1
|
Bhattacharjee R, Lischka H, Kertesz M. Pancake Bonding in the Stabilization of Cationic Acene Dimers. ACS MATERIALS AU 2025; 5:365-376. [PMID: 40093828 PMCID: PMC11907286 DOI: 10.1021/acsmaterialsau.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
This study provides a systematic investigation of intermolecular interactions in homodimer of acenes using density functional theory (DFT). Focusing on the +1-charged dimers-frequently encountered in crystal structures-our analysis explores the influence of this charge, which introduces an unpaired electron, significantly affecting electronic properties. The interaction energy of +1-charged acene dimers is significantly larger compared to their neutral counterparts, attributed to the emergence of "pancake bonding″: a partially covalent interaction marked by intermolecular orbital overlap. This bonding mechanism contributes to the enhanced stability of charged acene dimers. Our findings indicate that the interplay between pancake bonding and van der Waals interactions influence the preferred orientations of monomers within these dimers. Transition state modeling reveals that orientational changes between dimer configurations do not completely break pancake bonds.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Chemistry
Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, United
States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Miklos Kertesz
- Chemistry
Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, United
States
| |
Collapse
|
2
|
Zhang X, He H, Ge C, Xiang Q, Sato S, Lv M, Chen X, Sun Z. Crystallization-Induced Dimerization and Solution-Phase Bond Dissociation of Stable Dibenzoolympicenyl Radicals. Angew Chem Int Ed Engl 2025; 64:e202418261. [PMID: 39375476 DOI: 10.1002/anie.202418261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Crystallization of organic materials can lead to different assembly structure with different reactivity, but this phenomenon is rarely observed for delocalized hydrocarbon radicals. This report introduces a crystallization-induced radical-radical coupling reaction, which employs a series of stable nonplanar organic π-radicals as reactants. Six stable radical congeners are synthesized, resulting in radical-radical coupling at the allenyl radical site during crystallization to produce close-shell dimers. This coupling reaction is absent in the solution phase, which highlights the importance of preorganization in the lattice. Remarkably, the attempts of cocrystallization of different congeners yielded homocoupling products instead of cross-coupling products. In specific cases, two distinct polymorphs are observed and their reactivity is different according to the distance of the reaction sites. Theoretical calculations indicate that the transition from a metastable preorganized monomer to a dimer is barrierless and spontaneous. The dimer could regenerate free radicals by heating or photoirradiation in the solution phase. This discovery may lead to controllable molecular switches.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Chang Ge
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Sota Sato
- "Integrated Molecular Structure Analysis Laboratory", Department of Applied Chemistry School of Engineering, The University of Tokyo, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan
- Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Menglan Lv
- Engineering Research Center for Energy Conversion and Storage Technology of Guizhou, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Acan AS, Wenzel JO, Breher F, Podlech J. A Stable Carbon-Centered Radical Showing Six Amphoteric Redox States. Chemistry 2025; 31:e202403670. [PMID: 39641992 DOI: 10.1002/chem.202403670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
An air- and moisture-stable hydrocarbon radical with four six- and three five-membered rings alternately fused to a heptacycle was obtained by ortho fusion in a suitably ortho,ortho'-substituted diphenylfluorene and subsequent re-establishment of the conjugation. The radical was obtained in five consecutive steps from commercially available starting materials with a total yield of 34 %; key steps are Suzuki couplings and cyclizing SEAr reactions. Mesityl substituents at the five-membered rings ensure the stability of the radical. This cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) was characterized by EPR and UV/Vis spectroscopy and by cyclic voltammetry. Quantum chemical calculation disclosed further properties and led to simulated spectra (spin densities, aromaticity, orbital energies, and UV/Vis/NIR). This radical is best described with the unpaired electron centered in the outer five-membered rings; these resonance formulas show the largest number of fully intact benzene rings. Its triradical character was computed to be very small and can be neglected. The five-membered rings show notable antiaromatic character, especially in the central ring. The constitution of the radical could be further substantiated by X-ray crystallographic analysis of its direct precursor.
Collapse
Affiliation(s)
- Ali S Acan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Jonas O Wenzel
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Frank Breher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Joachim Podlech
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Joseph J, Berville M, Wytko J, Weiss J, Jacquot de Rouville HP. π-mers and π-dimers: Two Radical Supramolecular Interactions - A Tutorial Review. Chemistry 2025; 31:e202403115. [PMID: 39497547 DOI: 10.1002/chem.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
In this review, the difference between π-mers (pimers) and π-dimers (pi-dimers) will be discussed. Often interchanged or confused in the literature, these two radical interactions lead to different or even opposite physico-chemical behaviors. This review aims at clarifying the terms π-mers and π-dimers and at describing their main physico-chemical properties to address their differences. Finally, selected literature examples exhibiting the successive formation of π-mers and π-dimers within the same systems will be detailed to emphasize the physico-chemical changes occurring upon conversion.
Collapse
Affiliation(s)
- Jean Joseph
- Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Mathilde Berville
- Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jennifer Wytko
- Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg 4, rue Blaise Pascal, 67000, Strasbourg, France
| | | |
Collapse
|
5
|
Yu H, Jing Y, Heine T. Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices. Acc Chem Res 2025; 58:61-72. [PMID: 39656556 PMCID: PMC11713877 DOI: 10.1021/acs.accounts.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice. This structure gives rise to four characteristic electronic bands: two of them form Dirac points, while the other two are flat and sandwich the Dirac bands. Functionalization and heteroatoms are suitable means to engineer this band structure. Heteroatoms like boron and nitrogen shift the Fermi level upward and downward, respectively, while bridging groups and functionalized triangulene edges can introduce a dispersion to the flat bands.The stable backbone architecture makes 2D HT-polymers ideal for photoelectrochemical applications: (i) bridge functionalization can tune the band gap and maximize absorption, (ii) the choice of the center atom (B or N) controls the band occupation and shifts the Fermi level with respect to vacuum, allowing in some cases for overpotential-free photon-driven surface reactions, and (iii) the large surface area allows for a high flux of educts and products.The spin polarization in TRI and in open-shell HTs is maintained when linking them to dimers or extended frameworks with direct coupling or more elaborate bridging groups (acetylene, diacetylene, and phenyl). The dimers have a high spin-polarization energy and some of them are strongly magnetically coupled, resulting in stable high-spin or broken-symmetry (BS) low-spin systems. As O2DCs, some systems become antiferromagnetic Mott insulators with large band gaps, while others show Stoner ferromagnetism, maintaining the characteristic honeycomb-kagome bands but shifting the opposite spin-polarized bands to different energies. For O2DCs based on aza- and boratriangulene (monoradicals as building blocks), the Fermi level is shifted to a spin-polarized Dirac point, and the systems have a Curie temperature of about 250 K. For half-filled (all-carbon) systems, the Ovchinnikov rule or, equivalently, Lieb's theorem, is sufficient to predict the magnetic ordering of the systems, while the non-half-filled systems (i.e., those with heteroatoms) obey the more involved Goodenough-Kanamori rule to interpret the magnetism on the grounds of fundamental electronic interactions.There remain challenges in experiment and in theory to advance the field of triangulene-based O2DCs: Coupling reactions beyond surface chemistry have to be developed to allow for highly ordered, extended crystals. Multilayer structures, which are unexplored to date, will be inevitable in alternative synthesis approaches. The predictive power of density-functional theory (DFT) within state-of-the-art functionals is limited for the description of magnetic couplings in these systems due to the apparent multireference character and the large spatial extension of the spin centers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Yu Jing
- Jiangsu
Co-Innovation Centre of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Centrum for Advanced
Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department
of Chemistry, Yonsei University and IBS
center for nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
6
|
Pu Z, Xu Z, Zhang X, Guo Y, Sun Z. Unlocking the Multistage Redox Property of Graphenic Radicals by π-Extension. Angew Chem Int Ed Engl 2024; 63:e202406078. [PMID: 38994912 DOI: 10.1002/anie.202406078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
Delocalized organic π-radicals are intrinsically amphoteric redox systems; however, achieving their multistage redox capability presents a challenge. In addition, their instability often hampers their synthesis, isolation, and characterization. Herein, we report the synthesis of a stable π-extended nanographene π-radical (NR1) and its isolation in the crystalline form. NR1 exhibits an unusual four-stage amphoteric redox behavior, as revealed by cyclic voltammetry measurements. The stable charged species, including a cation and a radical dication, are characterized using spectroscopic methods. This study demonstrates that π-extension could serve as a viable approach to unlock the multistage redox ability of delocalized organic radicals.
Collapse
Affiliation(s)
- Zhaofangzhou Pu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xin Zhang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
7
|
Yu H, Heine T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. SCIENCE ADVANCES 2024; 10:eadq7954. [PMID: 39356753 DOI: 10.1126/sciadv.adq7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
8
|
Weng T, Xu Z, Li K, Guo Y, Chen X, Li Z, Sun Z. 1,1'-Biolympicenyl: A Stable Non-Kekulé Diradical with a Small Singlet and Triplet Energy Gap. J Am Chem Soc 2024; 146:26454-26465. [PMID: 39254188 DOI: 10.1021/jacs.4c09627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Dimerization of delocalized polycyclic hydrocarbon radicals is a simple and versatile method to create diradicals with tailored electronic structures and accessible high-spin states. However, the synthesis is challenging, and the stability issue of the diradicals remains a concern. In this study, we present the synthesis of a stable non-Kekulé 1,1'-biolympicenyl diradical 1 using a protection-oxidation-protection strategy. Diradical 1 demonstrated exceptional stability, with a solution half-life time exceeding 3.5 years and a solid state thermal decomposition temperature above 300 °C. X-ray crystallographic analysis revealed its intersected molecular structure and tightly bound dimer configuration. A singlet ground state with a small singlet-triplet energy gap is consistently identified using electron paramagnetic resonance (EPR) and a superconducting quantum interference device (SQUID) in a rigid matrix, and the triplet state is thermally accessible at room temperature. The solution phase properties were systematically examined through EPR, absorption spectroscopy, and cyclic voltammetry, revealing a rotational motion in the slow-motion regime and multistage redox characteristics. This study presents an efficient synthetic and stabilization strategy for organic diradicals, enabling the development of various high-spin functional materials.
Collapse
Affiliation(s)
- Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
9
|
Scholz AS, Massoth JG, Stoess L, Bolte M, Braun M, Lerner HW, Mewes JM, Wagner M, Froitzheim T. NBN- and BNB-Phenalenyls: the Yin and Yang of Heteroatom-doped π Systems. Chemistry 2024; 30:e202400320. [PMID: 38426580 DOI: 10.1002/chem.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Julian G Massoth
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Lennart Stoess
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Markus Braun
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-M Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
10
|
Xiang Q, Ye L, Ma L, Sun Z. The Olympicenyl Radical and Its Derivatives. Chempluschem 2024; 89:e202300571. [PMID: 37916655 DOI: 10.1002/cplu.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
The olympicenyl radical (OR) has long been a fascinating spin doublet hydrocarbon radical that evoked theoretical and experimental research interests, but the chemistry of olympicenyl was limited by its inherent instability. Recently, this field was revived by the advent of stable, multi-substituted ORs and the isolation of them in the crystalline phase. In this minireview, we summarize the early studies on the pristine OR, as well as the recent advances on the substituted OR derivatives, heteroatom-containing OR derivatives, and OR-based diradicals and polyradicals. The synthetic chemistry, stabilization strategies, self-association behaviors, reactivities, and applications in the biological field of the abovementioned compounds were discussed.
Collapse
Affiliation(s)
- Qin Xiang
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| | - Lei Ye
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lan Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhe Sun
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| |
Collapse
|
11
|
Kino S, Ukai S, Fukui N, Haruki R, Kumai R, Wang Q, Horike S, Phung QM, Sundholm D, Shinokubo H. Close Stacking of Antiaromatic Ni(II) Norcorrole Originating from a Four-Electron Multicentered Bonding Interaction. J Am Chem Soc 2024; 146:9311-9317. [PMID: 38502926 PMCID: PMC10996016 DOI: 10.1021/jacs.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.
Collapse
Affiliation(s)
- Shota Kino
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Ukai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan
Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Rie Haruki
- Photon
Factory, Institute of Materials Structure
Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - Reiji Kumai
- Photon
Factory, Institute of Materials Structure
Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - Qian Wang
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki, FIN-00014, Finland
| | - Satoshi Horike
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, 464-8602, Japan
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki, FIN-00014, Finland
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
12
|
Bernhardt A, Čavlović D, Mayländer M, Blacque O, Cruz CM, Richert S, Juríček M. π-Radical Cascade to a Chiral Saddle-Shaped Peropyrene. Angew Chem Int Ed Engl 2024; 63:e202318254. [PMID: 38278766 DOI: 10.1002/anie.202318254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Reactions of open-shell molecular graphene fragments are typically thought of as undesired decomposition processes because they lead to the loss of desired features like π-magnetism. Oxidative dimerization of phenalenyl to peropyrene shows, however, that these transformations hold promise as a synthetic tool for making complex structures via formation of multiple bonds and rings in a single step. Here, we explore the feasibility of using this "undesired" reaction of phenalenyl to build up strain and provide access to non-planar polycyclic aromatic hydrocarbons. To this end, we designed and synthesized a biradical system with two phenalenyl units linked via a biphenylene backbone. The design facilitates an intramolecular cascade reaction to a helically twisted saddle-shaped product, where the key transformations-ring-closure and ring-fusion-occur within one reaction. The negative curvature of the final peropyrene product, induced by the formed eight-membered ring, was confirmed by single-crystal X-ray diffraction analysis and the helical twist was validated via resolution of the product's enantiomers that display circularly polarized luminescence and high configurational stability.
Collapse
Affiliation(s)
- Annika Bernhardt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniel Čavlović
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071, Granada, Spain
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Barluzzi L, Ogilvie SP, Dalton AB, Kaden P, Gericke R, Mansikkamäki A, Giblin SR, Layfield RA. Triply Bonded Pancake π-Dimers Stabilized by Tetravalent Actinides. J Am Chem Soc 2024; 146:4234-4241. [PMID: 38317384 PMCID: PMC10870716 DOI: 10.1021/jacs.3c13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Aromatic π-stacking is a weakly attractive, noncovalent interaction often found in biological macromolecules and synthetic supramolecular chemistry. The weak nondirectional nature of π-stacking can present challenges in the design of materials owing to their weak, nondirectional nature. However, when aromatic π-systems contain an unpaired electron, stronger attraction involving face-to-face π-orbital overlap is possible, resulting in covalent so-called "pancake" bonds. Two-electron, multicenter single pancake bonds are well known, whereas four-electron double pancake bonds are rare. Higher-order pancake bonds have been predicted, but experimental systems are unknown. Here, we show that six-electron triple pancake bonds can be synthesized by a 3-fold reduction of hexaazatrinaphthylene (HAN) and subsequent stacking of the [HAN]3- triradicals. Our analysis reveals a multicenter covalent triple pancake bond consisting of a σ-orbital and two equivalent π-orbitals. An electrostatic stabilizing role is established for the tetravalent thorium and uranium ions in these systems. We also show that the electronic absorption spectrum of the triple pancake bonds closely matches computational predictions, providing experimental verification of these unique interactions. The discovery of conductivity in thin films of triply bonded π-dimers presents new opportunities for the discovery of single-component molecular conductors and other spin-based molecular materials.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QR, U.K.
| | - Sean P. Ogilvie
- Department
of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QR, U.K.
| | - Alan B. Dalton
- Department
of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QR, U.K.
| | - Peter Kaden
- Institute
of Resource Ecology, Helmoltz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Robert Gericke
- Institute
of Resource Ecology, Helmoltz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Akseli Mansikkamäki
- NMR
Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Sean R. Giblin
- School
of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, U.K.
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QR, U.K.
| |
Collapse
|
14
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
15
|
Wang W, Sun P, Liu X, Zhang X, Zhang L, Tan YZ, Wang X. Radical Cations of Bilayer Nanographenes. Org Lett 2024; 26:1017-1021. [PMID: 38295360 DOI: 10.1021/acs.orglett.3c04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemical redox reactions of bilayer nanographene complexes, (C96H24Ar6)2 (Ar = 2,6-dimethylphenyl) (12) and (C42H12R6)2 (R = tBu) (22), were investigated. Upon two-electron oxidation reactions, 12 and 22 were transformed to radical cations 122•+ and 222•+, respectively. SQUID and EPR measurements on 122•+ and 222•+ indicate that they possess an open-shell singlet ground state with antiferromagnetic interactions between two layers. The shortest separation distance between bilayers in 222•+ (3.30 Å) is shorter than that in 22 (3.44 Å) and 22•+ (3.40 Å), illustrating stronger interaction upon loss of electrons.
Collapse
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Peiyang Sun
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiangjun Liu
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiudu Zhang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Inoue T, Matsuura Y, Horii K, Konishi A, Nishida JI, Yasuda M, Kawase T. N-2,6-Di(isopropyl)phenyl-2-azaphenalenyl radical cations. Chem Commun (Camb) 2024; 60:1735-1738. [PMID: 38240365 DOI: 10.1039/d3cc05968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
N-2,6-Di(isopropyl)phenyl-2-azaphenalenyl radical cations were obtained as a dark brown air-sensitive crystalline compound. The high HOMA values and the ACID calculation indicate relatively high aromatic character of a 5,8-di-tert-butyl derivative, and clean generation of a derivative without tert-butyl groups indicates that the di(isopropyl)phenyl group is sufficient for hampering the formation of the σ-dimer.
Collapse
Affiliation(s)
- Takeru Inoue
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| | - Yuuka Matsuura
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| | - Koki Horii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun-Ichi Nishida
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Kawase
- Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan.
| |
Collapse
|
17
|
Liu H, Shimizu KD. Contributions of London Dispersion Forces to Solution-Phase Association Processes. Acc Chem Res 2023; 56:3572-3580. [PMID: 38009964 DOI: 10.1021/acs.accounts.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ConspectusDespite their ubiquity and early discovery, London dispersion forces are often overlooked. This is due, in part, to the difficulty in assessing their contributions to molecular and polymeric structure, stability, properties, and reactivities. However, recent advances in modeling have revealed that dispersion interactions play an important role in many important chemical and biological processes. Experimental confirmation of their impact in solution has been challenging, leading to controversies about their relative importance.In the course of studying noncovalent interactions using molecular devices, our understanding and appreciation for the importance of dispersion interactions have evolved. This Account follows this intellectual journey by using examples from the literature. The goals are twofold: to describe recent advances in understanding the interaction and to provide guidance to researchers studying weak noncovalent interactions. However, first, the experimental methods for measuring the effects of dispersion interactions and the strategies for isolating their influence are described. These include the design of molecular devices to measure these weak noncovalent interactions and the strategies to disentangle the solvation, solvophobic, and dispersion components of the resulting equilibria.The literature examples are organized around five fundamental questions. (1) Do dispersion interactions have a measurable effect on solution equilibria? (2) To what extent do solvents attenuate or compensate for dispersion interactions? (3) To what extent do the solvation and solvophobic terms influence the dispersion equilibria? (4) Can we predict whether a system will form attractive dispersion or repulsive steric interactions? (5) Can the dispersion term be isolated and interrogated? We were often surprised by the answers to these questions. In each case, we describe how the systems were designed to address these questions and discuss possible interpretations of the results.While dispersion interactions in solution were weak (usually <1 kcal/mol), their influence on complexation and conformational equilibria can be observed and measured. This underscores the significance of these interactions in molecular recognition, coordination chemistry, reaction design, and catalysis. The solvent components of the dispersion equilibria can also be significant. Therefore, the isolation of the dispersion contributions from the solvation and solvophobic effects represents an ongoing challenge. The experimental studies also provide important benchmarks and offer valuable insights to help refine the next generation of computational solvent models.
Collapse
Affiliation(s)
- Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Gao Y, Liu Z, Li T, Zhao W. Mixed-Valence BN-Doped Corannulene Trimer Radical Cations. Angew Chem Int Ed Engl 2023; 62:e202314006. [PMID: 37847644 DOI: 10.1002/anie.202314006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Mixed-valence (MV) dimers have been extensively investigated, however, the structure and properties of purely organic MV trimers based on open-shell polycyclic aromatic hydrocarbons remain elusive. Herein, unprecedented MV BN-doped corannulene radical cations [BN-Cor1]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- and [BN-Cor2]3 ⋅⋅2+ ⋅ 2[BArylF 4 ]- were synthesized via chemical oxidation, and their structures were unambiguously confirmed by single-crystal X-ray diffraction. These uncommon radical cations consist of three corannulene cores and two [BArylF 4 ]- anions, and three corannulene motifs [BN-Cor1]3 ⋅⋅2+ and [BN-Cor2]3 ⋅⋅2+ in the unit cell exhibit a trimer structure with a slipped π-stacking configuration. Detailed structural analyses further revealed that the corannulene cores exhibit an infinite layered self-assembly configuration, allowing their potential applications as building blocks for molecular conductors. The detection of a forbidden transition (Δms =±2) by electron paramagnetic resonance (EPR) spectroscopy further confirmed the existence of two unpaired electrons in the π-trimers and the MV characteristic of these two species. Variable-temperature EPR and conductivity measurements suggested that the BN-doped π-trimers exhibited antiferromagnetic coupling and conductivity properties.
Collapse
Affiliation(s)
- Yapei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
19
|
Duan L, Xue X, Hong B, Gu Z. Conjugation-Induced Spin Delocalization in Helical Chiral Carbon Radicals via Through-Bond and Through-Space Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304563. [PMID: 37867251 DOI: 10.1002/advs.202304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
A class of highly stable hydrocarbon radicals with helical chirality are synthesized, which can be isolated and purified by routine column chromatography on silica gel. These carbon-centered radicals are stabilized by through-bond delocalization and intramolecular through-space conjugation, which is evidenced by Density Functional Theory (DFT) calculation. The high stability enables to directly modify the carbon radical via palladium-catalyzed cross-coupling with the radical being untapped. The structures and optoelectronic properties are investigated with a variety of experimental methods, including Electron Paramagnetic Resonance (EPR), Ultraviolet Visisble Near Infrared (UV-vis-NIR) measurements, Cyclic Voltammetry (CV), Thermogravimetry Analysis (TGA), Circular Dichroism (CD) spectra, High-Performance Liquid Chromatography (HPLC), and X-ray crystallographic analysis. DFT calculations indicated that the 9-anthryl helical radical is more stable than its tail-to-tail σ-dimer over 13.2 kJ mol-1 , which is consistent with experimental observations.
Collapse
Affiliation(s)
- Longhui Duan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaoping Xue
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
20
|
Ferrão LFA, Pontes MAP, Fernandes GFS, Bettanin F, Aquino AJA, Lischka H, Nachtigallova D, Machado FBC. Stability and Reactivity of the Phenalene and Olympicene Isomers. J Phys Chem A 2023; 127:9430-9441. [PMID: 37920974 DOI: 10.1021/acs.jpca.3c04331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.
Collapse
Affiliation(s)
- Luiz F A Ferrão
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Marcelo A P Pontes
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Gabriel F S Fernandes
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| | - Fernanda Bettanin
- Escola de Artes, Ciências e Humanidades (EACH) - Universidade de São Paulo (USP), São Paulo 03828-000, SP, Brazil
| | - Adélia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Dana Nachtigallova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 122228-900, SP, Brazil
| |
Collapse
|
21
|
Wang P, Xiang Q, Tian M, Tao S, Xu Z, Guo Y, Hu W, Sun Z. Spin-Distribution-Directed Regioselective Substitution Strategy for Highly Stable Olympicenyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202313257. [PMID: 37771246 DOI: 10.1002/anie.202313257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
The synthesis of bench-stable conjugated π-radicals is challenging owing to the lack of modular approaches, which greatly hampers their practical material screens and applications. Here, we demonstrate a spin-distribution-directed regioselective substitution strategy to introduce substituents into the specific positions of an olympicenyl radical in a stepwise manner, resulting in a series of highly stable radical species. The substituents can also adjust the crystal packing by means of steric and electronic factors, enabling the changing from a π-dimer to a pseudo-one-dimensional chain. The first single crystal organic field-effect transistor device based on a graphenic radical is fabricated in air, showing a hole mobility of up to 0.021 cm2 V-1 s-1 and excellent device stability. This approach may be generalized to diverse spin-delocalized open-shell organic radicals.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Miaoyue Tian
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sheng Tao
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
22
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
23
|
Yu H, Heine T. Magnetic Coupling Control in Triangulene Dimers. J Am Chem Soc 2023; 145:19303-19311. [PMID: 37610306 PMCID: PMC10485925 DOI: 10.1021/jacs.3c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/24/2023]
Abstract
Metal-free magnetism remains an enigmatic field, offering prospects for unconventional magnetic and electronic devices. In the pursuit of such magnetism, triangulenes, endowed with inherent spin polarization, are promising candidates to serve as monomers to construct extended structures. However, controlling and enhancing the magnetic interactions between the monomers persist as a significant challenge in molecular spintronics, as so far only weak antiferromagnetic coupling through the linkage has been realized, hindering their room temperature utilization. Herein, we investigate 24 triangulene dimers using first-principles calculations and demonstrate their tunable magnetic coupling (J), achieving unprecedented strong J values of up to -144 meV in a non-Kekulé dimer. We further establish a positive correlation between bandgap, electronic coupling, and antiferromagnetic interaction, thereby providing molecular-level insights into enhancing magnetic interactions. By twisting the molecular fragments, we demonstrate an effective and feasible approach to control both the sign and strength of J by tuning the balance between potential and kinetic exchanges. We discover that J can be substantially boosted at planar configurations up to -198 meV. We realize ferromagnetic coupling in nitrogen-doped triangulene dimers at both planar and largely twisted configurations, representing the first example of ferromagnetic triangulene dimers that cannot be predicted by the Ovchinnikov rule. This work thus provides a practical strategy for augmenting magnetic coupling and open up new avenues for metal-free ferromagnetism.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Institute
of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
24
|
Li L, Prindle CR, Shi W, Nuckolls C, Venkataraman L. Radical Single-Molecule Junctions. J Am Chem Soc 2023; 145:18182-18204. [PMID: 37555594 DOI: 10.1021/jacs.3c04487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Varandas AJC. Carbon-[ n]Triangulenes and Sila-[ n]Triangulenes: Which Are Planar? J Phys Chem A 2023. [PMID: 37256705 DOI: 10.1021/acs.jpca.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using our recently suggested concept of a quasi-molecule ("tile") and, in the case of the planarity here at stake, its generalization to larger than tetratomics, we explain why carbon [n]triangulenes tend to be planar, while hybrids, where just a few or even all a- or b-type carbon atoms are silicon-substituted (sila-[n]triangulenes), tend to be planar/nonplanar when compared with the unsubstituted carbon-[n]triangulenes. Because other spin states of the parent carbon- and sila-[n]triangulenes tend to correlate with the same tiles, it is conjectured that no structural changes are expected to depend on their spin state. Other polycyclic and sila-compounds are also discussed.
Collapse
Affiliation(s)
- A J C Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Department of Physics, Universidade Federal do Espí rito Santo, 29075-910 Vitória, Brazil
- Department of Chemistry and Coimbra Chemistry Centre, University of Coimbra 3004-535 Coimbra, Portugal
| |
Collapse
|
26
|
Turco E, Bernhardt A, Krane N, Valenta L, Fasel R, Juríček M, Ruffieux P. Observation of the Magnetic Ground State of the Two Smallest Triangular Nanographenes. JACS AU 2023; 3:1358-1364. [PMID: 37234116 PMCID: PMC10207087 DOI: 10.1021/jacsau.2c00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Fusion of three benzene rings in a triangular fashion gives rise to the smallest open-shell graphene fragment, the phenalenyl radical, whose π-extension leads to an entire family of non-Kekulé triangular nanographenes with high-spin ground states. Here, we report the first synthesis of unsubstituted phenalenyl on a Au(111) surface, which is achieved by combining in-solution synthesis of the hydro-precursor and on-surface activation by atomic manipulation, using the tip of a scanning tunneling microscope. Single-molecule structural and electronic characterizations confirm its open-shell S = 1/2 ground state that gives rise to Kondo screening on the Au(111) surface. In addition, we compare the phenalenyl's electronic properties with those of triangulene, the second homologue in the series, whose S = 1 ground state induces an underscreened Kondo effect. Our results set a new lower size limit in the on-surface synthesis of magnetic nanographenes that can serve as building blocks for the realization of new exotic quantum phases of matter.
Collapse
Affiliation(s)
- Elia Turco
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Annika Bernhardt
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nils Krane
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Leoš Valenta
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Roman Fasel
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Michal Juríček
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces
Laboratory, Empa−Swiss Federal Laboratories
for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
27
|
Guo Y, Wu X, Hou B, Xiang Q, Ni Y, Li J, Sun Z. Synthesis and Characterization of a Persistent Benzoanthracenyl Radical Derivative. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
28
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
29
|
Wang W, Ma XH, Liu M, Tang S, Ding X, Zhao Y, Tan YZ, Kertesz M, Wang X. A Triply Negatively Charged Nanographene Bilayer with Spin Frustration. Angew Chem Int Ed Engl 2023; 62:e202217788. [PMID: 36577698 DOI: 10.1002/anie.202217788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96 H24 Ar6 )2 (Ar=2,6-dimethylphenyl) (12 ) was transformed to a triply negatively charged species 12 3.- , which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 12 3.- features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 12 3.- , which indicates graphene upon reduction doping may behave as a quantum spin liquid.
Collapse
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 241002, Wuhu, Anhui, China
| | - Xiao-Hui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xuguang Ding
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 241002, Wuhu, Anhui, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 20057-1227, Washington, DC, USA
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
30
|
Holthoff JM, Engelage E, Ruff A, Galazzo L, Bordignon E, Huber SM, Weiss R. A Potent Auto-Umpolung Ligand for Conjugative Radical Stabilization. Chemistry 2023; 29:e202203149. [PMID: 36239437 PMCID: PMC10099569 DOI: 10.1002/chem.202203149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/23/2022]
Abstract
Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).
Collapse
Affiliation(s)
- Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Adrian Ruff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,PPG Packaging Analytical Labs, PPG Deutschland Business Support GmbH, Erlenbrunnenstr. 20, 72411, Bodelshausen, Germany
| | - Laura Galazzo
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Department of Physical Chemistry (Sciences II), Université de Genève 30 Quai Ernest Ansermet, CH-1211, Genève 4, Switzerland
| | - Enrica Bordignon
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Department of Physical Chemistry (Sciences II), Université de Genève 30 Quai Ernest Ansermet, CH-1211, Genève 4, Switzerland
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054, Erlangen, Germany
| |
Collapse
|
31
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
32
|
Pathania V, Roy VJ, Roy SR. Transforming Non-innocent Phenalenyl to a Potent Photoreductant: Captivating Reductive Functionalization of Aryl Halides through Visible-Light-Induced Electron Transfer Processes. J Org Chem 2022; 87:16550-16566. [DOI: 10.1021/acs.joc.2c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
33
|
Jelenfi DP, Schneiker A, Tajti A, Magyarfalvi G, Tarczay G. Polyaromatic hydrocarbons with an imperfect aromatic system as catalysts of interstellar H 2 formation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dávid P. Jelenfi
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE – Eötvös Loránd University, Budapest, Hungary
| | - Anita Schneiker
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Chemistry, Laboratory of Molecular Spectroscopy, ELTE – Eötvös Loránd University, Budapest, Hungary
| | - Attila Tajti
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE – Eötvös Loránd University, Budapest, Hungary
| | - Gábor Magyarfalvi
- Institute of Chemistry, Laboratory of Molecular Spectroscopy, ELTE – Eötvös Loránd University, Budapest, Hungary
| | - György Tarczay
- Institute of Chemistry, Laboratory of Molecular Spectroscopy, ELTE – Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Budapest, Hungary
| |
Collapse
|
34
|
Moles Quintero S, Haley MM, Kertesz M, Casado J. Polycyclic Hydrocarbons from [4n]Annulenes: Correlation versus Hybridization Forces in the Formation of Diradicaloids. Angew Chem Int Ed Engl 2022; 61:e202209138. [PMID: 35986661 PMCID: PMC9826091 DOI: 10.1002/anie.202209138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The conceptual connections between [4n] Hückel antiaromaticity, disjoint orbitals, correlation energy, pro-aromaticity and diradical character for a variety of extended π-conjugated systems, including some salient recent examples of nanographenes and polycyclic aromatic radicals, are provided based on their [4n]annulene peripheries. The realization of such structure-property relationships has led to a beneficial pedagogic exercise establishing design guidelines for diradicaloids. The antiaromatic fingerprint of the [4n]annulene peripheries upon orbital interactions due to internal covalent connectors gives insights into the diradicaloid property of a diversity of π-conjugated molecules that have fascinated chemists recently.
Collapse
Affiliation(s)
| | - Michael M. Haley
- Department of Chemistry & Biochemistry and Materials Science InstituteUniversity of OregonEugeneOR 97403-1253USA
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft MatterGeorgetown UniversityWashingtonDC 20057-1227USA
| | - Juan Casado
- Department of Physical ChemistryUniversity of Málaga29071MálagaSpain
| |
Collapse
|
35
|
Murata T, Yoshida K, Suzuki S, Ueda A, Nishida S, Kawai J, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y. Double‐σ‐Bonded Close‐Shell Dimers and Peroxy‐Linked Open‐Shell Dimer Derived from a
C
3
Symmetric Trioxophenalenyl Neutral Diradical. Chemistry 2022; 28:e202201426. [DOI: 10.1002/chem.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Kenta Yoshida
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Shuichi Suzuki
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama 1–3 Toyonaka Osaka Japan
| | - Akira Ueda
- Department of Chemistry Faculty of Advanced Science and Technology Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto Japan
| | - Shinsuke Nishida
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Junya Kawai
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kozo Fukui
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Kazuhiro Nakasuji
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| |
Collapse
|
36
|
Quintero SM, Haley MM, Kertesz M, Casado J. Polycyclic Hydrocarbons from [4n]annulenes: Correlation vs. Hybridization Forces in the Formation of Diradicaloids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sergio Moles Quintero
- University of Malaga: Universidad de Malaga Department of Physical Chemistry Facultad de CienciasCampus de Teatinos 29071 Málaga SPAIN
| | - Michael M. Haley
- University of Oregon Department of Chemistry & Biochemistry and Materials Science Institute UNITED STATES
| | - Miklos Kertesz
- Georgetown University Department of Chemistry and Institute of Soft Matter SPAIN
| | - Juan Casado
- University of Málaga Dept. of Physical Chemistry Campus de Teatinos s/n 29071 Málaga SPAIN
| |
Collapse
|
37
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
38
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Bottari G, Torres T, Fasel R, Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105906. [PMID: 35302718 PMCID: PMC9259720 DOI: 10.1002/advs.202105906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 μB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Pascal Ruffieux
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Roman Fasel
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Donostia‐San Sebastián20018Spain
| |
Collapse
|
39
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
40
|
Xiang Q, Sun Z. Doublet Open-Shell Graphene Fragments. Chem Asian J 2022; 17:e202200251. [PMID: 35438845 DOI: 10.1002/asia.202200251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Indexed: 11/11/2022]
Abstract
The recent advances on neutral delocalized radical species based on polycyclic aromatic hydrocarbons with fused hexagonal rings, herein defined as doublet open-shell graphene fragments, are summarized in this review. A few simple yet useful theoretical approaches for structural analysis and molecular design were introduced at first. Then, based on the number of fused hexagonal rings, molecular systems with different size, symmetry and edge structure were discussed with emphasis on those isolated in the crystalline form. Their unique self-association behavior, chemical reactivity and physical properties were summarized and discussed, and insights on their functions and potential applications were provided.
Collapse
Affiliation(s)
- Qin Xiang
- Tianjin University, Institute of Molecular Plus, CHINA
| | - Zhe Sun
- Tianjin University, Institute of molecular plus, No. 92 Weijin Road, Nankai District, 300072, Tianjin, CHINA
| |
Collapse
|
41
|
Dong X, Sun Q, Feng Z, Ruan H, Tang S, Liu M, Zhao Y, Su Y, Wang X. Room‐Temperature
Reversible
σ‐Dimerization
of a Phenalenyl Radical. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xue Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
42
|
Banik A, Mandal SK. Tuning Redox States of Phenalenyl-Based Molecules by Consecutive Reduction toward Transition Metal-Free Heck-Type C–C Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
43
|
Zhang H, Lu J, Zhang Y, Gao L, Zhao XJ, Tan YZ, Cai J. Magnetism engineering of nanographene: an enrichment strategy by co-depositing diverse precursors on Au(111). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Kodama T, Aoba M, Hirao Y, Rivero SM, Casado J, Kubo T. Molecular and Spin Structures of a Through‐Space Conjugated Triradical System. Angew Chem Int Ed Engl 2022; 61:e202200688. [DOI: 10.1002/anie.202200688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Takuya Kodama
- Department of Chemistry, Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
- Current Address: Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division (ICS) Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University Suita Osaka 565-0871 Japan
| | - Mitsuya Aoba
- Department of Chemistry, Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Yasukazu Hirao
- Department of Chemistry, Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Samara Medina Rivero
- Department of Physical Chemistry University of Málaga Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
| | - Juan Casado
- Department of Physical Chemistry University of Málaga Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
- Innovative Catalysis Science Division (ICS) Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
45
|
Guo Y, Ding S, Zhang N, Xu Z, Wu S, Hu J, Xiang Q, Li ZY, Chen X, Sato S, Wu J, Sun Z. π-Extended Doublet Open-Shell Graphene Fragments Exhibiting One-Dimensional Chain Stacking. J Am Chem Soc 2022; 144:2095-2100. [PMID: 35099946 DOI: 10.1021/jacs.1c12854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hitherto elusive benzo[c]anthanthrenyl radical derivatives composed of seven fused six-membered rings are synthesized and isolated in the crystalline form, representing a laterally π-extended doublet open-shell graphene fragment compared to the phenalenyl and olympicenyl radical structures. X-ray crystallographic analysis revealed one-dimensional chain stacking with relatively close intermolecular contacts, which is an important precondition for achieving single-component conductors. The magnetic, optical, and redox properties are investigated in the solution phase. In combination with the good stability, such open-shell molecular systems have potentials as functional electronic materials.
Collapse
Affiliation(s)
- Yupeng Guo
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shuaishuai Ding
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Na Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Jinlian Hu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Xing Chen
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
46
|
Kodama T, Aoba M, Hirao Y, Rivero SM, Casado J, Kubo T. Molecular and Spin Structures of a Through‐Space Conjugated Triradical System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuya Kodama
- Osaka University: Osaka Daigaku Department of Applied Chemistry, Graduate School of Engineering JAPAN
| | - Mitsuya Aoba
- Osaka University: Osaka Daigaku Department of Chemistry, Graduate School of Science JAPAN
| | - Yasukazu Hirao
- Osaka University: Osaka Daigaku Department of Chemistry, Graduate School of Science JAPAN
| | - Samara Medina Rivero
- University of Malaga: Universidad de Malaga Department of Physical Chemistry SPAIN
| | - Juan Casado
- University of Malaga: Universidad de Malaga Department of Physical Chemistry SPAIN
| | - Takashi Kubo
- Osaka University: Osaka Daigaku Department of Chemistry, Graduate School of Science 1-1 Machikaneyama 560-0043 Toyonaka JAPAN
| |
Collapse
|
47
|
Urakawa K, Yatsuoka Y, Kawabata Y, Masu H, Matsuda M, Ishikawa H. Borocyclic Radicals Prepared from Orthoquinone-Containing Polycyclic Aromatics by Photoirradiation. J Org Chem 2022; 87:3647-3651. [PMID: 35041408 DOI: 10.1021/acs.joc.1c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borocyclic radicals with highly conjugated aromatics were generated from orthoquinone-containing polycyclic aromatic compounds by trapping the photoinduced triplet state with simple boron halide under irradiation with light of appropriate wavelength. The picene-based borocyclic radical was remarkably stable when stored at 23 °C in a desiccator for over 1 year. The crystal structure of this stable radical had a stacking structure of a planar π-conjugated system, and the electrical conductivity was higher than those of ordinary organic radical systems.
Collapse
Affiliation(s)
- Kazuki Urakawa
- Division of Organic Chemistry, Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yurie Yatsuoka
- Division of Organic Chemistry, Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yuta Kawabata
- Division of Organic Chemistry, Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masaki Matsuda
- Division of Physical Chemistry, Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
48
|
Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:224. [PMID: 35055243 PMCID: PMC8780648 DOI: 10.3390/nano12020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Lin Yang
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ji Ma
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain;
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, CZ-77146 Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - José I. Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| |
Collapse
|
49
|
Tretyakov EV, Ovcharenko VI, Terent'ev AO, Krylov IB, Magdesieva TV, Mazhukin DG, Gritsan NP. Conjugated nitroxide radicals. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Flynn C, Zhou Z, McCormack ME, Wei Z, Petrukhina MA, Kertesz M. Bonding and uneven charge distribution in infinite pyrene π-stacks. CrystEngComm 2022. [DOI: 10.1039/d2ce00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual intermolecular π-stacking in a new charge transfer salt of pyrene (Py), (Py)2+(Ga2Cl7)−, has been observed.
Collapse
Affiliation(s)
- Chase Flynn
- Chemistry Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington DC 20057-1227, USA
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
- School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Megan E. McCormack
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Miklos Kertesz
- Chemistry Department and Institute of Soft Matter, Georgetown University, 37th and O Streets, NW, Washington DC 20057-1227, USA
| |
Collapse
|