1
|
Makhkamov M, Baev A, Kurganov E, Razzokov J. Understanding Osaka mutation polymorphic Aβ fibril response to static and oscillating electric fields: insights from computational modeling. Sci Rep 2024; 14:22246. [PMID: 39333193 PMCID: PMC11436846 DOI: 10.1038/s41598-024-72778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, impacting millions of individuals worldwide. Among its defining characteristics is the accumulation of senile plaques within the brain's gray matter, formed through the self-assembly of misfolded proteins contributing to the progressive symptoms of AD. This study investigates a polymorphic Aβ fibril under static and oscillating electric fields using molecular dynamics simulation. Specifically, we utilized a polymorphic fibrillar complex composed of two intertwined pentamer-strands of the Aβ1-40 peptide with the Osaka mutation (E22Δ), known for its toxicity and stable structure. Our findings demonstrate that a 0.3 and 0.4 V/nm electric field combined with a 0.20 GHz frequency effectively disrupts the polymorphic conformation of Aβ fibrils. Furthermore, we elucidate the molecular mechanisms underlying this disruption, providing insights into the potential therapeutic use of oscillating electric fields for AD. This research offers valuable insights into novel therapeutic approaches for combating AD pathology.
Collapse
Affiliation(s)
- Mukhriddin Makhkamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174, Tashkent, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, 100207, Tashkent, Uzbekistan
| | - Artyom Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174, Tashkent, Uzbekistan
| | - Erkin Kurganov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000, Tashkent, Uzbekistan.
- Department of Biotechnology, School of Engineering, Tashkent State Technical University, 100095, Tashkent, Uzbekistan.
- Department of Natural Sciences, Shakhrisabz State Pedagogical Institute, Shakhrisabz Street 10, 181301, Kashkadarya, Uzbekistan.
| |
Collapse
|
2
|
Nencini R, Tempra C, Biriukov D, Riopedre-Fernandez M, Cruces Chamorro V, Polák J, Mason PE, Ondo D, Heyda J, Ollila OHS, Jungwirth P, Javanainen M, Martinez-Seara H. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J Chem Theory Comput 2024; 20:7546-7559. [PMID: 39186899 PMCID: PMC11391585 DOI: 10.1021/acs.jctc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs. With this scaling of (both integer and partial) charges within the CHARMM36 framework, prosECCo75 addresses overbinding artifacts. This improves agreement with experimental ion binding data across a broad spectrum of systems─lipid membranes, proteins (including peptides and amino acids), and saccharides─without compromising their biomolecular structures. prosECCo75 thus emerges as a computationally efficient tool providing enhanced accuracy and broader applicability in simulating the complex interplay of interactions between ions and biomolecules, pivotal for improving our understanding of many biological processes.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| |
Collapse
|
3
|
Hu G, Song H, Chen X, Li J. Wet Conformation of Prion-Like Domain and Intimate Correlation of Hydration and Conformational Fluctuations. J Phys Chem Lett 2024; 15:8315-8325. [PMID: 39109535 DOI: 10.1021/acs.jpclett.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Proteins with prion-like domains (PLDs) are involved in neurodegeneration-associated aggregation and are prevalent in liquid-like membrane-less organelles. These PLDs contain amyloidogenic stretches but can maintain dynamic disordered conformations, even in the condensed phase. However, the molecular mechanism underlying such intricate conformational properties of PLDs remains elusive. Here we employed molecular dynamics simulations to investigate the conformational properties of a prototypical PLD system (i.e., FUS PLD). According to our simulation results, PLD adopts a wet collapsed conformation, wherein most residues maintain sufficient hydration with the abundance of internal water. These internal water molecules can rapidly exchange between the protein interior and the bulk, enabling intensive coupling of the entire protein with its hydration environment. The dynamic exchange of water molecules is intimately correlated to the overall conformational fluctuations of PLD. Furthermore, the abundance of dynamic internal water suppresses the formation of aggregation-prone ordered structures. These results collectively elucidate the crucial role of internal water in sustaining the dynamic disordered conformation of the PLD and inhibiting its aggregation propensity.
Collapse
Affiliation(s)
- Guorong Hu
- School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Song
- School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jingyuan Li
- School of Physics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Munshi R. How Transcription Factor Clusters Shape the Transcriptional Landscape. Biomolecules 2024; 14:875. [PMID: 39062589 PMCID: PMC11274464 DOI: 10.3390/biom14070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In eukaryotic cells, gene transcription typically occurs in discrete periods of promoter activity, interspersed with intervals of inactivity. This pattern deviates from simple stochastic events and warrants a closer examination of the molecular interactions that activate the promoter. Recent studies have identified transcription factor (TF) clusters as key precursors to transcriptional bursting. Often, these TF clusters form at chromatin segments that are physically distant from the promoter, making changes in chromatin conformation crucial for promoter-TF cluster interactions. In this review, I explore the formation and constituents of TF clusters, examining how the dynamic interplay between chromatin architecture and TF clustering influences transcriptional bursting. Additionally, I discuss techniques for visualizing TF clusters and provide an outlook on understanding the remaining gaps in this field.
Collapse
Affiliation(s)
- Rahul Munshi
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Borgis D, Laage D, Belloni L, Jeanmairet G. Dielectric response of confined water films from a classical density functional theory perspective. Chem Sci 2023; 14:11141-11150. [PMID: 37860645 PMCID: PMC10583706 DOI: 10.1039/d3sc01267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement between two walls using simple two-variable density functional theory involving number and polarisation densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in connection with the recent experiments of Fumagalli et al., [Science, 2018, 360, 1339-1342], and to discuss the notion of the interfacial dielectric constant. We argue that the observed properties as a function of slab dimensions, in particular the very low dielectric constants of the order of 2-3 measured for thin slabs of ∼1 nm thickness do not highlight any special properties of water but can be recovered for a generic polar solvent having similar particle size and the same high dielectric constant. Regarding the transverse polarisation case where the perturbing field is parallel to the walls, the associated effective dielectric constant as a function of slab dimensions reaches bulk-like values at much shorter widths than in the longitudinal case. In both cases, we find an oscillatory behaviour for slab thicknesses in the one nanometer range due to packing effects.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay UAR 3441 91191 Gif-sur-Yvette France
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Damien Laage
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Luc Belloni
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX F-75005 Paris France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 80039 Amiens Cedex France
| |
Collapse
|
6
|
Ogura T, Okada T, Hatano M, Nakamura M, Agemura T. Development of General-purpose Dielectric Constant Imaging Unit for SEM and Direct Observation of Samples in Aqueous Solution. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1037-1046. [PMID: 37749668 DOI: 10.1093/micmic/ozad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 09/27/2023]
Abstract
Electron microscopes can observe samples with a spatial resolution of 10 nm or higher; however, they cannot observe samples in solutions due to the vacuum conditions inside the sample chamber. Recently, we developed a scanning electron-assisted dielectric microscope (SE-ADM), based on scanning electron microscope, which enables the observation of various specimens in solution. Until now, the SE-ADM system used a custom-made SE-ADM stage with a built-in amplifier and could not be linked to the scanning electron microscopy (SEM) operation system. Therefore, it was necessary to manually acquire images from the SE-ADM system after setting the EB focus, astigmatism, and observation field-of-view from the SEM operating console. In this study, we developed a general-purpose dielectric constant imaging unit attached to commercially available SEMs. The new SE-ADM unit can be directly attached to the standard stage of an SEM, and the dielectric signal detected from this unit can be input to the external input terminal of the SEM, enabling simultaneous observation yielding SEM and SE-ADM images. Furthermore, 4.5 nm spatial resolution was achieved using a 10 nm thick silicon nitride film in the sample holder in the observation of aggregated PM2.5. We carried out the observation of cultured cells, PM2.5, and clay samples in solution.
Collapse
Affiliation(s)
- Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Michio Hatano
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| | - Mitsuhiro Nakamura
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| | - Toshihide Agemura
- Hitachi High-Tech Corporation, Ichige 882, Hitachinaka, Ibaraki 312-8504, Japan
| |
Collapse
|
7
|
Sugiyama JI, Tokunaga Y, Hishida M, Tanaka M, Takeuchi K, Satoh D, Imashimizu M. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat Commun 2023; 14:2825. [PMID: 37217486 DOI: 10.1038/s41467-023-38462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.
Collapse
Affiliation(s)
- Jun-Ichi Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Satoh
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
8
|
Shen K, Nguyen M, Sherck N, Yoo B, Köhler S, Speros J, Delaney KT, Shell MS, Fredrickson GH. Predicting surfactant phase behavior with a molecularly informed field theory. J Colloid Interface Sci 2023; 638:84-98. [PMID: 36736121 DOI: 10.1016/j.jcis.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.
Collapse
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - Brian Yoo
- BASF Corporation, Tarrytown 10591, NY, United States
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley 94720, CA, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara 93106, CA, United States; Department of Materials Engineering, University of California, Santa Barbara, Santa Barbara 93106, CA, United States.
| |
Collapse
|
9
|
Guberman-Pfeffer MJ. Structural Determinants of Redox Conduction Favor Robustness over Tunability in Microbial Cytochrome Nanowires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525004. [PMID: 36712098 PMCID: PMC9882360 DOI: 10.1101/2023.01.21.525004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helical homopolymers of multiheme cytochromes catalyze biogeochemically significant electron transfers with a reported 10 3 -fold variation in conductivity. Herein, classical molecular dynamics and hybrid quantum/classical molecular mechanics are used to elucidate the structural determinants of the redox potentials and conductivities of the tetra-, hexa-, and octaheme outer-membrane cytochromes E, S, and Z, respectively, from Geobacter sulfurreducens . Second-sphere electrostatic interactions acting on minimally polarized heme centers are found to regulate redox potentials over a computed 0.5-V range. However, the energetics of redox conduction are largely robust to the structural diversity: Single-step electronic couplings (⟨H mn ⟩), reaction free energies , and reorganization energies (λ mn ) are always respectively <|0.026|, <|0.26|, and between 0.5 - 1.0 eV. With these conserved parameter ranges, redox conductivity differed by less than a factor of 10 among the 'nanowires' and is sufficient to meet the demands of cellular respiration if 10 2 - 10 3 'nanowires' are expressed. The 'nanowires' are proposed to be differentiated by the protein packaging to interface with a great variety of environments, and not by conductivity, because the rate-limiting electron transfers are elsewhere in the respiratory process. Conducting-probe atomic force microscopy measurements that find conductivities 10 3 -10 6 -fold more than cellular demands are suggested to report on functionality that is either not used or not accessible under physiological conditions. The experimentally measured difference in conductivity between Omc- S and Z is suggested to not be an intrinsic feature of the CryoEM-resolved structures.
Collapse
Affiliation(s)
- Matthew J. Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT, 06510
- Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, CT, 06516
| |
Collapse
|
10
|
Lin YC, Ren P, Webb LJ. AMOEBA Force Field Trajectories Improve Predictions of Accurate p Ka Values of the GFP Fluorophore: The Importance of Polarizability and Water Interactions. J Phys Chem B 2022; 126:7806-7817. [PMID: 36194474 PMCID: PMC10851343 DOI: 10.1021/acs.jpcb.2c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precisely quantifying the magnitude, direction, and biological functions of electric fields in proteins has long been an outstanding challenge in the field. The most widely implemented experimental method to measure such electric fields at a particular residue in a protein has been through changes in pKa of titratable residues. While many computational strategies exist to predict these values, it has been difficult to do this accurately or connect predicted results to key structural or mechanistic features of the molecule. Here, we used experimentally determined pKa values of the fluorophore in superfolder green fluorescent protein (GFP) with amino acid mutations made at position Thr 203 to evaluate the pKa prediction ability of molecular dynamics (MD) simulations using a polarizable force field, AMOEBA. Structure ensembles from AMOEBA were used to calculate pKa values of the GFP fluorophore. The calculated pKa values were then compared to trajectories using a conventional fixed charge force field (Amber03 ff). We found that the position of water molecules included in the pKa calculation had opposite effects on the pKa values between the trajectories from AMOEBA and Amber03 force fields. In AMOEBA trajectories, the inclusion of water molecules within 35 Å of the fluorophore decreased the difference between the predicted and experimental values, resulting in calculated pKa values that were within an average of 0.8 pKa unit from the experimental results. On the other hand, in Amber03 trajectories, including water molecules that were more than 5 Å from the fluorophore increased the differences between the calculated and experimental pKa values. The inaccuracy of pKa predictions determined from Amber03 trajectories was caused by a significant stabilization of the deprotonated chromophore's free energy compared to the result in AMOEBA. We rationalize the cutoffs for explicit water molecules when calculating pKa to better predict the electrostatic environment surrounding the fluorophore buried in GFP. We discuss how the results from this work will assist the prospective prediction of pKa values or other electrostatic effects in a wide variety of folded proteins.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| | - Pengyu Ren
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Program, The University of Texas at Austin, 105 E 24th St. STOP A5300, Austin, TX 78712-1224
| |
Collapse
|
11
|
Soysal EN, Fındık V, Dedeoglu B, Aviyente V, Tantillo DJ. Theoretical Investigation of the Biogenetic Pathway for Formation of Antibacterial Indole Alkaloids from Voacanga africana. ACS OMEGA 2022; 7:31591-31596. [PMID: 36092585 PMCID: PMC9453972 DOI: 10.1021/acsomega.2c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The energetic viability of the previously proposed biogenetic pathway for the formation of two unique monoterpenoid indole alkaloids, voacafricine A and B, which are present in the fruits of Voacanga africana, was investigated using density functional theory computations. The results of these calculations indicate that not only is the previously suggested pathway not energetically viable but also that an alternative biosynthetic precursor is likely.
Collapse
Affiliation(s)
- Esra N. Soysal
- School
of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
- Department
of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Volkan Fındık
- Université
de Lorraine, CNRS, LPCT, Nancy F54000, France
- Department
of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul 34722, Turkey
| | - Burcu Dedeoglu
- Department
of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Viktorya Aviyente
- Department
of Chemistry, Bogazici University, Bebek 34342 Istanbul, Turkey
| | - Dean J. Tantillo
- Department
of Chemistry, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Lincon A, Das S, DasGupta S. Capturing protein denaturation using electrical impedance technique. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hinz DJ, Zhang L, Lee JK. Mass spectrometry in organic and bio-organic catalysis: Using thermochemical properties to lend insight into mechanism. MASS SPECTROMETRY REVIEWS 2022. [PMID: 35899315 DOI: 10.1002/mas.21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we discuss gas phase experimentation centered on the measurement of acidity and proton affinity of substrates that are useful for understanding catalytic mechanisms. The review is divided into two parts. The first covers examples of organocatalysis, while the second focuses on biological catalysis. The utility of gas phase acidity and basicity values for lending insight into mechanisms of catalysis is highlighted.
Collapse
Affiliation(s)
- Damon J Hinz
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanxin Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Mukherjee S, Mondal S, Acharya S, Bagchi B. Tug-of-War between Internal and External Frictions and Viscosity Dependence of Rate in Biological Reactions. PHYSICAL REVIEW LETTERS 2022; 128:108101. [PMID: 35333093 DOI: 10.1103/physrevlett.128.108101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The role of water in biological processes is studied in three reactions, namely, the Fe-CO bond rupture in myoglobin, GB1 unfolding, and insulin dimer dissociation. We compute both internal and external components of friction on relevant reaction coordinates. In all of the three cases, the cross-correlation between forces from protein and water is found to be large and negative that serves to reduce the total friction significantly, increase the calculated reaction rate, and weaken solvent viscosity dependence. The computed force spectrum reveals bimodal 1/f noise, suggesting the use of a non-Markovian rate theory.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Subhajit Acharya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
16
|
Božič A, Podgornik R. Site Correlations, Capacitance, and Polarizability From Protein Protonation Fluctuations. J Phys Chem B 2021; 125:12902-12908. [PMID: 34784480 DOI: 10.1021/acs.jpcb.1c08200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We generalize the Kirkwood-Shumaker theory of protonation fluctuation for an anisotropic distribution of dissociable charges on a globular protein. The fluctuations of the total charge and the total dipole moment, in contrast to their average values, depend on the same proton occupancy correlator, thus exhibiting a similar dependence also on the solution pH. This has important consequences for the Kirkwood-Shumaker interaction and its dependence on the bathing solution conditions.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
17
|
Nguyen TD, Jiménez-Ángeles F, Olvera de la Cruz M. Probing the size-dependent polarizability of mesoscopic ionic clusters and their induced-dipole interactions. J Chem Phys 2021; 155:194901. [PMID: 34800942 DOI: 10.1063/5.0064267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mesoscopic clusters composed of oppositely charged particles are ubiquitous in synthetic and biological soft materials. The effective interaction between these clusters is influenced by their polarizability, that is, the ability of their constituent charges to re-arrange in response to an external electrical field. Here, using coarse-grained simulations, we show that the polarizability of electrically neutral ionic clusters decreases as the number of constituent charges increases and/or their Coulombic interaction strength increases for various ion valencies, ion densities, and degrees of cluster boundary hardness. For clusters of random ionomers and their counterions, their polarizability is shown to depend on the number of polymer chains. The variation of the cluster polarizability with the cluster size indicates that throughout the assembly, the induced-dipole interactions between the clusters may be reduced substantially as they acquire more charges while maintaining zero net charge. Under certain conditions, the induced-dipole interactions may become repulsive, as inferred from our simulations with a polarizable solvent. As a result, the dipole-induced related interactions can serve as a counterbalancing force that contributes to the self-limiting aggregation of charge-containing assemblies.
Collapse
Affiliation(s)
- Trung Dac Nguyen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Vodyanoy V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021; 11:1574. [PMID: 34827572 PMCID: PMC8615972 DOI: 10.3390/biom11111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The blood and tissues of vertebrate animals and mammals contain small endogenous metal nanoparticles. These nanoparticles were observed to be composed of individual atoms of iron, copper, zinc, silver, gold, platinum, and other metals. Metal nanoparticles can bind proteins and produce proteinaceous particles called proteons. A small fraction of the entire pool of nanoparticles is usually linked with proteins to form proteons. These endogenous metal nanoparticles, along with engineered zinc and copper nanoparticles at subnanomolar levels, were shown to be lethal to cultured cancer cells. These nanoparticles appear to be elemental crystalline metal nanoparticles. It was discovered that zinc nanoparticles produce no odor response but increase the odor reaction if mixed with an odorant. Some other metal nanoparticles, including copper, silver, gold, and platinum nanoparticles, do not affect the responses to odorants. The sources of metal nanoparticles in animal blood and tissues may include dietary plants and gut microorganisms. The solid physiological and biochemical properties of metal nanoparticles reflect their importance in cell homeostasis and disease.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| |
Collapse
|
19
|
Vuorte M, Kuitunen S, Sammalkorpi M. Physisorption of bio oil nitrogen compounds onto montmorillonite. Phys Chem Chem Phys 2021; 23:21840-21851. [PMID: 34554171 DOI: 10.1039/d1cp01880a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We assess computationally the adsorption of a series of nitrogen containing heterocycles and fatty acid amides from bio-oil on a model clay surface, Na-montmorillonite. The adsorption energies and conformations predicted by atomistic detail molecular dynamics (MD) simulations are compared against density functional theory (DFT) based molecular electrostatic potentials (MEP) and Hirshfeld, AIM, Merz-Singh-Kollman, and ChelpG charges. MD predicts systematically adsorption via cation bridging with adsorption strength of the heterocycles following purine > pyridine > imidazole > pyrrole > indole > quinoline. The fatty acid amides adsorption strength follows the steric availability and bulkiness of the head group. A comparison against the DFT calculations shows that MEP predicts adsorption geometries and the MD simulations reproduce the conformations for single adsorption site species. However, the DFT derived charge distibutions show that MD force-fields with non-polarizable fixed partial charge representations parametrized for aqueous environments cannot be used in apolar solvent environments without careful accuracy considerations. The overall trends in adsorption energies are reproduced by the Charmm GenFF employed in the MD simulations but the adsorption energies are systematically overestimated in this apolar solvent environment. The work has significance both for revealing nitrogen compound adsorption trends in technologically relevant bio oil environments but also as a methodological assessment revealing the limits of state of the art biomolecular force-fields and simulation protocols in apolar bioenvironments.
Collapse
Affiliation(s)
- Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Susanna Kuitunen
- Neste Engineering Solutions Oy, P.O. Box 310, FI-06101 Porvoo, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland. .,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
20
|
Zhang S, Zhang Y, Fu Y, Zhu Z, Man Z, Bu J, Fang H, Min C, Yuan X. Nonlinearity-modulated single molecule trapping and Raman scattering analysis. OPTICS EXPRESS 2021; 29:32285-32295. [PMID: 34615303 DOI: 10.1364/oe.437647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Single molecule detection and analysis play important roles in many current biomedical researches. The deep-nanoscale hotspots, being excited and confined in a plasmonic nanocavity, make it possible to simultaneously enhance the nonlinear light-matter interactions and molecular Raman scattering for label-free detections. Here, we theoretically show that a nanocavity formed in a tip-enhanced Raman scattering (TERS) system can also achieve valid optical trapping as well as TERS signal detection for a single molecule. In addition, the nonlinear responses of metallic tip and substrate film can change their intrinsic physical properties, leading to the modulation of the optical trapping force and the TERS signal. The results demonstrate a new degree of freedom brought by the nonlinearity for effectively modulating the optical trapping and Raman detection in single molecule level. This proposed platform also shows a great potential in various fields of research that need high-precision surface imaging.
Collapse
|
21
|
Singh U, Saifi Z, Kumar M, Reimers A, Krishnananda SD, Adelung R, Baum M. Role of structural specificity of ZnO particles in preserving functionality of proteins in their corona. Sci Rep 2021; 11:15945. [PMID: 34354203 PMCID: PMC8342705 DOI: 10.1038/s41598-021-95540-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Reconfiguration of protein conformation in a micro and nano particle (MNP) protein corona due to interaction is an often-overlooked aspect in drug design and nano-medicine. Mostly, MNP-Protein corona studies focus on the toxicity of nano particles (NPs) in a biological environment to analyze biocompatibility. However, preserving functional specificity of proteins in an NP corona becomes critical for effective translation of nano-medicine. This paper investigates the non-classical interaction between insulin and ZnO MNPs using a classical electrical characterization technique at GHz frequency with an objective to understand the effect of the micro particle (MP) and nanoparticle (NP) morphology on the electrical characteristics of the MNP-Protein corona and therefore the conformation and functional specificity of protein. The MNP-Protein corona was subjected to thermal and enzymatic (papain) perturbation to study the denaturation of the protein. Experimental results demonstrate that the morphology of ZnO particles plays an important role in preserving the electrical characteristics of insulin.
Collapse
Affiliation(s)
- Urvashi Singh
- Microwave Physics Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, India
| | - Zeeshan Saifi
- Microwave Physics Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, India
| | - Mridul Kumar
- Microwave Physics Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, India
| | - Armin Reimers
- Functional Nanomaterial Group, Institute for Material Science, Kiel University, Kiel, Germany
| | - Soami Daya Krishnananda
- Microwave Physics Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, India.
| | - Rainer Adelung
- Functional Nanomaterial Group, Institute for Material Science, Kiel University, Kiel, Germany
| | - Martina Baum
- Functional Nanomaterial Group, Institute for Material Science, Kiel University, Kiel, Germany
| |
Collapse
|
22
|
Li X, Sun W, Qin X, Xie Y, Liu N, Luo X, Wang Y, Chen X. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings. RSC Adv 2021; 11:26672-26682. [PMID: 35479969 PMCID: PMC9037495 DOI: 10.1039/d1ra05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-range hole transfer of proteins plays an important role in many biological processes of living organisms. Therefore, it is highly useful to examine the possible hole stepping stones, which can facilitate hole transfer in proteins. However, the structures of stepping stones are diverse because of the complexity of the protein structures. In the present work, we proposed a series of special stepping stones, which are instantaneously formed by three and four packing aromatic side chains of amino acids to capture a hole, corresponding to three-π five-electron (π:π∴π↔π∴π:π) and four-π seven-electron (π:π∴π:π↔π:π:π∴π) resonance bindings with appropriate binding energies. The aromatic amino acids include histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp). The formations of these special stepping stones can effectively reduce the local ionization potential of the high π-stacking region to efficiently capture the migration hole. The quick formations and separations of them promote the efficient hole transfer in proteins. More interestingly, we revealed that a hole cannot delocalize over infinite aromatic rings along the high π-π packing structure at the same time and the micro-surroundings of proteins can modulate the formations of π:π∴π↔π∴π:π and π:π∴π:π↔π:π:π∴π bindings. These results may contribute a new avenue to better understand the potential hole transfer pathway in proteins.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Weichao Sun
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuanying Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
23
|
Jing Z, Rackers JA, Pratt LR, Liu C, Rempe SB, Ren P. Thermodynamics of ion binding and occupancy in potassium channels. Chem Sci 2021; 12:8920-8930. [PMID: 34257893 PMCID: PMC8246295 DOI: 10.1039/d1sc01887f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Potassium channels modulate various cellular functions through efficient and selective conduction of K+ ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K+ ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. Polarization shapes the energy landscape of ion conduction in potassium channels.![]()
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Joshua A Rackers
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University New Orleans Louisiana 70118 USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
24
|
Flesch J, Bettenhausen M, Kazmierczak M, Klesse WM, Skibitzki O, Psathaki OE, Kurre R, Capellini G, Guha S, Schroeder T, Witzigmann B, You C, Piehler J. Three-Dimensional Interfacing of Cells with Hierarchical Silicon Nano/Microstructures for Midinfrared Interrogation of In Situ Captured Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8049-8059. [PMID: 33570931 DOI: 10.1021/acsami.0c22421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Label-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding. Based on spatially resolved surface functionalization, we demonstrate controlled three-dimensional interfacing of mammalian cells with Si-MPAs. Spatially controlled surface functionalization for site-specific protein immobilization enabled efficient targeting of soluble and membrane proteins into sensing hotspots directly from cells cultured on Si-MPAs. Protein binding to Si-MPA hotspots at submonolayer level was unambiguously detected by conventional Fourier transform IR spectroscopy. The compatibility with cost-effective CMOS-based microfabrication techniques readily allows integration of this novel IR transducer into fully fledged bioanalytical microdevices for selective and sensitive protein sensing.
Collapse
Affiliation(s)
- Julia Flesch
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
| | - Maximilian Bettenhausen
- Department of Electrical Engineering/Computer Science and CINSaT, University of Kassel, Kassel 34121, Germany
| | - Marcin Kazmierczak
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Wolfgang M Klesse
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Oliver Skibitzki
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Olympia E Psathaki
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Rainer Kurre
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Giovanni Capellini
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
- Dipartimento di Scienze, Università Roma Tre, Roma 00146, Italy
| | - Subhajit Guha
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Thomas Schroeder
- Leibniz-Institut für Kristallzüchtung (IKZ), Berlin 12489, Germany
| | - Bernd Witzigmann
- Department of Electrical Engineering/Computer Science and CINSaT, University of Kassel, Kassel 34121, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| |
Collapse
|
25
|
Banerjee S. An insight into the interaction between α-ketoamide- based inhibitor and coronavirus main protease: A detailed in silico study. Biophys Chem 2021; 269:106510. [PMID: 33285430 PMCID: PMC7695570 DOI: 10.1016/j.bpc.2020.106510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The search for therapeutic drugs that can neutralize the effects of COVID-2019 (SARS-CoV-2) infection is the main focus of current research. The coronavirus main protease (Mpro) is an attractive target for anti-coronavirus drug design. Further, α-ketoamide is proved to be very effective as a reversible covalent-inhibitor against cysteine proteases. Herein, we report on the non-covalent to the covalent adduct formation mechanism of α-ketoamide-based inhibitor with the enzyme active site amino acids by QM/SQM model (QM = quantum mechanical, SQM = semi-empirical QM). To uncover the mechanism, we focused on two approaches: a concerted and a stepwise fashion. The concerted pathway proceeds via deprotonation of the thiol of cysteine (here, Cys145 SγH) and simultaneous reversible nucleophilic attack of sulfur onto the α-ketoamide warhead. In this work, we propose three plausible concerted pathways. On the contrary, in a traditional two-stage pathway, the first step is proton transfer from Cys145 SγH to His41 Nδ forming an ion pair, and consecutively, in the second step, the thiolate ion attacks the α-keto group to form a thiohemiketal. In this reaction, we find that the stability of the tetrahedral intermediate oxyanion/hydroxyl group plays an important role. Moreover, as the α-keto group has two faces Si or Re for the nucleophilic attack, we considered both possibilities of attack leading to S- and R-thiohemiketal. We computed the structural, electronic, and energetic parameters of all stationary points including transition states via ONIOM and pure DFT method. Additionally, to characterize covalent, weak noncovalent interaction (NCI) and hydrogen-bonds, we applied NCI-reduced density gradient (NCI-RDG) methods along with Bader's Quantum Theory of Atoms-in-Molecules (QTAIM) and natural bonding orbital (NBO) analysis.
Collapse
Affiliation(s)
- Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology, Salt Lake, Sector-3, Kolkata, PIN-700106, West Bengal, India.
| |
Collapse
|
26
|
Rodrigues AV, Tantillo DJ, Mukhopadhyay A, Keasling JD, Beller HR. Insight into the Mechanism of Phenylacetate Decarboxylase (PhdB), a Toluene-Producing Glycyl Radical Enzyme. Chembiochem 2020; 21:663-671. [PMID: 31512343 PMCID: PMC7079210 DOI: 10.1002/cbic.201900560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/14/2023]
Abstract
We recently reported the discovery of phenylacetate decarboxylase (PhdB), representing one of only ten glycyl-radical-enzyme reaction types known, and a promising biotechnological tool for first-time biochemical synthesis of toluene from renewable resources. Here, we used experimental and computational data to evaluate the plausibility of three candidate PhdB mechanisms, involving either attack at the phenylacetate methylene carbon or carboxyl group [via H-atom abstraction from COOH or single-electron oxidation of COO- (Kolbe-type decarboxylation)]. In vitro experimental data included assays with F-labeled phenylacetate, kinetic studies, and tests with site-directed PhdB mutants; computational data involved estimation of reaction energetics using density functional theory (DFT). The DFT results indicated that all three mechanisms are thermodynamically challenging (beyond the range of many known enzymes in terms of endergonicity or activation energy barrier), reflecting the formidable demands on PhdB for catalysis of this reaction. Evidence that PhdB was able to bind α,α-difluorophenylacetate but was unable to catalyze its decarboxylation supported the enzyme's abstraction of a methylene H atom. Diminished activity of H327A and Y691F mutants was consistent with proposed proton donor roles for His327 and Tyr691. Collectively, these and other data most strongly support PhdB attack at the methylene carbon.
Collapse
Affiliation(s)
- Andria V. Rodrigues
- Joint BioEnergy Institute (JBEI)5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems and EngineeringLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Dean J. Tantillo
- Department of ChemistryUniversity of California1 Shields AvenueDavisCA95616USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute (JBEI)5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems and EngineeringLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Jay D. Keasling
- Joint BioEnergy Institute (JBEI)5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems and EngineeringLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
- Department of BioengineeringUniversity of California306 Stanley HallBerkeleyCA94720USA
- Department of Chemical and Biomolecular EngineeringUniversity of California201 Gilman HallBerkeleyCA94720USA
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkBuilding 220, Kemitorvet2800Kgs. LyngbyDenmark
| | - Harry R. Beller
- Joint BioEnergy Institute (JBEI)5885 Hollis StreetEmeryvilleCA94608USA
- Biological Systems and EngineeringLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| |
Collapse
|
27
|
Kirby BJ, Jungwirth P. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations. J Phys Chem Lett 2019; 10:7531-7536. [PMID: 31743030 DOI: 10.1021/acs.jpclett.9b02652] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electronic polarization effects play an important role in the interactions of charged species in biologically relevant aqueous solutions, such as those involving salt ions, proteins, nucleic acids, or phospholipid membranes. Explicit inclusion of electronic polarization in molecular modeling is tedious both from the point of view of force field parametrization and actual performance of the simulations. Therefore, the vast majority of biomolecular simulations is performed using nonpolarizable force fields, which can lead to artifacts such as dramatically overestimated ion pairing, particularly when polyvalent ions are involved. Here, we show that many of these issues can be remedied without extra computational costs by including electronic polarization in a mean field way via charge rescaling. We also lay the solid physical foundations of this approach and reconcile from this perspective the microscopic versus macroscopic natures of nonpolarizable force fields.
Collapse
Affiliation(s)
- Brian J Kirby
- Sibley School of Mechanical and Aerospace Engineering , Cornell University , Ithaca , New York 14853 , United States
- Weill-Cornell Medicine , New York , New York 10065 , United States
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , Flemingovo nam. 2 , 16610 Prague 6 , Czech Republic
| |
Collapse
|
28
|
|
29
|
Han R, Rempfer K, Zhang M, Dobbek H, Zouni A, Dau H, Luber S. Investigating the Structure and Dynamics of Apo‐Photosystem II. ChemCatChem 2019. [DOI: 10.1002/cctc.201900351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruocheng Han
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Katharina Rempfer
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Miao Zhang
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dobbek
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Athina Zouni
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dau
- Institut für PhysikFreie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Sandra Luber
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| |
Collapse
|
30
|
Zhou K, Yuan C, Dai B, Wang K, Chen Y, Ma D, Dai J, Liang Y, Tan H, Cui M. Environment-Sensitive Near-Infrared Probe for Fluorescent Discrimination of Aβ and Tau Fibrils in AD Brain. J Med Chem 2019; 62:6694-6704. [DOI: 10.1021/acs.jmedchem.9b00672] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kaixiang Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Yuan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kan Wang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Mukherjee S, Mondal S, Bagchi B. Mechanism of Solvent Control of Protein Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:058101. [PMID: 30822020 DOI: 10.1103/physrevlett.122.058101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/09/2023]
Abstract
We find that the coupled interactions between protein and water polarization fluctuations play a dominant role in driving the configuration space random walk of solvated proteins. We perform atomistic molecular dynamics simulations on five proteins. Owing to a very low dielectric constant of protein, its dipolar groups experience forces from water along with local forces due to protein atoms. Energy fluctuations reveal a pronounced anticorrelation between protein and water contributions. The protein energy spectrum shows bimodal 1/f noise, which can be attributed to the influence of water on the dynamics of protein.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
32
|
Farahvash A, Leontyev I, Stuchebrukhov A. Dynamic and Electronic Polarization Corrections to the Dielectric Constant of Water. J Phys Chem A 2018; 122:9243-9250. [DOI: 10.1021/acs.jpca.8b07953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ardavan Farahvash
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Igor Leontyev
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei Stuchebrukhov
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
33
|
Lozano H, Fabregas R, Blanco-Cabra N, Millán-Solsona R, Torrents E, Fumagalli L, Gomila G. Dielectric constant of flagellin proteins measured by scanning dielectric microscopy. NANOSCALE 2018; 10:19188-19194. [PMID: 30302472 DOI: 10.1039/c8nr06190d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dielectric constant of flagellin proteins in flagellar bacterial filaments ∼10-20 nm in diameter is measured using scanning dielectric microscopy. We obtained for two different bacterial species (Shewanella oneidensis MR-1 and Pseudomonas aeruginosa PAO1) similar relative dielectric constant values εSo = 4.3 ± 0.6 and εPa = 4.5 ± 0.7, respectively, despite their different structure and amino acid sequence. The present results show the applicability of scanning dielectric microscopy to nanoscale filamentous protein complexes and to general 3D macromolecular protein geometries, thus opening new avenues to study the relationship between the dielectric response and protein structure and function.
Collapse
Affiliation(s)
- Helena Lozano
- Nanoscale Bioelectrical Characterization, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), c/ Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Matthews E, Dessent CEH. Observation of Near-Threshold Resonances in the Flavin Chromophore Anions Alloxazine and Lumichrome. J Phys Chem Lett 2018; 9:6124-6130. [PMID: 30277786 DOI: 10.1021/acs.jpclett.8b02529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lumichrome (LC) is the chromophore of the flavin family of photoactive biomolecules, where key biochemical activity involves interplay between redox and photophysical events. Questions remain about the relationship between the redox status of the ground and excited states and demand an improved understanding of the intrinsic photochemistry. Using anion photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (564-220 nm) and accompanying photodegradation pathways of the deprotonated anionic form of LC. Experiments were also performed on alloxazine (AL), which is equivalent to LC minus two methyl groups. We observe a resonance state close to 3.8 eV for both anions for the first time, which we tentatively assign to dipole-bound excited states. For AL this state is sufficiently long-lived to facilitate dissociative electron attachment. Our results suggest that the presence of methyl group rotors at key positions along the molecular dipole may reduce the lifetime of the resonance state and hence provide a structural barrier to valence electron capture, and ensuing molecular dissociation.
Collapse
Affiliation(s)
- Edward Matthews
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | | |
Collapse
|
35
|
Song H, van der Velden NS, Shiran SL, Bleiziffer P, Zach C, Sieber R, Imani AS, Krausbeck F, Aebi M, Freeman MF, Riniker S, Künzler M, Naismith JH. A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds. SCIENCE ADVANCES 2018; 4:eaat2720. [PMID: 30151425 PMCID: PMC6108569 DOI: 10.1126/sciadv.aat2720] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/17/2018] [Indexed: 05/04/2023]
Abstract
The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.
Collapse
Affiliation(s)
- Haigang Song
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Niels S. van der Velden
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sally L. Shiran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
| | - Patrick Bleiziffer
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Christina Zach
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Aman S. Imani
- Department of Biochemistry, Molecular Biology, and Biophysics, and BioTechnology Institute, University of Minnesota–Twin Cities, St. Paul, MN 55108, USA
| | - Florian Krausbeck
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, and BioTechnology Institute, University of Minnesota–Twin Cities, St. Paul, MN 55108, USA
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| | - James H. Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, UK
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, UK
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| |
Collapse
|
36
|
Farahvash A, Stuchebrukhov A. Investigating the Many Roles of Internal Water in Cytochrome c Oxidase. J Phys Chem B 2018; 122:7625-7635. [PMID: 30011995 DOI: 10.1021/acs.jpcb.7b11920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome c oxidase (C cO) is the terminal enzyme in the respiratory electron transport chain. As part of its catalytic cycle, C cO transfers protons to its Fe-Cu binuclear center (BNC) to reduce oxygen, and in addition, it pumps protons across the mitochondrial inner, or bacterial, membrane where it is located. It is believed that this proton transport is facilitated by a network of water chains inside the enzyme. Here we present an analysis of the hydration of C cO, including the BNC region, using a semi-empirical hydration program, Dowser++, recently developed in our group. Using high-resolution X-ray data, we show that Dowser++ predictions match very accurately the water molecules seen in the D- and K-channels of C cO, as well as in the vicinity of its BNC. Moreover, Dowser++ predicts many more internal water molecules than is typically seen in the experiment. However, no significant hydration of the catalytic cavity in C cO described recently in the literature is observed. As Dowser++ itself does not account for structural changes of the protein, this result supports the earlier assessment that the proposed wetting transition in the catalytic cavity can only either be due to structural rearrangements of BNC, possibly induced by the charges during the catalytic cycle, or occur transiently, in concert with the proton transfer. Molecular dynamics simulations were performed to investigate the global dynamic nature of Dowser++ waters in C cO, and the results suggest a consistent explanation as to why some predicted water molecules would be missing in the experimental structures. Furthermore, in light of the significant protein hydration predicted by Dowser++, the dielectric constant of the hydrated cavities in C cO was also investigated using the Fröhlich-Kirkwood model; the results indicate that in the cavities where water is packed sufficiently densely the dielectric constant can approach values comparable even to that of bulk water.
Collapse
Affiliation(s)
- Ardavan Farahvash
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Alexei Stuchebrukhov
- Department of Chemistry , University of California-Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
37
|
Vandebroek L, De Zitter E, Ly HGT, Conić D, Mihaylov T, Sap A, Proost P, Pierloot K, Van Meervelt L, Parac-Vogt TN. Protein-Assisted Formation and Stabilization of Catalytically Active Polyoxometalate Species. Chemistry 2018; 24:10099-10108. [PMID: 29797738 DOI: 10.1002/chem.201802052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Indexed: 01/24/2023]
Abstract
The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.
Collapse
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Hong Giang Thi Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Dragan Conić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tzvetan Mihaylov
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Annelies Sap
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology and Immunology, Rega Institute, Herestraat 49 box 1042, 3000, Leuven, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| |
Collapse
|
38
|
Sedghamiz E, Ghalami F. Evaluating the Effects of Geometry and Charge Flux in Force Field Modeling. J Phys Chem A 2018; 122:4647-4653. [PMID: 29698601 DOI: 10.1021/acs.jpca.7b12198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We apply a model for analyzing the importance of conformational charge flux to 11 molecules with the R-(CH2) n-R structure (R = Cl, F, OH, SH, COOH, CONH2, and NH2 and n = 4-6). Atomic charges were obtained by fitting to results from density functional theory calculations using the HLY procedure, and their geometry dependence is decomposed into contributions from changes in bond lengths, bond angles, and torsional angles. The torsional degrees of freedom are the main contribution to the conformational dependence of atomic charges and molecular dipole moments, but indirect effects due to changes in bond distances and angles account for ∼15% of the variations. While the magnitude of charge flux and geometry effects have been found to be independent of the number of internal degrees of freedom, the nature of the R- group has a moderate influence. The indirect effects are comparable for all of the R-groups and are approximately one-half the magnitude of the corresponding effects in peptide models. However, the magnitudes are different, yet the relative importance of geometry and charge flux effects are completely similar to those of the peptide models, which suggests that modeling the charge flux effects for changes in bond lengths, bond angles, and torsional angles should be considered for developing improved force fields.
Collapse
Affiliation(s)
- Elaheh Sedghamiz
- Department of Chemistry , Aarhus University , Langelandsgade 140 , Aarhus DK-8000 , Denmark.,Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| | - Farhad Ghalami
- Department of Chemistry , Aarhus University , Langelandsgade 140 , Aarhus DK-8000 , Denmark.,Department of Chemistry , University of Isfahan , Isfahan 81746-73441 , Iran
| |
Collapse
|
39
|
Analysis of oscillatory rocking curve by dynamical diffraction in protein crystals. Proc Natl Acad Sci U S A 2018; 115:3634-3639. [PMID: 29563230 DOI: 10.1073/pnas.1720098115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-quality protein crystals meant for structural analysis by X-ray diffraction have been grown by various methods. The observation of dynamical diffraction in protein crystals is an interesting topic because dynamical diffraction generally occurs in perfect crystals such as Si crystals. However, to our knowledge, there is no report yet on protein crystals showing clear dynamical diffraction. We wonder whether the perfection of protein crystals might still be low compared with that of high-quality Si crystals. Here, we present observations of the oscillatory profile of rocking curves for protein crystals such as glucose isomerase crystals. The oscillatory profiles are in good agreement with those predicted by the dynamical theory of diffraction. We demonstrate that dynamical diffraction occurs even in protein crystals. This suggests the possibility of the use of dynamical diffraction for the determination of the structure and charge density of proteins.
Collapse
|
40
|
Simakov NA, Kurnikova MG. Membrane Position Dependency of the pK a and Conductivity of the Protein Ion Channel. J Membr Biol 2018; 251:393-404. [PMID: 29340712 DOI: 10.1007/s00232-018-0013-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
The dependency of current-voltage characteristics of the α-hemolysin channel on the channel position within the membrane was studied using Poisson-Nernst-Planck theory of ion conductivity with soft repulsion between mobile ions and protein atoms (SP-PNP). The presence of the membrane environment also influences the protonation state of the residues at the boundary of the water-lipid interface. In this work, we predict that Asp and Lys residues at the protein rim change their protonation state upon penetration to the lipid environment. Free energies of protein insertion in the membrane for different penetration depths were estimated using the Poisson-Boltzmann/solvent-accessible surface area (PB/SASA) model. The results show that rectification and reversal potentials are very sensitive to the relative position of channel in the membrane, which in turn contributes to alternative protonation states of lipid-penetrating ionizable groups. The prediction of channel position based on the matching of calculated rectification with experimentally determined rectification is in good agreement with recent neutron reflection experiments. Based on the results, we conclude that α-hemolysin membrane position is determined by a combination of factors and not only by the pattern of the surface hydrophobicity as is typically assumed.
Collapse
Affiliation(s)
- Nikolay A Simakov
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
41
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 501] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
42
|
Lintuluoto M, Lintuluoto JM. Intra-electron transfer induced by protonation in copper-containing nitrite reductase. Metallomics 2018. [DOI: 10.1039/c7mt00323d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electron transfer between two Cu sites in the enzyme induced by protonation of remote catalytic residues.
Collapse
Affiliation(s)
- Masami Lintuluoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
- Kyoto 606-8522
- Japan
| | | |
Collapse
|
43
|
Sieradzan AK, Lipska AG, Lubecka EA. Shielding effect in protein folding. J Mol Graph Model 2017; 79:118-132. [PMID: 29161634 DOI: 10.1016/j.jmgm.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023]
Abstract
One of the most important interactions responsible for protein folding and stability are hydrogen bonds between peptide groups. There is a constant competition between the water molecules and peptide groups in a hydrogen bond formation. Also side-chains take part in this process by reducing hydration of peptide group (shielding effect) that promotes the protein folding. In this paper, a new approach to take into account a shielding effect is presented. A modification of the energy function is derived and incorporated into the UNited RESidue (UNRES) force field. Canonical Molecular Dynamics and Replica Exchange Molecular Dynamics with UNRES force field is applied to study the influence of this effect on protein structure, folding kinetics and free energy landscapes. The results of test calculations suggest that even small contribution of this effect into energy function changes force field behavior as well as speeds up the folding process significantly.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Emilia A Lubecka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| |
Collapse
|
44
|
Barroso daSilva FL, Dias LG. Development of constant-pH simulation methods in implicit solvent and applications in biomolecular systems. Biophys Rev 2017; 9:699-728. [PMID: 28921104 PMCID: PMC5662048 DOI: 10.1007/s12551-017-0311-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
pH is a critical parameter for biological and technological systems directly related with electrical charges. It can give rise to peculiar electrostatic phenomena, which also makes them more challenging. Due to the quantum nature of the process, involving the forming and breaking of chemical bonds, quantum methods should ideally by employed. Nevertheless, due to the very large number of ionizable sites, different macromolecular conformations, salt conditions, and all other charged species, the CPU time cost simply becomes prohibitive for computer simulations, making this a quite complex problem. Simplified methods based on Monte Carlo sampling have been devised and will be reviewed here, highlighting the updated state-of-the-art of this field, advantages, and limitations of different theoretical protocols for biomolecular systems (proteins and nucleic acids). Following a historical perspective, the discussion will be associated with the applications to protein interactions with other proteins, polyelectrolytes, and nanoparticles.
Collapse
Affiliation(s)
- Fernando Luís Barroso daSilva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903, Ribeirão Preto, SP, Brazil.
- UCD School of Physics, UCD Institute for Discovery, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Luis Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes, 3900 - Universidade de São Paulo, BR-14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Qin X, Deng L, Hu C, Li L, Chen X. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite. Chemistry 2017; 23:14900-14910. [DOI: 10.1002/chem.201703221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Qin
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Deng
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Caihong Hu
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Li Li
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical; Process Intensification and Reaction; School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 401331 P.R. China
| |
Collapse
|
46
|
Wahle CW, Martini KM, Hollenbeck DM, Langner A, Ross DS, Hamilton JF, Thurston GM. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin. Phys Rev E 2017; 96:032415. [PMID: 29346981 PMCID: PMC5830141 DOI: 10.1103/physreve.96.032415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/07/2023]
Abstract
We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γB) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4<pH<8 and Debye screening lengths from 6 to 20 Å. We select the interior dielectric value to model γB titration data. At pH 7.1 and Debye length 6.0 Å, on a given γB molecule the predicted top occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of effective pK values alone and estimate the extents to which γB charge pattern distributions broaden at lower pH and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent γB-γB interactions, consideration of numerous pairs of proton occupancy patterns will be needed.
Collapse
Affiliation(s)
- Christopher W. Wahle
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - K. Michael Martini
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| | - Dawn M. Hollenbeck
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Andreas Langner
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - David S. Ross
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - John F. Hamilton
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - George M. Thurston
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
47
|
Wen H, Yu Q, Yin Y, Pan W, Yang S, Liang D. Shear Effects on Stability of DNA Complexes in the Presence of Serum. Biomacromolecules 2017; 18:3252-3259. [DOI: 10.1021/acs.biomac.7b00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Wen
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| | - Qiuhong Yu
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| | - Yudan Yin
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| | - Wei Pan
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| | - Shuang Yang
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| | - Dehai Liang
- Beijing National Laboratory
for Molecular Sciences and the Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, College of Chemistry and Molecular
Engineering, Peking University, Beijing, China, 100871
| |
Collapse
|
48
|
Rossini E, Knapp EW. Protonation equilibria of transition metal complexes: From model systems toward the Mn-complex in photosystem II. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Villa F, Mignon D, Polydorides S, Simonson T. Comparing pairwise-additive and many-body generalized Born models for acid/base calculations and protein design. J Comput Chem 2017; 38:2396-2410. [PMID: 28749575 DOI: 10.1002/jcc.24898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
Generalized Born (GB) solvent models are common in acid/base calculations and protein design. With GB, the interaction between a pair of solute atoms depends on the shape of the protein/solvent boundary and, therefore, the positions of all solute atoms, so that GB is a many-body potential. For compute-intensive applications, the model is often simplified further, by introducing a mean, native-like protein/solvent boundary, which removes the many-body property. We investigate a method for both acid/base calculations and protein design that uses Monte Carlo simulations in which side chains can explore rotamers, bind/release protons, or mutate. The fluctuating protein/solvent dielectric boundary is treated in a way that is numerically exact (within the GB framework), in contrast to a mean boundary. Its originality is that it captures the many-body character while retaining the residue-pairwise complexity given by a fixed boundary. The method is implemented in the Proteus protein design software. It yields a slight but systematic improvement for acid/base constants in nine proteins and a significant improvement for the computational design of three PDZ domains. It eliminates a source of model uncertainty, which will facilitate the analysis of other model limitations. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesco Villa
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - David Mignon
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - Savvas Polydorides
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - Thomas Simonson
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| |
Collapse
|
50
|
Lintuluoto M, Yamada C, Lintuluoto JM. QM/MM Calculation of the Enzyme Catalytic Cycle Mechanism for Copper- and Zinc-Containing Superoxide Dismutase. J Phys Chem B 2017; 121:7235-7246. [DOI: 10.1021/acs.jpcb.7b03589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masami Lintuluoto
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Chiaki Yamada
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Juha M. Lintuluoto
- Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|