to yield an updated, unified perspective of this field. Our results highlight significant differences in potency and selectivity among the clinical compounds with iadademstat being the most potent and reveal that most of the tool compounds have very low activity and selectivity, suggesting some conclusions derived from their use should be taken with caution.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Michele M P Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | | | - Jordi Salas
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Robert Soliva
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| |
Collapse
|
11
|
Lin Z, Wang X, Bustin KA, Shishikura K, McKnight NR, He L, Suciu RM, Hu K, Han X, Ahmadi M, Olson EJ, Parsons WH, Matthews ML. Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets. ACS CENTRAL SCIENCE 2021; 7:1524-1534. [PMID: 34584954 PMCID: PMC8461768 DOI: 10.1021/acscentsci.1c00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 05/08/2023]
Abstract
Most known probes for activity-based protein profiling (ABPP) use electrophilic groups that tag a single type of nucleophilic amino acid to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electrophilic enzyme cofactors, transient intermediates, and labile regulatory modifications, but ABPP probes for such species are underdeveloped. Here, we describe a versatile class of probes for this less charted hemisphere of the proteome. The use of an electron-rich hydrazine as the common chemical modifier enables covalent targeting of multiple, pharmacologically important classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment occurs by both polar and radicaloid mechanisms, can be blocked by molecules that occupy the active sites, and depends on the proper poise of the active site for turnover. These traits will enable the probes to be used to identify specific inhibitors of individual members of these multiple enzyme classes, making them uniquely versatile among known ABPP probes.
Collapse
Affiliation(s)
- Zongtao Lin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xie Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katelyn A. Bustin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyosuke Shishikura
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nate R. McKnight
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lin He
- Zenagem,
LLC, Fountain Valley, California 92708, United States
| | - Radu M. Suciu
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kai Hu
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Xian Han
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Mina Ahmadi
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erika J. Olson
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - William H. Parsons
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L. Matthews
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Abadi B, Shahsavani Y, Faramarzpour M, Rezaei N, Rahimi HR. Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review. Fundam Clin Pharmacol 2021; 36:35-48. [PMID: 34212424 DOI: 10.1111/fcp.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) is known as the deadliest form of brain tumor. In addition, its high treatment resistance, heterogeneity, and invasiveness make it one of the most challenging tumors. Depression is a common psychological disorder among patients with cancer, especially GBM. Due to the high occurrence rates of depression in GBM patients and the overlap of molecular and cellular mechanisms involved in the pathogenesis of these diseases, finding antidepressants with antitumor effects could be considered as an affordable strategy for the treatment of GBM. Antidepressants exert their antitumor properties through different mechanisms. According to available evidence in this regard, some of them can eliminate the adverse effects resulting from chemo-radiotherapy in several cancers along with their synergistic effects caused by chemotherapy. Therefore, providing comprehensive insight into this issue would guide scientists and physicians in developing further preclinical studies and clinical trials, in order to evaluate antidepressants' antitumor potential. Considering that no narrative review has been recently published on this issue, specifically on these classes of drugs, we present this article with the purpose of describing the antitumor cellular mechanisms of three classes of antidepressants as follows: tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and monoamine oxidase inhibitors (MAOIs) in GBM.
Collapse
Affiliation(s)
- Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasamin Shahsavani
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Faramarzpour
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Menchikov LG, Shulishov EV, Tomilov YV. Recent advances in the catalytic cyclopropanation of unsaturated compounds with diazomethane. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main achievements and development trends of the past 10–15 years related to the catalytic cyclopropanation of unsaturated compounds with diazomethane are integrated and analyzed. The attention is focused on the most efficient catalysts based on palladium compounds. Data on the effects of substrate structure and nature of catalyst components on the regio- and stereoselectivity of these reactions are systematized. Characteristic features of safe methods for diazomethane generation are considered, including the use of membrane technologies and continuous-flow and in situ preparation methods, which have prospects for industrial application.
The bibliography includes 281 references.
Collapse
|
14
|
Yang Y, Hu J, Fang H, Hou X, Hou Z, Sang L, Yang X. Enantioseparation of lysine derivatives on amylose tris (3, 5-dimethylphenylcarbamate) as chiral stationary phase with high separation factor. J Chromatogr A 2020; 1632:461598. [DOI: 10.1016/j.chroma.2020.461598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
|
15
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
16
|
Ohta Y, Kawaguchi M, Ieda N, Nakagawa H. Synthesis of artificial substrate based on inhibitor for detecting LSD1 activity. J Clin Biochem Nutr 2020; 67:153-158. [PMID: 33041512 PMCID: PMC7533851 DOI: 10.3164/jcbn.20-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Lysine methylation is one of the most important modification, which is regulated by histone lysine methyltransferases and histone lysine demethylases. Lysine-specific demethylase 1 (LSD1) specifically demethylates mono- and dimethyl-lysine on histone H3 (H3K4Me/Me2, H3K9Me/Me2) to control chromatin structure, resulting in transcriptional repression or activation of target genes. Furthermore, LSD1 is overexpressed in various cancers. Therefore, LSD1 inhibitors would be not only potential therapeutic agents for cancers but also chemical tools to research biological significance of LSD1 in physiological and pathological events. However, known assay methods to date have some inherent drawbacks. The development of simple method in detecting LSD1 activity has been indispensable to identify useful inhibitors. In this study, we designed and synthesized artificial substrates based on inhibitors of LSD1 to examine LSD1 activity by an absorption increment.
Collapse
Affiliation(s)
- Yuhei Ohta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
17
|
Al Temimi AHK, White PB, Mulders MJM, van der Linden NGA, Blaauw RH, Wegert A, Rutjes FPJT, Mecinović J. Methylation of geometrically constrained lysine analogues by histone lysine methyltransferases. Chem Commun (Camb) 2020; 56:3039-3042. [PMID: 32048637 DOI: 10.1039/c9cc09098c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report synthesis and enzymatic assays on human histone lysine methyltransferase catalysed methylation of histones that possess lysine and its geometrically constrained analogues containing rigid (E)-alkene (KE), (Z)-alkene (KZ) and alkyne (Kyne) moieties. Methyltransferases G9a and GLP do have a capacity to catalyse methylation in the order K ≫ KE > KZ ∼ Kyne, whereas monomethyltransferase SETD8 catalyses only methylation of K and KE.
Collapse
Affiliation(s)
- Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | - Nicole G A van der Linden
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Richard H Blaauw
- Chiralix B.V., Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Anita Wegert
- Mercachem B.V., Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands.
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. and University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
18
|
Examining sterically demanding lysine analogs for histone lysine methyltransferase catalysis. Sci Rep 2020; 10:3671. [PMID: 32111884 PMCID: PMC7048932 DOI: 10.1038/s41598-020-60337-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Methylation of lysine residues in histone proteins is catalyzed by S-adenosylmethionine (SAM)-dependent histone lysine methyltransferases (KMTs), a genuinely important class of epigenetic enzymes of biomedical interest. Here we report synthetic, mass spectrometric, NMR spectroscopic and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain lysine and its sterically demanding analogs. Our synergistic experimental and computational work demonstrates that human KMTs have a capacity to catalyze methylation of slightly bulkier lysine analogs, but lack the activity for analogs that possess larger aromatic side chains. Overall, this study provides an important chemical insight into molecular requirements that contribute to efficient KMT catalysis and expands the substrate scope of KMT-catalyzed methylation reactions.
Collapse
|
19
|
Li ZH, Ma JL, Liu GZ, Zhang XH, Qin TT, Ren WH, Zhao TQ, Chen XH, Zhang ZQ. [1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors. Eur J Med Chem 2020; 187:111989. [DOI: 10.1016/j.ejmech.2019.111989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023]
|
20
|
Anastas JN, Zee BM, Kalin JH, Kim M, Guo R, Alexandrescu S, Blanco MA, Giera S, Gillespie SM, Das J, Wu M, Nocco S, Bonal DM, Nguyen QD, Suva ML, Bernstein BE, Alani R, Golub TR, Cole PA, Filbin MG, Shi Y. Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell 2019; 36:528-544.e10. [PMID: 31631026 DOI: 10.1016/j.ccell.2019.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
Abstract
H3K27M mutations resulting in epigenetic dysfunction are frequently observed in diffuse intrinsic pontine glioma (DIPGs), an incurable pediatric cancer. We conduct a CRISPR screen revealing that knockout of KDM1A encoding lysine-specific demethylase 1 (LSD1) sensitizes DIPG cells to histone deacetylase (HDAC) inhibitors. Consistently, Corin, a bifunctional inhibitor of HDACs and LSD1, potently inhibits DIPG growth in vitro and in xenografts. Mechanistically, Corin increases H3K27me3 levels suppressed by H3K27M histones, and simultaneously increases HDAC-targeted H3K27ac and LSD1-targeted H3K4me1 at differentiation-associated genes. Corin treatment induces cell death, cell-cycle arrest, and a cellular differentiation phenotype and drives transcriptional changes correlating with increased survival time in DIPG patients. These data suggest a strategy for treating DIPG by simultaneously inhibiting LSD1 and HDACs.
Collapse
Affiliation(s)
- Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barry M Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jay H Kalin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Mirhee Kim
- NYU Medical School, New York, NY 10016, USA
| | - Robyn Guo
- Duke University, Durham, NC 27708, USA
| | - Sanda Alexandrescu
- Department of Pathology Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA
| | - Mario Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Shawn M Gillespie
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jayanta Das
- Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rhoda Alani
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815 MD, USA
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Byun JS, Park S, Yi DI, Shin JH, Hernandez SG, Hewitt SM, Nicklaus MC, Peach ML, Guasch L, Tang B, Wakefield LM, Yan T, Caban A, Jones A, Kabbout M, Vohra N, Nápoles AM, Singhal S, Yancey R, De Siervi A, Gardner K. Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein. Cell Death Dis 2019; 10:689. [PMID: 31534138 PMCID: PMC6751206 DOI: 10.1038/s41419-019-1892-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jung S Byun
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Samson Park
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Dae Ik Yi
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jee-Hye Shin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Guasch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tingfen Yan
- National Human Genome Institute, Bethesda, MD, 20892, USA
| | - Ambar Caban
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Alana Jones
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Mohamed Kabbout
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Nasreen Vohra
- Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Anna María Nápoles
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Kevin Gardner
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA. .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Li Z, Ding L, Li Z, Wang Z, Suo F, Shen D, Zhao T, Sun X, Wang J, Liu Y, Ma L, Zhao B, Geng P, Yu B, Zheng Y, Liu H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm Sin B 2019; 9:794-808. [PMID: 31384539 PMCID: PMC6663923 DOI: 10.1016/j.apsb.2019.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has been recognized as an important modulator in post-translational process in epigenetics. Dysregulation of LSD1 has been implicated in the development of various cancers. Herein, we report the discovery of the hit compound 8a (IC50 = 3.93 μmol/L) and further medicinal chemistry efforts, leading to the generation of compound 15u (IC50 = 49 nmol/L, and Ki = 16 nmol/L), which inhibited LSD1 reversibly and competitively with H3K4me2, and was selective to LSD1 over MAO-A/B. Docking studies were performed to rationalize the potency of compound 15u. Compound 15u also showed strong antiproliferative activity against four leukemia cell lines (OCL-AML3, K562, THP-1 and U937) as well as the lymphoma cell line Raji with the IC50 values of 1.79, 1.30, 0.45, 1.22 and 1.40 μmol/L, respectively. In THP-1 cell line, 15u significantly inhibited colony formation and caused remarkable morphological changes. Compound 15u induced expression of CD86 and CD11b in THP-1 cells, confirming its cellular activity and ability of inducing differentiation. The findings further indicate that targeting LSD1 is a promising strategy for AML treatment, the triazole-fused pyrimidine derivatives are new scaffolds for the development of LSD1/KDM1A inhibitors.
Collapse
Key Words
- AML treatment
- AML, acute myeloid leukemia
- ATRA, all-trans retinoic acid
- Antiproliferative ability
- BTK, Bruton׳s tyrosine kinase
- CDK, cyclin-dependent kinase
- CuAAC, copper-catalyzed azide-alkyne cycloadditions
- DABCO, triethylenediamine
- DCM, dichloromethane
- DIPEA, N,N-diisopropylethylamine
- DNMTs, DNA methyltransferases
- EA, ethyl acetate
- Epigenetic regulation
- EtOH, ethanol
- FAD, flavin adenine dinucleotide
- GSCs, glioma stem cells
- Histone demethylase
- LSD1
- LSD1, histone lysine specific demethylase 1
- MAO, monoamine oxidase
- MeOH, methanol
- Mercapto heterocycles
- PAINS, pan-assay interference compound
- Pyrimidine-triazole
- Rt, room temperature
- SAR, structure—activity relationship
- Structure–activity relationships (SARs)
- TCP, tranylcypromine
- TEA, triethylamine
- THF, terahydrofuran
- TLC, thin layer chromatography.
Collapse
Affiliation(s)
- Zhonghua Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhongrui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhizheng Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Fengzhi Suo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Dandan Shen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Taoqian Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Xudong Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Junwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Liying Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
- Corresponding authors.
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
- Corresponding authors.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
- Corresponding authors.
| |
Collapse
|
23
|
Tan AHY, Tu W, McCuaig R, Hardy K, Donovan T, Tsimbalyuk S, Forwood JK, Rao S. Lysine-Specific Histone Demethylase 1A Regulates Macrophage Polarization and Checkpoint Molecules in the Tumor Microenvironment of Triple-Negative Breast Cancer. Front Immunol 2019; 10:1351. [PMID: 31249575 PMCID: PMC6582666 DOI: 10.3389/fimmu.2019.01351] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages play an important role in regulating the tumor microenvironment (TME). Here we show that classical (M1) macrophage polarization reduced expression of LSD1, nuclear REST corepressor 1 (CoREST), and the zinc finger protein SNAIL. The LSD1 inhibitor phenelzine targeted both the flavin adenine dinucleotide (FAD) and CoREST binding domains of LSD1, unlike the LSD1 inhibitor GSK2879552, which only targeted the FAD domain. Phenelzine treatment reduced nuclear demethylase activity and increased transcription and expression of M1-like signatures both in vitro and in a murine triple-negative breast cancer model. Overall, the LSD1 inhibitors phenelzine and GSK2879552 are useful tools for dissecting the contribution of LSD1 demethylase activity and the nuclear LSD1-CoREST complex to switching macrophage polarization programs. These findings suggest that inhibitors must have dual FAD and CoREST targeting abilities to successfully initiate or prime macrophages toward an anti-tumor M1-like phenotype in triple-negative breast cancer.
Collapse
Affiliation(s)
- Abel H Y Tan
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - WenJuan Tu
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Robert McCuaig
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Kristine Hardy
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Thomasina Donovan
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sudha Rao
- Epigenetics and Transcription Laboratory Melanie Swan Memorial Translational Centre, Sci-Tech, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
24
|
Liu HM, Suo FZ, Li XB, You YH, Lv CT, Zheng CX, Zhang GC, Liu YJ, Kang WT, Zheng YC, Xu HW. Discovery and synthesis of novel indole derivatives-containing 3-methylenedihydrofuran-2(3H)-one as irreversible LSD1 inhibitors. Eur J Med Chem 2019; 175:357-372. [PMID: 31096156 DOI: 10.1016/j.ejmech.2019.04.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), demethylase against mono- and di - methylated histone3 lysine 4, has emerged as a promising target in oncology. More specifically, it has been demonstrated as a key promoter in acute myeloid leukemia (AML), and several LSD1 inhibitors have already entered into clinical trials for the treatment of AML. In this paper, a series of new indole derivatives were designed and synthesized based on a lead compound obtained by a high-throughput screening with our in-house compound library. Among the synthetic compounds, 9e was characterized as a potent LSD1 inhibitor with an IC50 of 1.230 μM and can inhibit the proliferation of THP-1 cells effectively. And most importantly, this is the first irreversible LSD1 inhibitor that is not derived from monoamine oxidase inhibitors. Hence, the discovery of 9e may serve as a proof of concept work for AML treatment.
Collapse
Affiliation(s)
- Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Feng-Zhi Suo
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Xiao-Bo Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Ying-Hua You
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Chun-Tao Lv
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Chen-Xing Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Guo-Chen Zhang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yue-Jiao Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wen-Ting Kang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; National Center for International Research of Micro-nano Molding Technology of Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Hai-Wei Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
25
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Leon KE, Aird KM. Jumonji C Demethylases in Cellular Senescence. Genes (Basel) 2019; 10:genes10010033. [PMID: 30634491 PMCID: PMC6356615 DOI: 10.3390/genes10010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Senescence is a stable cell cycle arrest that is either tumor suppressive or tumor promoting depending on context. Epigenetic changes such as histone methylation are known to affect both the induction and suppression of senescence by altering expression of genes that regulate the cell cycle and the senescence-associated secretory phenotype. A conserved group of proteins containing a Jumonji C (JmjC) domain alter chromatin state, and therefore gene expression, by demethylating histones. Here, we will discuss what is currently known about JmjC demethylases in the induction of senescence, and how these enzymes suppress senescence to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Kelly E Leon
- Department of Cellular & Molecular Physiology, Penn Stage College of Medicine, Hershey, PA 17033, USA.
| | - Katherine M Aird
- Department of Cellular & Molecular Physiology, Penn Stage College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
27
|
Sun XD, Zheng YC, Ma CY, Yang J, Gao QB, Yan Y, Wang ZZ, Li W, Zhao W, Liu HM, Ding L. Identifying the novel inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening. J Biomol Struct Dyn 2018; 37:4200-4214. [PMID: 30366512 DOI: 10.1080/07391102.2018.1538903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been reported to connect with a range of solid tumors. Thus, the exploration of LSD1 inhibitors has emerged as an effective strategy for cancer treatment. In this study, we constructed a pharmacophore model based on a series of flavin adenine dinucleotide (FAD)-competing inhibitors bearing triazole - dithiocarbamate scaffold combining docking, structure-activity relationship (SAR) study, and molecular dynamic (MD) simulation. Meanwhile, another pharmacophore model was also constructed manually, relying on several speculated substrate-competing inhibitors and reported putative vital interactions with LSD1. On the basis of the two pharmacophore models, multi-step virtual screenings (VSs) were performed against substrate-binding pocket and FAD-binding pocket, respectively, combining pharmacophore-based and structure-based strategy to exploit novel LSD1 inhibitors. After bioassay evaluation, four compounds among 21 hits with diverse and novel scaffolds exhibited inhibition activity at the range of 3.63-101.43 μM. Furthermore, substructure-based enrichment was performed, and four compounds with a more potent activity were identified. After that, the time-dependent assay proved that the most potent compound with IC50 2.21 μM inhibits LSD1 activity in a manner of time-independent. In addition, the compound exhibited a cellular inhibitory effect against LSD1 in MGC-803 cells and may inhibit cell migration and invasion by reversing EMT in cultured gastric cancer cells. Considering the binding mode and SAR of the series of compounds, we could roughly deem that these compounds containing 3-methylxanthine scaffold act through occupying substrate-binding pocket competitively. This study presented a new starting point to develop novel LSD1 inhibitors.
Collapse
Affiliation(s)
- Xu-Dong Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yi-Chao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Chao-Ya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Jing Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Qi-Bing Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Ying Yan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Zhi-Zheng Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Wen Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| |
Collapse
|
28
|
Design, Synthesis, and In Vitro Evaluation of Novel Histone H3 Peptide-Based LSD1 Inactivators Incorporating α,α-Disubstituted Amino Acids with γ-Turn-Inducing Structures. Molecules 2018; 23:molecules23051099. [PMID: 29734782 PMCID: PMC6099693 DOI: 10.3390/molecules23051099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) mainly removes methyl groups of mono- or di-methylated lysine residues at the fourth position of histone H3 to epigenetically regulate the expression of genes associated with several diseases, such as cancer. Therefore, LSD1 inactivators are expected to be used as therapeutic agents. In this study, to identify novel peptide-based LSD1 inactivators, we focused on the X-ray structure of LSD1 complexed with a H3 peptide-based suicide substrate. It has been proposed that a methylated histone substrate forms three consecutive γ-turn structures in the active pocket of LSD1. Based on this, we designed and synthesized novel histone H3 peptide-based LSD1 inactivators 2a⁻c by incorporating various α,α-disubstituted amino acids with γ-turn-inducing structures. Among synthetic peptides 2a⁻c, peptide 2b incorporating two 1-aminocyclohexanecarboxylic acids at both sides of a lysine residue bearing a trans-2-phenylcyclopropylamine (PCPA) moiety, which is a pharmacophore for LSD1 inactivation, was the most potent and selective LSD1 inactivator. These findings are useful for the further development of histone H3 peptide-based LSD1 inactivators.
Collapse
|
29
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
30
|
|
31
|
Hoang N, Zhang X, Zhang C, Vo V, Leng F, Saxena L, Yin F, Lu F, Zheng G, Bhowmik P, Zhang H. New histone demethylase LSD1 inhibitor selectively targets teratocarcinoma and embryonic carcinoma cells. Bioorg Med Chem 2018; 26:1523-1537. [PMID: 29439916 DOI: 10.1016/j.bmc.2018.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
LSD1/KDM1 is a histone demethylase that preferentially removes methyl groups from the mono- and di-methylated lysine 4 in histone H3 (H3K4), key marks for active chromatin for transcriptional activation. LSD1 is essential for pluripotent embryonic stem cells and embryonic teratocarcinoma/carcinoma cells and its expression is often elevated in various cancers. We developed a new LSD1 inhibitor, CBB3001, which potently inhibited LSD1 activity both in vitro and in vivo. CBB3001 also selectively inhibited the growth of human ovarian teratocarcinoma PA-1 and mouse embryonic carcinoma F9 cells, caused the downregulation of pluripotent stem cell proteins SOX2 and OCT4. However, CBB3001 does not have significant inhibition on the growth of human colorectal carcinoma HCT116 cells or mouse fibroblast NIH3T3 cells that do not express these stem cell proteins. Our studies strongly indicate that CBB3001 is a specific LSD1 inhibitor that selectively inhibits teratocarcinoma and embryonic carcinoma cells that express SOX2 and OCT4.
Collapse
Affiliation(s)
- Nam Hoang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Xuan Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chunxiao Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Van Vo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Feng Leng
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lovely Saxena
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Feng Yin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fei Lu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guangrong Zheng
- Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pradip Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
32
|
Kumarasinghe IR, Woster PM. Cyclic peptide inhibitors of lysine-specific demethylase 1 with improved potency identified by alanine scanning mutagenesis. Eur J Med Chem 2018; 148:210-220. [PMID: 29459279 DOI: 10.1016/j.ejmech.2018.01.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is a chromatin-remodeling enzyme that plays an important role in cancer. Over-expression of LSD1 decreases methylation at histone 3 lysine 4, and aberrantly silences tumor suppressor genes. Inhibitors of LSD1 have been designed as chemical probes and potential antitumor agents. We recently reported the cyclic peptide 9, which potently and reversibly inhibits LSD1 (IC50 2.1 μM; Ki 385 nM). Systematic alanine mutagenesis of 9 revealed residues that are critical for LSD1 inhibition, and these mutated peptides were evaluated as LSD1 inhibitors. Alanine substitution at positions 2, 3, 4, 6 and 11-17 preserved inhibition, while substitution of alanine at positions 8 and 9 resulted in complete loss of activity. Cyclic mutant peptides 11 and 16 produced the greatest LSD1 inhibition, and 11, 16, 27 and 28 increased global H3K4me2 in K562 cells. In addition, 16, 27 and 28 promoted significant increases in H3K4me2 levels at the promoter sites of the genes IGFBP2 and FEZ1. Data from these LSD1 inhibitors will aid in the design of peptidomimetics with improved stability and pharmacokinetics.
Collapse
Affiliation(s)
- Isuru R Kumarasinghe
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States.
| |
Collapse
|
33
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
34
|
LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep 2018; 8:73. [PMID: 29311580 PMCID: PMC5758711 DOI: 10.1038/s41598-017-17913-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022] Open
Abstract
Complex regulatory networks control epithelial-to-mesenchymal transition (EMT) but the underlying epigenetic control is poorly understood. Lysine-specific demethylase 1 (LSD1) is a key histone demethylase that alters the epigenetic landscape. Here we explored the role of LSD1 in global epigenetic regulation of EMT, cancer stem cells (CSCs), the tumour microenvironment, and therapeutic resistance in breast cancer. LSD1 induced pan-genomic gene expression in networks implicated in EMT and selectively elicits gene expression programs in CSCs whilst repressing non-CSC programs. LSD1 phosphorylation at serine-111 (LSD1-s111p) by chromatin anchored protein kinase C-theta (PKC-θ), is critical for its demethylase and EMT promoting activity and LSD1-s111p is enriched in chemoresistant cells in vivo. LSD1 couples to PKC-θ on the mesenchymal gene epigenetic template promotes LSD1-mediated gene induction. In vivo, chemotherapy reduced tumour volume, and when combined with an LSD1 inhibitor, abrogated the mesenchymal signature and promoted an innate, M1 macrophage-like tumouricidal immune response. Circulating tumour cells (CTCs) from metastatic breast cancer (MBC) patients were enriched with LSD1 and pharmacological blockade of LSD1 suppressed the mesenchymal and stem-like signature in these patient-derived CTCs. Overall, LSD1 inhibition may serve as a promising epigenetic adjuvant therapy to subvert its pleiotropic roles in breast cancer progression and treatment resistance.
Collapse
|
35
|
Kalin JH, Wu M, Gomez AV, Song Y, Das J, Hayward D, Adejola N, Wu M, Panova I, Chung HJ, Kim E, Roberts HJ, Roberts JM, Prusevich P, Jeliazkov JR, Roy Burman SS, Fairall L, Milano C, Eroglu A, Proby CM, Dinkova-Kostova AT, Hancock WW, Gray JJ, Bradner JE, Valente S, Mai A, Anders NM, Rudek MA, Hu Y, Ryu B, Schwabe JWR, Mattevi A, Alani RM, Cole PA. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat Commun 2018; 9:53. [PMID: 29302039 PMCID: PMC5754352 DOI: 10.1038/s41467-017-02242-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.
Collapse
Affiliation(s)
- Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrea V Gomez
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Yun Song
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Jayanta Das
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dawn Hayward
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nkosi Adejola
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingxuan Wu
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Izabela Panova
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hye Jin Chung
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Kim
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Holly J Roberts
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Justin M Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Polina Prusevich
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Louise Fairall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Charles Milano
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Abdulkerim Eroglu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sergio Valente
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Nicole M Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Hu
- Department of Oncology, BioDuro LLC, Shanghai, 200131, China
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - John W R Schwabe
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Kakizawa T, Ota Y, Itoh Y, Suzuki T. Histone H3 peptides incorporating modified lysine residues as lysine-specific demethylase 1 inhibitors. Bioorg Med Chem Lett 2018; 28:167-169. [DOI: 10.1016/j.bmcl.2017.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
37
|
Llewellyn GN, Alvarez-Carbonell D, Chateau M, Karn J, Cannon PM. HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol 2017; 24:192-203. [PMID: 29256041 PMCID: PMC5910454 DOI: 10.1007/s13365-017-0604-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
Most studies of HIV latency focus on the peripheral population of resting memory T cells, but the brain also contains a distinct reservoir of HIV-infected cells in microglia, perivascular macrophages, and astrocytes. Studying HIV in the brain has been challenging, since live cells are difficult to recover from autopsy samples and primate models of SIV infection utilize viruses that are more myeloid-tropic than HIV due to the expression of Vpx. Development of a realistic small animal model would greatly advance studies of this important reservoir and permit definitive studies of HIV latency. When radiation or busulfan-conditioned, immune-deficient NSG mice are transplanted with human hematopoietic stem cells, human cells from the bone marrow enter the brain and differentiate to express microglia-specific markers. After infection with replication competent HIV, virus was detected in these bone marrow-derived human microglia. Studies of HIV latency in this model would be greatly enhanced by the development of compounds that can selectively reverse HIV latency in microglial cells. Our studies have identified members of the CoREST repression complex as key regulators of HIV latency in microglia in both rat and human microglial cell lines. The monoamine oxidase (MAO) and potential CoREST inhibitor, phenelzine, which is brain penetrant, was able to stimulate HIV production in human microglial cell lines and human glial cells recovered from the brains of HIV-infected humanized mice. The humanized mice we have developed therefore show great promise as a model system for the development of strategies aimed at defining and reducing the CNS reservoir.
Collapse
Affiliation(s)
- George N Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Xiong Y, Wang E, Huang Y, Guo X, Yu Y, Du Q, Ding X, Sun Y. Inhibition of Lysine-Specific Demethylase-1 (LSD1/KDM1A) Promotes the Adipogenic Differentiation of hESCs Through H3K4 Methylation. Stem Cell Rev Rep 2017; 12:298-304. [PMID: 27059868 PMCID: PMC4879152 DOI: 10.1007/s12015-016-9650-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given their totipotency, human embryonic stem cells (hESCs) can differentiate into all types of cells, including adipocytes, and provide an excellent research model for studying diseases associated with the metabolism of adipocytes, such as obesity and diabetes mellitus. Epigenetic regulation, including DNA methylation and histone modification, plays an essential role in the development and differentiation of hESCs. Lysine-specific demethylase 1 (LSD1), a well-characterized histone-modifying enzyme, demethylates dimethylated histone H3 lysine 4 (H3K4) through a flavin adenine dinucleotide (FAD)-dependent oxidative reaction. LSD1 affects the growth and differentiation of human and mouse ES cells, and the deletion of this gene in mice leads to embryonic lethality. Here, we investigated the functional role of LSD1 during the adipogenic differentiation of hESCs involving the demethylation of H3K4. We also found that treating hESCs with the LSD1 inhibitor CBB1007 promotes the adipogenic differentiation of hESCs.
Collapse
Affiliation(s)
- Yujing Xiong
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Enyin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yan Huang
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaoyi Guo
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yiping Yu
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qingyun Du
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaoyan Ding
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, People's Republic of China
| | - Yingpu Sun
- Reproductive Medical Centre, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
39
|
McCune CD, Beio ML, Sturdivant JM, de la Salud-Bea R, Darnell BM, Berkowitz DB. Synthesis and Deployment of an Elusive Fluorovinyl Cation Equivalent: Access to Quaternary α-(1'-Fluoro)vinyl Amino Acids as Potential PLP Enzyme Inactivators. J Am Chem Soc 2017; 139:14077-14089. [PMID: 28906111 PMCID: PMC6052324 DOI: 10.1021/jacs.7b04690] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing specific chemical functionalities to deploy in biological environments for targeted enzyme inactivation lies at the heart of mechanism-based inhibitor development but also is central to other protein-tagging methods in modern chemical biology including activity-based protein profiling and proteolysis-targeting chimeras. We describe here a previously unknown class of potential PLP enzyme inactivators; namely, a family of quaternary, α-(1'-fluoro)vinyl amino acids, bearing the side chains of the cognate amino acids. These are obtained by the capture of suitably protected amino acid enolates with β,β-difluorovinyl phenyl sulfone, a new (1'-fluoro)vinyl cation equivalent, and an electrophile that previously eluded synthesis, capture and characterization. A significant variety of biologically relevant AA side chains are tolerated including those for alanine, valine, leucine, methionine, lysine, phenylalanine, tyrosine, and tryptophan. Following addition/elimination, the resulting transoid α-(1'-fluoro)-β-(phenylsulfonyl)vinyl AA-esters undergo smooth sulfone-stannane interchange to stereoselectively give the corresponding transoid α-(1'-fluoro)-β-(tributylstannyl)vinyl AA-esters. Protodestannylation and global deprotection then yield these sterically encumbered and densely functionalized quaternary amino acids. The α-(1'-fluoro)vinyl trigger, a potential allene-generating functionality originally proposed by Abeles, is now available in a quaternary AA context for the first time. In an initial test of this new inhibitor class, α-(1'-fluoro)vinyllysine is seen to act as a time-dependent, irreversible inactivator of lysine decarboxylase from Hafnia alvei. The enantiomers of the inhibitor could be resolved, and each is seen to give time-dependent inactivation with this enzyme. Kitz-Wilson analysis reveals similar inactivation parameters for the two antipodes, L-α-(1'-fluoro)vinyllysine (Ki = 630 ± 20 μM; t1/2 = 2.8 min) and D-α-(1'-fluoro)vinyllysine (Ki = 470 ± 30 μM; t1/2 = 3.6 min). The stage is now set for exploration of the efficacy of this trigger in other PLP-enzyme active sites.
Collapse
Affiliation(s)
| | | | | | | | - Brendan M. Darnell
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304
| |
Collapse
|
40
|
|
41
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
42
|
Faleiro I, Leão R, Binnie A, de Mello RA, Maia AT, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget 2017; 8:12484-12500. [PMID: 28036257 PMCID: PMC5355359 DOI: 10.18632/oncotarget.14226] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023] Open
Abstract
Epigenetic dysregulation is one of many factors that contribute to cancer development and progression. Numerous epigenetic alterations have been identified in urologic cancers including histone modifications, DNA methylation changes, and microRNA expression. Since these changes are reversible, efforts are being made to develop epigenetic drugs that restore the normal epigenetic patterns of cells, and many clinical trials are already underway to test their clinical potential. In this review we analyze multiple clinical trials (n=51) that test the efficacy of these drugs in patients with urologic cancers. The most frequently used epigenetic drugs were histone deacetylase inhibitors followed by antisense oligonucleotides, DNA methyltransferase inhibitors and histone demethylase inhibitors, the last of which are only being tested in prostate cancer. In more than 50% of the clinical trials considered, epigenetic drugs were used as part of combination therapy, which achieved the best results. The epigenetic regulation of some cancers is still matter of research but will undoubtedly open a window to new therapeutic approaches in the era of personalized medicine. The future of therapy for urological malignancies is likely to include multidrug regimens in which epigenetic modifying drugs will play an important role.
Collapse
Affiliation(s)
- Inês Faleiro
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ricardo Leão
- Department of Surgery, Princess Margaret Cancer Center, Division of Urology, University of Toronto, Toronto, Canada
- Renal Transplantation and Urology Service, Coimbra University Hospital Center EPE, Faculty of Medicine, University of Coimbra, Portugal
| | - Alexandra Binnie
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ramon Andrade de Mello
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Ana-Teresa Maia
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Faro, Portugal
| |
Collapse
|
43
|
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 2017; 12:340-352. [PMID: 28277979 PMCID: PMC5453194 DOI: 10.1080/15592294.2017.1290032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan.,b PRESTO, Japan Science and Technology Agency (JST) , Honcho, Kawaguchi , Saitama , Japan
| |
Collapse
|
44
|
Jambhekar A, Anastas JN, Shi Y. Histone Lysine Demethylase Inhibitors. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026484. [PMID: 28049654 DOI: 10.1101/cshperspect.a026484] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic regulation of covalent modifications to histones is essential for maintaining genomic integrity and cell identity and is often compromised in cancer. Aberrant expression of histone lysine demethylases has been documented in many types of blood and solid tumors, and thus demethylases represent promising therapeutic targets. Recent advances in high-throughput chemical screening, structure-based drug design, and structure-activity relationship studies have improved both the specificity and the in vivo efficacy of demethylase inhibitors. This review will briefly outline the connection between demethylases and cancer and will provide a comprehensive overview of the structure, specificity, and utility of currently available demethylase inhibitors. To date, a select group of demethylase inhibitors is being evaluated in clinical trials, and additional compounds may soon follow from the bench to the bedside.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
45
|
Marabelli C, Marrocco B, Mattevi A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase. Curr Opin Struct Biol 2016; 41:135-144. [DOI: 10.1016/j.sbi.2016.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
|
46
|
Hirschi A, Martin WJ, Luka Z, Loukachevitch LV, Reiter NJ. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme. RNA (NEW YORK, N.Y.) 2016; 22:1250-60. [PMID: 27277658 PMCID: PMC4931117 DOI: 10.1261/rna.057265.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/13/2023]
Abstract
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.
Collapse
Affiliation(s)
- Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - William J Martin
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Lioudmila V Loukachevitch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
47
|
Han Y, Wu C, Lv H, Liu N, Deng H. Novel Tranylcypromine/Hydroxylcinnamic Acid Hybrids as Lysine-Specific Demethylase 1 Inhibitors with Potent Antitumor Activity. Chem Pharm Bull (Tokyo) 2016; 63:882-9. [PMID: 26521853 DOI: 10.1248/cpb.c15-00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel tranylcypromine/hydroxylcinnamic acid hybrids 15a, b, and 19a-l were designed and synthesized by connecting tranylcypromine with hydroxylcinnamic acid, and their biological activities were evaluated. The in vitro assay of their inhibitory activities against lysine-specific demethylase 1 (LSD1) showed that most of the target compounds displayed high potency with IC50 values ranging from submicromolar to single-digit micromolar levels. In particular, compound 19l had robust, selective LSD1 inhibitory activity, which was obviously higher than the inhibitory activity against homologues monoamine oxidase-A (MAO-A) and MAO-B, respectively. Furthermore, the most potent compound 19l selectively inhibited cancer cell but not nontumor colon cell proliferation in vitro. In addition, compound 19l also dose-dependently increased the expression of H3K4me2 at the cellular level. Our findings suggest that tranylcypromine/hydroxylcinnamic acid hybrids as LSD1 inhibitors may hold great promise as therapeutic agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Yan Han
- Department of Orthopedics, The First Affiliated Hospital, Wenzhou Medical University
| | | | | | | | | |
Collapse
|
48
|
Abstract
Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.
Collapse
Affiliation(s)
- Wolfgang Fischle
- King Abdullah University of Science and Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Str.
4, 72076 Tübingen, Germany
| |
Collapse
|
49
|
Black JC, Whetstine JR. Tipping the lysine methylation balance in disease. Biopolymers 2016; 99:127-35. [PMID: 23175387 DOI: 10.1002/bip.22136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Genomic instability is a major contributing factor to the development and onset of diseases such as cancer. Emerging evidence has demonstrated that maintaining the proper balance of histone lysine methylation is critical to preserve genomic integrity. Genome-wide association studies, gene sequencing, and genome-wide mapping approaches have helped identify mutations, copy number changes, and aberrant gene regulation of lysine methyltransferases (KMTs) and demethylases (KDMs) associated with cancer and cognitive disorders. Structural analysis of KMTs and KDMs has demonstrated the drugability of these enzymes and has led to the discovery of small molecule inhibitors. Use of these inhibitors has allowed better understanding of the biochemical properties of KMTs and KDMs and demonstrated potential for therapeutic use. This review will highlight the methyl modifications, KMTs and KDMs associated with cancer and neurological disorders and how KMT and KDM and the potential for treatment of these conditions with small molecule inhibitors.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129
| | | |
Collapse
|
50
|
Paluch BE, Naqash AR, Brumberger Z, Nemeth MJ, Griffiths EA. Epigenetics: A primer for clinicians. Blood Rev 2016; 30:285-95. [PMID: 26969414 DOI: 10.1016/j.blre.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
With recent advances in cellular biology, we now appreciate that modifications to DNA and histones can have a profound impact on transcription and function, even in the absence of changes to DNA sequence. These modifications, now commonly referred to as "epigenetic" alterations, have changed how we understand cell behavior, reprogramming and differentiation and have provided significant insight into the mechanisms underlying carcinogenesis. Epigenetic alterations, to this point, are largely identified by changes in DNA methylation and hydroxymethylation as well as methylation, acetylation, and phosphorylation of histone tails. These modifications enable significant flexibility in gene expression, rather than just turning genes "ON" or "OFF." Herein we describe the epigenetic landscape in the regulation of gene expression with a particular focus on interrogating DNA methylation in myeloid malignancy.
Collapse
Affiliation(s)
- Benjamin E Paluch
- Department of Pharmacology, Center for Pharmacology and Genetics Building (CGP), Roswell Park Cancer Institute (RPCI), Elm and Carlton Street, 14263 Buffalo, NY, USA.
| | - Abdul R Naqash
- Catholic Health, State University of New York at Buffalo (SUNY), 2157 Main Street, 14214 Buffalo, NY, USA.
| | - Zachary Brumberger
- University at Buffalo State University of New York, School of Medicine and Biomedical Sciences, 3435 Main Street, 14260 Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Medicine, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA
| | - Elizabeth A Griffiths
- Department of Pharmacology, Center for Pharmacology and Genetics Building (CGP), Roswell Park Cancer Institute (RPCI), Elm and Carlton Street, 14263 Buffalo, NY, USA; Department of Medicine, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA; Leukemia Division, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA.
| |
Collapse
|