1
|
Gong F, Chen Z, Zhao Y, Zhang H, Zeng G, Yao C, Gong L, Zhang Y, Liu J, Wei S. Trifunctional L-Cysteine Assisted Construction of MoO 2/MoS 2/C Nanoarchitecture Toward High-Rate Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307986. [PMID: 38189535 DOI: 10.1002/smll.202307986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Indexed: 01/09/2024]
Abstract
The volume collapse and slow kinetics reaction of anode materials are two key issues for sodium ion batteries (SIBs). Herein, an "embryo" strategy is proposed for synthesis of nanorod-embedded MoO2/MoS2/C network nanoarchitecture as anode for SIBs with high-rate performance. Interestingly, L-cysteine which plays triple roles including sulfur source, reductant, and carbon source can be utilized to produce the sulfur vacancy-enriched heterostructure. Specifically, L-cysteine can combine with metastable monoclinic MoO3 nanorods at room temperature to encapsulate the "nutrient" of MoOx analogues (MoO2.5(OH)0.5 and MoO3·0.5H2O) and hydrogen-deficient L-cysteine in the "embryo" precursor affording for subsequent in situ multistep heating treatment. The resultant MoO2/MoS2/C presents a high-rate capability of 875 and 420 mAh g-1 at 0.5 and 10 A g-1, respectively, which are much better than the MoS2-based anode materials reported by far. Finite element simulation and analysis results verify that the volume expansion can be reduced to 42.8% from 88.8% when building nanorod-embedded porous network structure. Theoretical calculations reveal that the sulfur vacancies and heterointerface engineering can promote the adsorption and migration of Na+ leading to highly enhanced thermodynamic and kinetic reaction. The work provides an efficient approach to develop advanced electrode materials for energy storage.
Collapse
Affiliation(s)
- Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Zhilin Chen
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hongge Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Cuijie Yao
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Lihua Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yonghui Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute of University of Surrey, Guildford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Shizhong Wei
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
2
|
Deng X, Liu YX, Yang ZZ, Zhao YF, Xu YT, Fu MY, Shen Y, Qu K, Guan Z, Tong WY, Zhang YY, Chen BB, Zhong N, Xiang PH, Duan CG. Spatial evolution of the proton-coupled Mott transition in correlated oxides for neuromorphic computing. SCIENCE ADVANCES 2024; 10:eadk9928. [PMID: 38820158 PMCID: PMC11141630 DOI: 10.1126/sciadv.adk9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.
Collapse
Affiliation(s)
- Xing Deng
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu-Xiang Liu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Zhen-Zhong Yang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yi-Feng Zhao
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ya-Ting Xu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Meng-Yao Fu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yu Shen
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ke Qu
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Zhao Guan
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Wen-Yi Tong
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Yuan-Yuan Zhang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Bin-Bin Chen
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Luo M, Wang Q, Zhao G, Jiang W, Zeng C, Zhang Q, Yang R, Dong W, Zhao Y, Zhang G, Jiang J, Wang Y, Zhu Q. Solid-state atomic hydrogen as a broad-spectrum RONS scavenger for accelerated diabetic wound healing. Natl Sci Rev 2024; 11:nwad269. [PMID: 38213516 PMCID: PMC10776359 DOI: 10.1093/nsr/nwad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/13/2024] Open
Abstract
Hydrogen therapy shows great promise as a versatile treatment method for diseases associated with the overexpression of reactive oxygen and nitrogen species (RONS). However, developing an advanced hydrogen therapy platform that integrates controllable hydrogen release, efficient RONS elimination, and biodegradability remains a giant technical challenge. In this study, we demonstrate for the first time that the tungsten bronze phase H0.53WO3 (HWO) is an exceptionally ideal hydrogen carrier, with salient features including temperature-dependent highly-reductive atomic hydrogen release and broad-spectrum RONS scavenging capability distinct from that of molecular hydrogen. Moreover, its unique pH-responsive biodegradability ensures post-therapeutic clearance at pathological sites. Treatment with HWO of diabetic wounds in an animal model indicates that the solid-state atomic H promotes vascular formation by activating M2-type macrophage polarization and anti-inflammatory cytokine production, resulting in acceleration of chronic wound healing. Our findings significantly expand the basic categories of hydrogen therapeutic materials and pave the way for investigating more physical forms of hydrogen species as efficient RONS scavengers for clinical disease treatment.
Collapse
Affiliation(s)
- Man Luo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Gang Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Cici Zeng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qingao Zhang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Ruyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Yunxi Zhao
- Shenzhen Senior High School, Shenzhen518040, China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qing Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou451162, China
| |
Collapse
|
4
|
Wang Q, Gu Y, Chen C, Han L, Fayaz MU, Pan F, Song C. Strain-Induced Uphill Hydrogen Distribution in Perovskite Oxide Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3726-3734. [PMID: 38197268 DOI: 10.1021/acsami.3c17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Incorporating hydrogen into transition-metal oxides (TMOs) provides a facile and powerful way to manipulate the performances of TMOs, and thus numerous efforts have been invested in developing hydrogenation methods and exploring the property modulation via hydrogen doping. However, the distribution of hydrogen ions, which is a key factor in determining the physicochemical properties on a microscopic scale, has not been clearly illustrated. Here, focusing on prototypical perovskite oxide (NdNiO3 and La0.67Sr0.33MnO3) epitaxial films, we find that hydrogen distribution exhibits an anomalous "uphill" feature (against the concentration gradient) under tensile strain, namely, the proton concentration enhances upon getting farther from the hydrogen source. Distinctly, under a compressive strain state, hydrogen shows a normal distribution without uphill features. The epitaxial strain significantly influences the chemical lattice coupling and the energy profile as a function of the hydrogen doping position, thus dominating the hydrogen distribution. Furthermore, the strain-(H+) distribution relationship is maintained in different hydrogenation methods (metal-alkali treatment) which is first applied to perovskite oxides. The discovery of strain-dependent hydrogen distribution in oxides provides insights into tailoring the magnetoelectric and energy-conversion functionalities of TMOs via strain engineering.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Umer Fayaz
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Su Y, Cao K, Lu Y, Meng Q, Dai Q, Luo X, Lu H, Wu Z, Weng X. Surface-Phosphorylated Ceria for Chlorine-Tolerance Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1369-1377. [PMID: 38048160 DOI: 10.1021/acs.est.3c06878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
An improved fundamental understanding of active site structures can unlock opportunities for catalysis from conceptual design to industrial practice. Herein, we present the computational discovery and experimental demonstration of a highly active surface-phosphorylated ceria catalyst that exhibits robust chlorine tolerance for catalysis. Ab initio molecular dynamics (AIMD) calculations and in situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) identified a predominantly HPO4 active structure on CeO2(110) and CeO2(111) facets at room temperature. Importantly, further elevating the temperature led to a unique hydrogen (H) atom hopping between coordinatively unsaturated oxygen and the adjacent P═O group of HPO4. Such a mobile H on the catalyst surface can effectively quench the chlorine radicals (Cl•) via an orientated reaction analogous to hydrogen atom transfer (HAT), enabling the surface-phosphorylated CeO2-supported monolithic catalyst to exhibit both expected activity and stability for over 68 days during a pilot test, catalyzing the destruction of a complex chlorinated volatile organic compound industrial off-gas.
Collapse
Affiliation(s)
- Yuetan Su
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Kexin Cao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yunhao Lu
- Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qingjie Meng
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xueqing Luo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xiaole Weng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
6
|
Xu J, Li H, Jin Y, Zhou D, Sun B, Armand M, Wang G. Understanding the Electrical Mechanisms in Aqueous Zinc Metal Batteries: From Electrostatic Interactions to Electric Field Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309726. [PMID: 37962322 DOI: 10.1002/adma.202309726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Aqueous Zn metal batteries are considered as competitive candidates for next-generation energy storage systems due to their excellent safety, low cost, and environmental friendliness. However, the inevitable dendrite growth, severe hydrogen evolution, surface passivation, and sluggish reaction kinetics of Zn metal anodes hinder the practical application of Zn metal batteries. Detailed summaries and prospects have been reported focusing on the research progress and challenges of Zn metal anodes, including electrolyte engineering, electrode structure design, and surface modification. However, the essential electrical mechanisms that significantly influence Zn2+ ions migration and deposition behaviors have not been reviewed yet. Herein, in this review, the regulation mechanisms of electrical-related electrostatic repulsive/attractive interactions on Zn2+ ions migration, desolvation, and deposition behaviors are systematically discussed. Meanwhile, electric field regulation strategies to promote the Zn2+ ions diffusion and uniform Zn deposition are comprehensively reviewed, including enhancing and homogenizing electric field intensity inside the batteries and adding external magnetic/pressure/thermal field to couple with the electric field. Finally, future perspectives on the research directions of the electrical-related strategies for building better Zn metal batteries in practical applications are offered.
Collapse
Affiliation(s)
- Jing Xu
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haolin Li
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Jin
- Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
7
|
He J, Liu F, Xu T, Ma J, Yu H, Zhao J, Xie Y, Luo L, Yang Q, Lou T, He L, Sun D. The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challenges. Biomed Pharmacother 2023; 168:115807. [PMID: 37913734 DOI: 10.1016/j.biopha.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder predominantly affecting the elderly. While conventional pharmacological therapies remain the primary treatment for AD, their efficacy is limited effectiveness and often associated with significant side effects. This underscores the urgent need to explore alternative, non-pharmacological interventions. Oxidative stress has been identified as a central player in AD pathology, influencing various aspects including amyloid-beta metabolism, tau phosphorylation, autophagy, neuroinflammation, mitochondrial dysfunction, and synaptic dysfunction. Among the emerging non-drug approaches, hydrogen therapy has garnered attention for its potential in mitigating these pathological conditions. This review provides a comprehensively overview of the therapeutic potential of hydrogen in AD. We delve into its mechanisms of action, administration routes, and discuss the current challenges and future prospects, with the aim of providing valuable insights to facilitate the clinical application of hydrogen-based therapies in AD management.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yanyan Xie
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Luo
- Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ting Lou
- Yiwu Center for Disease Control and Prevention, Yiwu 322000, China.
| | - Luqing He
- Department of Science and Education, the Third People's Hospital Health Care Group of Cixi, Ningbo 315300, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Li L, Hu M, Hu C, Li B, Zhao S, Zhou T, Zhu J, Liu M, Li L, Jiang J, Zou C. Ultrahigh Effective Diffusion in Oxide by Engineering the Interfacial Transporter Channels. NANO LETTERS 2023; 23:7297-7302. [PMID: 37104700 DOI: 10.1021/acs.nanolett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mass storage and removal in solids always play a vital role in technological applications such as modern batteries and neuronal computations. However, they were kinetically limited by the slow diffusional process in the lattice, which made it challenging to fabricate applicable conductors with high electronic and ionic conductivities at room temperature. Here, we proposed an acid solution/WO3/ITO sandwich structure and achieved ultrafast H transport in the WO3 layer by interfacial job-sharing diffusion, which means the spatially separated transport of the H+ and e- in different layers. From the color change of WO3, the effective diffusion coefficient (Deff) was estimated, dramatically increasing ≤106 times and overwhelming values from previous reports. The experiments and simulations also revealed the universality of extending this approach to other atoms and oxides, which could stimulate systematic studies of ultrafast mixed conductors in the future.
Collapse
Affiliation(s)
- Liang Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Min Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Bowen Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shanguang Zhao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Ting Zhou
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jinglin Zhu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Meiling Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
9
|
Bao Y, Zou H, Du S, Xin X, Wang S, Shao G, Zhang F. Metallic Powder Promotes Nitridation Kinetics for Facile Synthesis of (Oxy)Nitride Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302276. [PMID: 37138120 DOI: 10.1002/adma.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/23/2023] [Indexed: 05/05/2023]
Abstract
Nitrogen-containing semiconductors (including metal nitrides, metal oxynitrides, and nitrogen-doped metal oxides) have been widely researched for their application in energy conversion and environmental purification because of their unique characteristics; however, their synthesis generally encounters significant challenges owing to sluggish nitridation kinetics. Herein, a metallic-powder-assisted nitridation method is developed that effectively promotes the kinetics of nitrogen insertion into oxide precursors and exhibits good generality. By employing metallic powders with low work functions as electronic modulators, a series of oxynitrides (i.e., LnTaON2 (Ln = La, Pr, Nd, Sm, and Gd), Zr2 ON2 , and LaTiO2 N) can be prepared at lower nitridation temperatures and shorter nitridation periods to obtain comparable or even lower defect concentrations compared to those of the conventional thermal nitridation method, leading to superior photocatalytic performance. Moreover, some novel nitrogen-doped oxides (i.e., SrTiO3- x Ny and Y2 Zr2 O7- x Ny ) with visible-light responses can be exploited. As revealed by density functional theory (DFT) calculations, the nitridation kinetics are enhanced via the effective electron transfer from the metallic powder to the oxide precursors, reducing the activation energy of nitrogen insertion. The modified nitridation route developed in this work is an alternative method for preparing (oxy)nitride-based materials for energy/environment-related heterogeneous catalysis.
Collapse
Affiliation(s)
- Yunfeng Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Hai Zou
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Du
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Xueshang Xin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuowen Wang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM) School of Materials Science and Engineering Zhengzhou University, Zhengzhou, 450001, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
10
|
Huang W, Wang L, Long D, Liu X. Colorimetric determination and recycling of gold(III) ions using label-free plasmonic H 0.3MoO 3 nanoparticles. Mikrochim Acta 2023; 190:245. [PMID: 37249686 DOI: 10.1007/s00604-023-05826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
A low-cost and environment-friendly sensor was developed for visual determination of gold ions (Au3+) by using label-free hydrogen doped molybdenum oxide (H0.3MoO3) nanoparticles as ratio probes. According to the characterization results of transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectra, Au3+ is easily reduced to red Au nanoparticles (AuNPs) by blue H0.3MoO3 nanoparticles. The color change of the solution depends on the concentration of Au3+, which makes it possible to detect Au3+ visually. Under optimal experimental conditions of pH 4.6, H0.3MoO3 nanoparticles concentration of 0.075 mg·mL-1, and reaction time of 7 min, the sensor offers a satisfactory determination range from 0.5 to 70 μM and a good determination limit of 0.45 μM for Au3+. The concentration of Au3+ as low as 10 μM can be directly distinguished through the naked eye. Additionally, the colorimetric probe has also been proved applicable in environmental water samples. More importantly, the resulting AuNPs have good stability and oxidase-like activity, which may be directly used in sensing, catalysis, energy, and other fields.
Collapse
Affiliation(s)
- Wei Huang
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China.
| | - Long Wang
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Dengying Long
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Xiaonan Liu
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China.
| |
Collapse
|
11
|
Li Y, Wang H, Li Y, Ye H, Zhang Y, Yin R, Jia H, Hou B, Wang C, Ding H, Bai X, Lu A. Electron transfer rules of minerals under pressure informed by machine learning. Nat Commun 2023; 14:1815. [PMID: 37002237 PMCID: PMC10066309 DOI: 10.1038/s41467-023-37384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Electron transfer is the most elementary process in nature, but the existing electron transfer rules are seldom applied to high-pressure situations, such as in the deep Earth. Here we show a deep learning model to obtain the electronegativity of 96 elements under arbitrary pressure, and a regressed unified formula to quantify its relationship with pressure and electronic configuration. The relative work function of minerals is further predicted by electronegativity, presenting a decreasing trend with pressure because of pressure-induced electron delocalization. Using the work function as the case study of electronegativity, it reveals that the driving force behind directional electron transfer results from the enlarged work function difference between compounds with pressure. This well explains the deep high-conductivity anomalies, and helps discover the redox reactivity between widespread Fe(II)-bearing minerals and water during ongoing subduction. Our results give an insight into the fundamental physicochemical properties of elements and their compounds under pressure.
Collapse
Affiliation(s)
- Yanzhang Li
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Hongyu Wang
- Image Processing Center, Beihang University, 102206, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| | - Huan Ye
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Yanan Zhang
- Image Processing Center, Beihang University, 102206, Beijing, China
| | - Rongzhang Yin
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Haoning Jia
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Bingxu Hou
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Changqiu Wang
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Xiangzhi Bai
- Image Processing Center, Beihang University, 102206, Beijing, China.
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, 100191, Beijing, China.
- Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083, Beijing, China.
| | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
12
|
Visible Light Driven Photocatalytic Degradation of Norfloxacin Using 3D Supramolecular Compounds. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Nishikubo R, Kuwahara Y, Naito S, Kusu K, Saeki A. Elucidation of a Photothermal Energy Conversion Mechanism in Hydrogenated Molybdenum Suboxide: Interplay of Trapped Charges and Their Dielectric Interactions. J Phys Chem Lett 2023; 14:1528-1534. [PMID: 36745105 DOI: 10.1021/acs.jpclett.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogenated molybdenum suboxide (HxMoO3-y) is a promising photothermal energy conversion (PEC) material. However, its charge carrier dynamics and underlying mechanisms remain unclear. Utilizing flash-photolysis time-resolved microwave conductivity, we investigated charge carrier-dielectric interactions in the Pt/HxMoO3-y composite. The charge recombination of H2-reduced Pt/HxMoO3-y was 2-3 orders of magnitude faster than that of Pt/MoO3, indicating efficient PEC. A complex photoconductivity study revealed that Pt/HxMoO3-y has two types of trapping mechanisms, Drude-Zener (DZ) and negative permittivity effect (NPE) modes, depending on the reduction temperature. Pt/HxMoO3-y reduced at 100 °C exhibited a dominant NPE owing to the electrical interaction of trapped charges with the surrounding ions and/or OH base. This polaronic trapped state retarded the PEC process. We found Pt/HxMoO3-y reduced at 200 °C to be optimal owing to the balanced suppression of the NPE and charge diffusion. This is the first report revealing the charge dynamics in hydrogenated metal oxides and their impacts on PEC processes.
Collapse
Affiliation(s)
- Ryosuke Nishikubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yasutaka Kuwahara
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Shintaro Naito
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kazuki Kusu
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
14
|
Schreiber E, Brennessel WW, Matson EM. Regioselectivity of concerted proton-electron transfer at the surface of a polyoxovanadate cluster. Chem Sci 2023; 14:1386-1396. [PMID: 36794190 PMCID: PMC9906639 DOI: 10.1039/d2sc05928b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Proton-coupled electron transfer (PCET) is an important process in the activation and reactivity of metal oxide surfaces. In this work, we study the electronic structure of a reduced polyoxovanadate-alkoxide cluster bearing a single bridging oxide moiety. The structural and electronic implications of the incorporation of bridging oxide sites are revealed, most notably resulting in the quenching of cluster-wide electron delocalization in the most reduced state of the molecule. We correlate this attribute to a change in regioselectivity of PCET to the cluster surface (e.g. reactivity at terminal vs. bridging oxide groups). Reactivity localized at the bridging oxide site enables reversible storage of a single H-atom equivalent, changing the stoichiometry of PCET from a 2e-/2H+ process. Kinetic investigations indicate that the change in site of reactivity translates to an accelerated rate of e-/H+ transfer to the cluster surface. Our work summarizes the role which electronic occupancy and ligand density play in the uptake of e-/H+ pairs at metal oxide surfaces, providing design criteria for functional materials for energy storage and conversion processes.
Collapse
Affiliation(s)
- Eric Schreiber
- Department of Chemistry, University of Rochester Rochester NY 14611 USA
| | | | - Ellen M Matson
- Department of Chemistry, University of Rochester Rochester NY 14611 USA
| |
Collapse
|
15
|
Wang Q, Gu Y, Chen C, Qiao L, Pan F, Song C. Realizing Metastable Cobaltite Perovskite via Proton-Induced Filling of Oxygen Vacancy Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1574-1582. [PMID: 36537655 DOI: 10.1021/acsami.2c18311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction between transition-metal oxides (TMOs) and protons has become a key issue in magneto-ionics and proton-conducting fuel cells. Until now, most investigations on oxide-proton reactions rely on electrochemical tools, while the direct interplay between protons and oxides remains basically at simple dissolution of metal oxides by an acidic solution. In this work, we find classical TMO brownmillerite SrCoO2.5 (B-SCO) films with ordered oxygen vacancy channels experiencing an interesting transition to a metastable perovskite phase (M-SCO) in a weak acidic solution. M-SCO exhibits a strong ferromagnetism (1.01 μB/Co, Tc > 200 K) and a greatly elevated electrical conductivity (∼104 of pristine SrCoO2.5), which is similar to the prototypical perovskite SrCoO3. Besides, such M-SCO tends to transform back to B-SCO in a vacuum environment or heating at a relatively low temperature. Two possible mechanisms (H2O addition/active oxygen filling) have been proposed to explain the phenomenon, and the control experiments demonstrate that the latter mechanism is the dominant process. Our work finds a new way to realize cobaltite perovskite with enhanced magnetoelectric properties and may deepen the understanding of oxide-proton interaction in an aqueous solution.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Leilei Qiao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
16
|
Xu Y, Yu S, Tong F, Wang Z, Wang P, Liu Y, Cheng H, Fan Y, Wei W, Dai Y, Zheng Z, Huang B. Dual-plasmon-enhanced nitrophenol hydrogenation over W 18O 49–Au heterostructures studied at the single-particle level. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dual-plasmonic W18O49–Au heterostructure exhibited enhanced catalytic performance in nitrophenol hydrogenation. The HEI process and coupling effect were demonstrated by single-particle spectroscopy and FDTD simulation.
Collapse
Affiliation(s)
- Yayang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shiqiang Yu
- School of Physics, Shandong University, Jinan 250100, China
| | - Fengxia Tong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Wang J, Cheng H, Cui Y, Yang Y, He H, Cai Y, Wang Z, Wang L, Hu Y. Liquid-Metal-Induced Hydrogen Insertion in Photoelectrodes for Enhanced Photoelectrochemical Water Oxidation. ACS NANO 2022; 16:21248-21258. [PMID: 36480658 DOI: 10.1021/acsnano.2c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fast charge separation and transfer (CST) is essential for achieving efficient solar conversion processes. This CST process requires not only a strong driving force but also a sufficient charge carrier concentration, which is not easily achievable with traditional methods. Herein, we report a rapid hydrogenation method enabled by gallium-based liquid metals (GBLMs) to modify the prototypical WO3 photoelectrode to enhance the CST for a PEC process. Protons in solution are controllably embedded into the WO3 photoanode accompanied by electron injection due to the strong reduction capability of GBLMs. This process dramatically increases the carrier concentration of the WO3 photoanode, leading to improved charge separation and transfer. The hydrogenated WO3 photoanode exhibits over a 229% improvement in photocurrent density with long-term stability. The effectiveness of GBLMs treatment in accelerating the CST process is further proved using other more general semiconductor photoelectrodes, including Nb2O5 and TiO2.
Collapse
Affiliation(s)
- Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Houyan Cheng
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuntao Cui
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yunfei Yang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng He
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yongfeng Cai
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
18
|
Li B, Wang Z, Zhao S, Hu C, Li L, Liu M, Zhu J, Zhou T, Zhang G, Jiang J, Zou C. Enhanced Pd/a-WO 3 /VO 2 Hydrogen Gas Sensor Based on VO 2 Phase Transition Layer. SMALL METHODS 2022; 6:e2200931. [PMID: 36287026 DOI: 10.1002/smtd.202200931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The utilization of clean hydrogen energy is becoming more feasible for the sustainable development of this society. Considering the safety issues in the hydrogen production, storage, and utilization, a sensitive hydrogen sensor for reliable detection is essential and highly important. Though various gas sensor devices are developed based on tin oxide, tungsten trioxide, or other oxides, the relatively high working temperature, unsatisfactory response time, and detection limitation still affect the extensive applications. In the current study, an amorphous tungsten trioxide (a-WO3 ) layer is deposited on a phase-change vanadium dioxide film to fabricate a phase transition controlled Pd/a-WO3 /VO2 hydrogen sensor for hydrogen detection. Results show that both the response time and sensitivity of the hydrogen sensor are improved greatly if increasing the working temperature over the transition temperature of VO2 . Theoretical calculations also reveal that the charge transfer at VO2 /a-WO3 interface becomes more pronounced once the VO2 layer transforms to the metal state, which will affect the migration barrier of H atoms in a-WO3 layer and thus improve the sensor performance. The current study not only realizes a hydrogen sensor with ultrahigh performance based on VO2 layer, but also provides some clues for designing other gas sensors with phase-change material.
Collapse
Affiliation(s)
- Bowen Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhaowu Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, P. R. China
| | - Shanguang Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Meiling Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jinglin Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Ting Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
19
|
Wang X, Mayrhofer L, Keunecke M, Estrade S, Lopez-Conesa L, Moseler M, Waag A, Schaefer L, Shi W, Meng X, Chu J, Fan Z, Shen H. Low-Energy Hydrogen Ions Enable Efficient Room-Temperature and Rapid Plasma Hydrogenation of TiO 2 Nanorods for Enhanced Photoelectrochemical Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204136. [PMID: 36192163 DOI: 10.1002/smll.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Hydrogenation is a promising technique to prepare black TiO2 (H-TiO2 ) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) performance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO2 nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled. It is discovered that low-energy hydrogen ions with fast subsurface transport kinetics and shallow penetration depth features, enable them to directly penetrate TiO2 via unique multiple penetration pathways to form controllable disordered shell and suppress bulk defects, ultimately leading to improved PEC performance. Furthermore, the hydrogenation-property experiments reveal that the enhanced PEC activity is mainly ascribed to increasing band bending and bulk defect suppression, compared to reported H-TiO2 , a superior photocurrent density of 2.55 mA cm-2 at 1.23 VRHE is achieved. These findings demonstrate a sustainable strategy which offers great promise of TiO2 and other oxides to achieve further-improved material properties for broad practical applications.
Collapse
Affiliation(s)
- Xiaodan Wang
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Leonhard Mayrhofer
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany
| | - Martin Keunecke
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Sonia Estrade
- Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain
| | - Lluis Lopez-Conesa
- Department d'Electrònica, Universitat de Barcelona, c/Martí Franquès 1, Barcelona, 08028, Spain
| | - Michael Moseler
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108, Freiburg, Germany
| | - Andreas Waag
- Institute for Semiconductor Technology, TU Braunschweig, Hans-Sommer-Strasse 66, 38106, Braunschweig, Germany
| | - Lothar Schaefer
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Xiangjian Meng
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai, 200083, China
| | - Junhao Chu
- Institute of Optoelectronics, Fudan University, Song Hu Road 2005, Shanghai, 200438, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Shen
- Fraunhofer Institute for Surface Engineering and Thin Films, Bienroder Weg 54E, 38108, Braunschweig, Germany
| |
Collapse
|
20
|
Zhu Q, Zhang F, Huang Y, Xiao H, Zhao L, Zhang X, Song T, Tang X, Li X, He G, Chong B, Zhou J, Zhang Y, Zhang B, Cao J, Luo M, Wang S, Ye G, Zhang W, Chen X, Cong S, Zhou D, Li H, Li J, Zou G, Shang W, Jiang J, Luo Y. An all-round AI-Chemist with a scientific mind. Natl Sci Rev 2022; 9:nwac190. [PMID: 36415316 PMCID: PMC9674120 DOI: 10.1093/nsr/nwac190] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The realization of automated chemical experiments by robots unveiled the prelude to an artificial intelligence (AI) laboratory. Several AI-based systems or robots with specific chemical skills have been demonstrated, but conducting all-round scientific research remains challenging. Here, we present an all-round AI-Chemist equipped with scientific data intelligence that is capable of performing basic tasks generally required in chemical research. Based on a service platform, the AI-Chemist is able to automatically read the literatures from a cloud database and propose experimental plans accordingly. It can control a mobile robot in-house or online to automatically execute the complete experimental process on 14 workstations, including synthesis, characterization and performance tests. The experimental data can be simultaneously analysed by the computational brain of the AI-Chemist through machine learning and Bayesian optimization, allowing a new hypothesis for the next iteration to be proposed. The competence of the AI-Chemist has been scrutinized by three different chemical tasks. In the future, the more advanced all-round AI-Chemists equipped with scientific data intelligence may cause changes to the landscape of the chemical laboratory.
Collapse
Affiliation(s)
- Qing Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fei Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Hengyu Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - LuYuan Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - XuChun Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Tao Song
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - XinSheng Tang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guo He
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - BaoChen Chong
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - JunYi Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - YiHan Zhang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - JiaQi Cao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Man Luo
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - GuiLin Ye
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - WanJun Zhang
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - Xin Chen
- Hefei JiShu Quantum Technology Co. Ltd, Hefei 230026, China
| | - Shuang Cong
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Donglai Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huirong Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jialei Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Gang Zou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - WeiWei Shang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
21
|
Xiao H, Li H, Li X, Jiang J. Effect of the Charge State on the Catalytic Activity of a Fullerene-Based Molecular Electrocatalyst: A Theoretical Study. J Phys Chem Lett 2022; 13:7392-7397. [PMID: 35925867 DOI: 10.1021/acs.jpclett.2c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The charge state of a catalyst is significant for its catalytic activity. In this work, taking molecular electrocatalysts of fullerene C60 with a doped transition metal (TM-C60, where TM = Fe, Co, or Ni) as an example, we conducted first-principles calculations to study the effect of the charge state on the cathodic nitrogen reduction reaction (NRR) and anodic oxygen evolution reaction (OER). Our calculated results suggest that the maximal free energy barrier of the NRR with a dissociative mechanism is a nearly linear function of the number of negatively charged electrons (0-3). Nevertheless, the NRR activity with an associative mechanism is insensitive to the charge state effect. The OER activity of TM-C60 with a 0-3 e+ charge state exhibits a volcano-shaped trend, which indicates that it is important to tailor a particular charge state toward effective catalytic activity. This study provides new insight into the effect of the charge state on catalytic activity, which could help us improve our understanding of the catalytic mechanism and tailor a new efficient catalyst.
Collapse
Affiliation(s)
- Hengyu Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei Science Center of CAS, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huirong Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei Science Center of CAS, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei Science Center of CAS, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei Science Center of CAS, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
22
|
Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun (Camb) 2022; 58:8466-8479. [PMID: 35861347 DOI: 10.1039/d2cc02658a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.
Collapse
Affiliation(s)
- Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Wu Z, Shi P, Xing R, Xing Y, Ge Y, Wei L, Wang D, Zhao L, Yan S, Chen Y. Quasi-two-dimensional α-molybdenum oxide thin film prepared by magnetron sputtering for neuromorphic computing. RSC Adv 2022; 12:17706-17714. [PMID: 35765332 PMCID: PMC9199084 DOI: 10.1039/d2ra02652j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional (2D) layered materials have attracted intensive attention in recent years due to their rich physical properties, and shown great promise due to their low power consumption and high integration density in integrated electronics. However, mostly limited to mechanical exfoliation, large scale preparation of the 2D materials for application is still challenging. Herein, quasi-2D α-molybdenum oxide (α-MoO3) thin film with an area larger than 100 cm2 was fabricated by magnetron sputtering, which is compatible with modern semiconductor industry. An all-solid-state synaptic transistor based on this α-MoO3 thin film is designed and fabricated. Interestingly, by proton intercalation/deintercalation, the α-MoO3 channel shows a reversible conductance modulation of about four orders. Several indispensable synaptic behaviors, such as potentiation/depression and short-term/long-term plasticity, are successfully demonstrated in this synaptic device. In addition, multilevel data storage has been achieved. Supervised pattern recognition with high recognition accuracy is demonstrated in a three-layer artificial neural network constructed on this α-MoO3 based synaptic transistor. This work can pave the way for large scale production of the α-MoO3 thin film for practical application in intelligent devices.
Collapse
Affiliation(s)
- Zhenfa Wu
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Peng Shi
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Ruofei Xing
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yuzhi Xing
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yufeng Ge
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Lin Wei
- School of Microelectronics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Dong Wang
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Le Zhao
- School of Electronic and Information Engineering, Qilu University of Technology Jinan 250353 China
| | - Shishen Yan
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yanxue Chen
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| |
Collapse
|
24
|
Schreiber E, Fertig AA, Brennessel WW, Matson EM. Oxygen-Atom Defect Formation in Polyoxovanadate Clusters via Proton-Coupled Electron Transfer. J Am Chem Soc 2022; 144:5029-5041. [PMID: 35275632 PMCID: PMC8949770 DOI: 10.1021/jacs.1c13432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/28/2022]
Abstract
The uptake of hydrogen atoms (H-atoms) into reducible metal oxides has implications in catalysis and energy storage. However, outside of computational modeling, it is difficult to obtain insight into the physicochemical factors that govern H-atom uptake at the atomic level. Here, we describe oxygen-atom vacancy formation in a series of hexavanadate assemblies via proton-coupled electron transfer, presenting a novel pathway for the formation of defect sites at the surface of redox-active metal oxides. Kinetic investigations reveal that H-atom transfer to the metal oxide surface occurs through concerted proton-electron transfer, resulting in the formation of a transient VIII-OH2 moiety that, upon displacement of the water ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide cluster. Oxidation state distribution of the cluster core dictates the affinity of surface oxido ligands for H-atoms, mirroring the behavior of reducible metal oxide nanocrystals. Ultimately, atomistic insights from this work provide new design criteria for predictive proton-coupled electron-transfer reactivity of terminal M═O moieties at the surface of nanoscopic metal oxides.
Collapse
Affiliation(s)
| | | | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
25
|
Mechanistic investigation of zwitterionic MOF-catalyzed enyne annulation using UNLPF-14-MnIII as catalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Yang HJ, Redington M, Miller DP, Zurek E, Kim M, Yoo CS, Lim SY, Cheong H, Chae SA, Ahn D, Hur NH. New monoclinic ruthenium dioxide with highly selective hydrogenation activity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00815g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HxRuO2 acts as a standalone catalyst exhibiting selective hydrogenation under mild conditions. Mobile protons embedded in the oxide lattice play an important role in stabilizing the distorted structure, and facile proton dynamics is key to improving catalytic properties.
Collapse
Affiliation(s)
- Hee Jung Yang
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Morgan Redington
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Daniel P. Miller
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Minseob Kim
- Department of Chemistry, Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Choong-Shik Yoo
- Department of Chemistry, Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Soo Yeon Lim
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Seen-Ae Chae
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Docheon Ahn
- Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Hwi Hur
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| |
Collapse
|
27
|
Liu H, Wang J, Hua W, Sun H, Huyan Y, Tian S, Hou Z, Yang J, Wei C, Kang F. Building Ohmic Contact Interfaces toward Ultrastable Zn Metal Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102612. [PMID: 34672109 PMCID: PMC8655195 DOI: 10.1002/advs.202102612] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Indexed: 05/25/2023]
Abstract
Zn metal holds grand promise as the anodes of aqueous batteries for grid-scale energy storage. However, the rampant zinc dendrite growth and severe surface side reactions significantly impede the commercial implementation. Herein, a universal Zn-metal oxide Ohmic contact interface model is demonstrated for effectively improving Zn plating/stripping reversibility. The high work function difference between Zn and metal oxides enables the building of an interfacial anti-blocking layer for dendrite-free Zn deposition. Moreover, the metal oxide layer can function as a physical barrier to suppress the pernicious side reactions. Consequently, the proof-of-concept CeO2 -modified Zn anode delivers ultrastable durability of over 1300 h at 0.5-5 mA cm-2 and improved Coulombic efficiency, the feasibility of which is also evidenced in MoS2 //Zn full cells. This study enriches the fundamental comprehension of Ohmic contact interfaces on the Zn deposition, which may shed light on the development of other metal battery anodes.
Collapse
Affiliation(s)
- Huanyan Liu
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Jian‐Gan Wang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Wei Hua
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Huanhuan Sun
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Yu Huyan
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Shan Tian
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Zhidong Hou
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Junchang Yang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)Xi'an710072China
| | - Chunguang Wei
- Shenzhen Cubic‐Science Co., LtdNanshan DistrictShenzhen518052China
| | - Feiyu Kang
- Engineering Laboratory for Functionalized Carbon Materials and Shenzhen Key Laboratory for Graphene‐Based MaterialsGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
| |
Collapse
|
28
|
Hu M, Zhu Q, Zhao Y, Zhang G, Zou C, Prezhdo O, Jiang J. Facile Removal of Bulk Oxygen Vacancy Defects in Metal Oxides Driven by Hydrogen-Dopant Evaporation. J Phys Chem Lett 2021; 12:9579-9583. [PMID: 34582204 DOI: 10.1021/acs.jpclett.1c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen vacancy is a common defect in metal oxides that causes appreciable damage to material properties and performance. Removing bulk defects of oxygen vacancy (VO) typically needs harsh conditions such as high-temperature annealing. Supported by first-principles simulations, we propose an effective strategy of removing VO bulk defects in metal oxides by evaporating hydrogen dopants. The hydrogen dopants not only lower the migration barrier of VO but also push VO away due to their repulsive interaction. The coevaporation mechanism was supported by a neural networks potential-based molecular dynamics simulation, which shows that the migration of hydrogen dopants from inside to surface at 400 K promotes the migration of VO as well. Our proof-of-concept study suggests an alternative and efficient way of modulating oxygen vacancies in metal oxides via reversible hydrogen doping.
Collapse
Affiliation(s)
- Min Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuan Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
29
|
Li B, Li L, Ren H, Lu Y, Peng F, Chen Y, Hu C, Zhang G, Zou C. Photoassisted Electron-Ion Synergic Doping Induced Phase Transition of n-VO 2/p-GaN Thin-Film Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43562-43572. [PMID: 34468117 DOI: 10.1021/acsami.1c10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a typical correlated metal oxide, vanadium dioxide (VO2) shows specific metal-insulator transition (MIT) properties and demonstrates great potential applications in ultrafast optoelectronic switch, resistive memory, and neuromorphic devices. Effective control of the MIT process is essential for improving the device performance. In the current study, we have first proposed a photoassisted ion-doping method to modulate the phase transition of the VO2 layer based on the photovoltaic effect and electron-ion synergic doping in acid solution. Experimental results show that, for the prepared n-VO2/p-GaN nanojunction, this photoassisted strategy can effectively dope the n-VO2 layer by H+, Al3+, or Mg2+ ions under light radiation and trigger consecutive insulator-metal-insulator transitions. If combined with standard lithography or electron beam etching processes, selective doping with nanoscale size area can also be achieved. This photoassisted doping method not only shows a facile route for MIT modulation via a doping route under ambient conditions but also supplies some clues for photosensitive detection in the future.
Collapse
Affiliation(s)
- Bowen Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hui Ren
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuan Lu
- State Key Laboratory of Pulsed Power Laser Technology, NUDT, Hefei 230037, P. R. China
- Infrared and Low Temperature Plasma Key Laboratory of Anhui Province, NUDT, Hefei 230037, P. R. China
| | - Fangfang Peng
- Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yuliang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Guobin Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
30
|
Zhu H, Yang Q, Liu D, Du Y, Yan S, Gu M, Zou Z. Direct Electrochemical Protonation of Metal Oxide Particles. J Am Chem Soc 2021; 143:9236-9243. [PMID: 34101442 DOI: 10.1021/jacs.1c04631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal oxides with surface protonation exhibit versatile physical and chemical properties suitable for use in many fields. Here, we develop an electrochemical route to directly protonize the physically assembled oxide particles, such as TiO2, Nb2O5, and WO3, in a Na2SO4 neutral electrolyte, which is a result of electrochemically induced oxygen vacancies reacting with water molecules. With no need of electric connection among particles or between particles and conductive substrate, the electrochemical protonation follows a bottom-up particle-by-particle surface protonation mechanism due to the fact that the protonation inducing high surface conductivity creates an efficient electron transfer pathway among particles. Our results show that electrochemical protonation of particles provides a chance to finely functionalize the surface of a single particle by only adjusting electrode potentials. Such a facile, cost-efficient, and green route is easy to run for a large-scale production and unlocks the potential of semiconductor oxides for various applications.
Collapse
Affiliation(s)
- Heng Zhu
- Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Qimeng Yang
- Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Depei Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yu Du
- Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Shicheng Yan
- Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Min Gu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.,National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
31
|
Bian Z, Zhao J, Cao H, Dong Y, Luo Z. Reversible Rapid Hydrogen Doping of WO 3 in Non-Acid Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13419-13424. [PMID: 33709704 DOI: 10.1021/acsami.1c01165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogenation, an effective way to tune the properties of transition metal oxide (TMO) thin films, has been long awaited to be performed safely and without an external energy input. Recently, metal-acid-TMO has been reported to be an effective approach for hydrogenation, but the requirement of acid limits its application. In this work, the reversible and rapid hydrogen doping of WO3 in NaOH(aq) | Al(s) | WO3(s) is revealed by structural and electrical measurements. Accompanied by the structural phase transition identified by in situ X-ray diffraction, the electric resistance of the WO3 film is found to be able to change by 5 orders of magnitude. A significant electrical response of touching, 8-fold in amplitude and 3 s in a cycle, can be achieved in the low-resistance state. These reactions are reversible at room temperature. This study unambiguously proves that the hydrogenation-driven dynamic phase transition of WO3 in metal-solution-WO3 systems could occur not only in acid solutions but also in some non-acid environments. Unlike the monotonic increase of resistance revealed during HδWO3 to WO3 transition, an intriguing non-monotonic evolution was found for crystal lattice parameter c, indicating that the mechanism of WO3 hydrogenation involves a series of metastable states, more comprehensive and reasonable. This work sheds light on the potential applications of metal-solution-TMO hydrogenation in touching sensors, circuits survey, and information storage.
Collapse
Affiliation(s)
- Zhiping Bian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jiangtao Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Heng Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yongqi Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
32
|
Wei Y, Tokina MV, Benderskii AV, Zhou Z, Long R, Prezhdo OV. Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO2. J Chem Phys 2020; 153:044706. [DOI: 10.1063/5.0014179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexander V. Benderskii
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|