1
|
Gámez-Valenzuela S, Li J, Ma S, Jeong SY, Woo HY, Feng K, Guo X. High-Performance n-Type Organic Thermoelectrics with Exceptional Conductivity by Polymer-Dopant Matching. Angew Chem Int Ed Engl 2024; 63:e202408537. [PMID: 38973771 DOI: 10.1002/anie.202408537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 μW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Fan X, Deng S, Cao X, Meng B, Hu J, Liu J. Isomers of n-Type Poly(thiophene- alt- co-thiazole) for Organic Thermoelectrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46741-46749. [PMID: 39162353 DOI: 10.1021/acsami.4c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
n-Type polythiophene represents a promising category of n-type polymer thermoelectric materials known for their straightforward structure and scalable synthesis. However, n-type polythiophene often suffers from a twisted backbone and poor stacking property when introducing high-density electron-withdrawing groups for a lower lowest unoccupied molecular orbital (LUMO) level, which is considered to be beneficial for n-doping efficiency. Herein, we developed two isomers of polythiophene derivatives, PTTz1 and PTTz2, by inserting thiazole units into the polythiophene backbone composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and thiophene-3,4-dicarbonitrile (2CNT). Although PTTz1 and PTTz2 share a similar polymer skeleton, they differ in thiazole configuration, with the nitrogen atoms of the thiazole units oriented toward TPD and 2CNT, respectively. The insertion of thiazole units significantly planarizes the polythiophene backbone while largely preserving low LUMO levels. Notably, PTTz2 exhibits a more coplanar backbone and closer π-stacking compared to PTTz1, resulting in a greatly enhanced electron mobility. Both PTTz1 and PTTz2 can be easily n-doped due to their deep LUMO levels. PTTz2 demonstrates superior thermoelectric performance, with an electrical conductivity of 50.3 S cm-1 and a power factor of 23.8 μW m-1 K-2, which is approximately double that of PTTz1. This study highlights the impact of the thiazole unit on n-type polythiophene derivatives and provides valuable guidelines for the design of high-performance n-type polymer thermoelectric materials.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Shen T, Liu D, Zhang J, Wei Z, Wang Y. A High-Mobility n-Type Noncovalently-Fused-Ring Polymer for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202409018. [PMID: 38856227 DOI: 10.1002/anie.202409018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
Conjugated polymers are emerging as competitive candidates for organic thermoelectrics (OTEs). However, to make the device truly pervasive, both p- and n-type conjugated polymers are essential. Despite great efforts, no n-type equivalents to the p-type benchmark PEDOT:PSS exist to date mainly due to the low electrical conductivity (σ). Herein, a near-amorphous n-type conjugated polymer, namely pDFSe, is reported with high σ by achieving the synergy between charge transport and doping efficiency. The polymer pDFSe is synthesized based on an acceptor-triad moiety of diketopyrrolopyrrole-difluorobenzoselenadiazole-diketopyrrolopyrrole (DFSe), which has the noncovalently-fused-ring structure to reinforce the backbone rigidity. Furthermore, an axisymmetric thiophene-selenophene-thiophene donor is introduced, which enables the formation of near-amorphous microstructures. The above merits ensure good doping efficiency without scarifying efficient intrachain charge-carrier transport. Thus, pDFSe-based n-type transistors exhibit high electron mobility up to 6.15 cm2 V-1 s-1, much higher than its reference polymer pDSe without the noncovalently-fused-ring structure (0.77 cm2 V-1 s-1). Further upon n-doping, pDFSe demonstrates excellent σ of 62.6 S cm-1 and maximum power factor of 133.1 μW m-1 K-2, which are among the highest values reported for solution-processed n-type polymers. The results demonstrate the great potential of near-amorphous n-type conjugated polymers with noncovalently-fused-ring structure for the next-generation OTEs.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Di Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
- Laboratory of Advanced Materials, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| |
Collapse
|
4
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
5
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
6
|
Yao ZF, Wu HT, Zhuang FD, Zhang PF, Li QY, Wang JY, Pei J. Achieving Ideal and Environmentally Stable n-Type Charge Transport in Polymer Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306010. [PMID: 37884476 DOI: 10.1002/smll.202306010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Realizing ideal charge transport in field-effect transistors (FETs) of conjugated polymers is crucial for evaluating device performance, such as carrier mobility and practical applications of conjugated polymers. However, the current FETs using conjugated polymers as the active layers generally show certain non-ideal transport characteristics and poor stability. Here, ideal charge transport of n-type polymer FETs is achieved on flexible polyimide substrates by using an organic-inorganic hybrid double-layer dielectric. Deposited conjugated polymer films show highly ordered structures and low disorder, which are supported by grazing-incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure, and molecular dynamics simulations. Furthermore, the organic-inorganic hybrid double-layer dielectric provides low interfacial defects, leading to excellent charge transport in FETs with high electron mobility (1.49 ± 0.46 cm2 V-1 s-1) and ideal reliability factors (102 ± 7%). Fabricated polymer FETs show a self-encapsulation effect, resulting in high stability of the FET charge transport. The polymer FETs still work with high mobility above 1 cm2 V-1 s-1 after storage in air for more than 300 days. Compared with state-of-the-art conjugated polymer FETs, this work simultaneously achieves ideal charge transport and environmental stability in n-type polymer FETs, facilitating rapid device optimization of high-performance polymer electronics.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Peng-Fei Zhang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Wang J, Ma S, Jeong SY, Yang W, Li J, Han YW, Feng K, Guo X. High-performance n-type organic thermoelectrics enabled by modulating cyano-functionalized polythiophene backbones. Faraday Discuss 2024; 250:335-347. [PMID: 37965681 DOI: 10.1039/d3fd00135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The scarcity of n-type polymers with high electrical conductivity (σ) and power factor (PF) is the major challenge for organic thermoelectrics (OTEs). By integrating cyano functionalities and an intramolecular conformation lock, we herein synthesize a new electron-deficient building block, CNg4T2, bearing long 1,4,7,10-tetraoxahendecyl side chains, and then further develop two n-type polythiophene derivatives, CNg4T2-2FT and CNg4T2-CNT2, with 3,4-difluorothiophene and 3,3'-dicyano-2,2'-bithiophene as co-units, respectively. Compared with CNg4T2-2FT, CNg4T2-CNT2 features a deeper-positioned lowest unoccupied molecular orbital (LUMO) while maintaining a high degree of backbone coplanarity. As a consequence, the CNg4T2-CNT2 film with molecular dopant N-DMBI delivered an impressive σ of 13.2 S cm-1 and a high PF of up to 10.84 μW m-1 K-2, significantly outperforming CNg4T2-2FT and benchmark n-type polymer N2200 films. To the best of our knowledge, this PF of CNg4T2-CNT2 devices is the highest value for n-type polythiophenes in OTEs. Further characterizations indicate that the high performance of CNg4T2-CNT2-based devices is attributed to the high doping efficiency and ordered packing of polymer chains. Our study demonstrates that CNg4T2 is a highly appealing electron-deficient building block for n-type OTE polymers and also suggests that fine-tuning of the polymer backbone is a powerful approach to accessing high-performance n-type polymers for OTE devices.
Collapse
Affiliation(s)
- Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul 02841, Republic of Korea
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Young Woo Han
- Department of Chemistry, Korea University, Anamro 145, Seoul 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Tu L, Wang J, Wu Z, Li J, Yang W, Liu B, Wu S, Xia X, Wang Y, Woo HY, Shi Y. Cyano-Functionalized Pyrazine: A Structurally Simple and Easily Accessible Electron-Deficient Building Block for n-Type Organic Thermoelectric Polymers. Angew Chem Int Ed Engl 2024; 63:e202319658. [PMID: 38265195 DOI: 10.1002/anie.202319658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 μW m-1 K-2 , and 33.9 S cm-1 /30.4 μW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.
Collapse
Affiliation(s)
- Lijun Tu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Siqi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Xiaomin Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| |
Collapse
|
9
|
Li Y, Wu W, Wang Y, Huang E, Jeong SY, Woo HY, Guo X, Feng K. Multi-Selenophene Incorporated Thiazole Imide-Based n-Type Polymers for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202316214. [PMID: 37996990 DOI: 10.1002/anie.202316214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 μW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Yang W, Feng K, Ma S, Liu B, Wang Y, Ding R, Jeong SY, Woo HY, Chan PKL, Guo X. High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305416. [PMID: 37572077 DOI: 10.1002/adma.202305416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Paddy Kwok Leung Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science and Technology Park, Shatin, Hong Kong, 999077, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
11
|
Wu W, Feng K, Wang Y, Wang J, Huang E, Li Y, Jeong SY, Woo HY, Yang K, Guo X. Selenophene Substitution Enabled High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors and Glucose Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310503. [PMID: 37961011 DOI: 10.1002/adma.202310503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.2 F cm-3 and a state-of-the-art OECT electron mobility (µe,OECT ) of 0.48 cm2 V-1 s-1 are synchronously achieved for f-BSeI2g-SVSCN having the highest selenophene content, yielding an unprecedented geometry-normalized transconductance (gm,norm ) of 71.4 S cm-1 and record figure of merit (µC*) value of 191.2 F cm-1 V-1 s-1 for n-type OECTs. Thanks to such excellent performance of f-BSeI2g-SVSCN-based OECTs, a glucose sensor with a remarkably low detection limit of 10 nMm and decent selectivity is further implemented, demonstrating the power of selenophene substitution strategy in enabling high-performance n-type PMIECs for biosensing applications.
Collapse
Affiliation(s)
- Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410080, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
Feng K, Wang J, Jeong SY, Yang W, Li J, Woo HY, Guo X. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302629. [PMID: 37553779 PMCID: PMC10582446 DOI: 10.1002/advs.202302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Indexed: 08/10/2023]
Abstract
n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side-chain size delivers a champion σ up to 92.0 S cm-1 and a power factor (PF) as high as 94.3 µW m-1 K-2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution-processing n-doped polymers. In-depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12-based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n-type polymers with substantial σ for improving organic thermoelectric performance.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Junwei Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sang Young Jeong
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Wanli Yang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianfeng Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Han Young Woo
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
13
|
Deng S, Liu J, Meng B, Liu J, Wang L. A Highly Conductive n-Type Polythiophene Derivative: Effect of Molecular Weight on n-Doping Behavior and Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45190-45200. [PMID: 37703173 DOI: 10.1021/acsami.3c10601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Here, we examine the impact of the molecular weight of an n-type conjugated polymer (n-PT2) on molecular doping and thermoelectric parameters. Two common dopants TDAE and N-DMBI with different doping mechanisms are used for molecular doping of n-PT2. It turns out that n-PT2 with a higher molecular weight is more miscible with the dopant, leading to more charge carriers. Moreover, the crystal structures and morphology of n-PT2 with a higher molecular weight are more tolerant against the intrusion of dopant molecules and charging. Finally, these factors work in synergy to endow the doped n-PT2 with the best conductivity and power factor (144 S cm-1/75.0 μW m-1 K-2 and 75.4 S cm-1/98.5 μW m-1 K-2 after doping by TDAE and N-DMBI, respectively). This study indicates that regulating the molecular weight allows for synergistic regulation of conductivity and Seebeck coefficient and is a feasible means to improve the performance for a given n-type organic thermoelectric material.
Collapse
Affiliation(s)
- Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
14
|
Ma S, Li B, Gong S, Wang J, Liu B, Young Jeong S, Chen X, Young Woo H, Feng K, Guo X. Biselenophene Imide: Enabling Polymer Acceptor with High Electron Mobility for High-Performance All-Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308306. [PMID: 37461155 DOI: 10.1002/anie.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The shortage of narrow band gap polymer acceptors with high electron mobility is the major bottleneck for developing efficient all-polymer solar cells (all-PSCs). Herein, we synthesize a distannylated electron-deficient biselenophene imide monomer (BSeI-Tin) with high purity/reactivity, affording an excellent chance to access acceptor-acceptor (A-A) type polymer acceptors. Copolymerizing BSeI-Tin with dibrominated monomer Y5-Br, the resulting A-A polymer PY5-BSeI shows a higher molecular weight, narrower band gap, deeper-lying frontier molecular orbital levels and larger electron mobility than the donor-acceptor type counterpart PY5-BSe. Consequently, the PY5-BSeI-based all-PSCs deliver a remarkable efficiency of 17.77 % with a high short-circuit current of 24.93 mA cm-2 and fill factor of 75.83 %. This efficiency is much higher than that (10.70 %) of the PY5-BSe-based devices. Our study demonstrates that BSeI is a promising building block for constructing high-performance polymer acceptors and stannylation of electron-deficient building blocks offers an excellent approach to developing A-A type polymers for all-PSCs and even beyond.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bangbang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shaokuan Gong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
15
|
Li J, Chen Z, Wang J, Young Jeong S, Yang K, Feng K, Yang J, Liu B, Woo HY, Guo X. Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202307647. [PMID: 37525009 DOI: 10.1002/anie.202307647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.03-4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V-1 s-1 . Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228, Haikou, Hainan, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| |
Collapse
|
16
|
Wang C, Yang Y, Lin L, Xu B, Hou J, Deng Y, Geng Y. Self-Doped n-Type Quinoidal Compounds with Good Air Stability and High Electrical Conductivity for Organic Electronics. Angew Chem Int Ed Engl 2023; 62:e202307856. [PMID: 37402633 DOI: 10.1002/anie.202307856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Air stable n-type conductive molecules with high electrical conductivities and excellent device performance have important applications in organic electronics, but their synthesis remains challenging. Herein, we report three self-doped n-type conductive molecules, designated QnNs, with a closed-shell quinoidal backbone and alkyl amino chains of different lengths. The QnNs are self-doped by intermolecular electron transfer from the amino groups to the quinoidal backbone. This process is ascertained unambiguously by experiments and theoretical calculations. The use of a quinoidal structure effectively improves the self-doping level, and thus increases the electrical conductivity of self-doped n-type conductive molecules achieved by a closed-shell structure from<10-4 S cm-1 to>0.03 S cm-1 . Furthermore, the closed-shell quinoidal structure results in good air stability of the QnNs, with half-lives>73 days; and Q4N shows an electrical conductivity of 0.019 S cm-1 even after exposure to air for 120 days. When applying Q6N as the cathode interlayer in organic solar cells (OSCs), an outstanding power conversion efficiency of up to 18.2 % was obtained, which represents one the best results in binary OSCs.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
17
|
Wu Z, Liu W, Yang X, Li W, Zhao L, Chi K, Xiao X, Yan Y, Zeng W, Liu Y, Chen H, Zhao Y. An In-Situ Cyanidation Strategy To Access Tetracyanodiacenaphthoanthracene Diimides with High Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2023; 62:e202307695. [PMID: 37394618 DOI: 10.1002/anie.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2 V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wentao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Kai Chi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuetao Xiao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
18
|
Wang Q, Wu S, Zou J, Liang X, Mou C, Zheng P, Chi YR. NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release. Nat Commun 2023; 14:4878. [PMID: 37573355 PMCID: PMC10423276 DOI: 10.1038/s41467-023-40645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
A carbene-catalyzed asymmetric access to chiral β-cyano carboxylic esters is disclosed. The reaction proceeds between β,β-disubstituted enals and aromatic thiols involving enantioselective protonation of enal β-carbon. Two main factors contribute to the success of this reaction. One involves in situ ultrafast addition of the aromatic thiol substrates to the carbon-carbon double bond of the enal substrate. This reaction converts almost all enal substrate to a Thiol-click Intermediate, significantly reducing aromatic thiol substrates concentration and suppressing the homo-coupling reaction of enals. Another factor is an in situ release of enal substrate from the Thiol-click Intermediate for the desired reaction to proceed effectively. The optically enriched β-cyano carboxylic esters from our method can be readily transformed to medicines that include γ-aminobutyric acids derivatives such as Rolipram. In addition to synthetic utilities, our control of reaction outcomes via in situ substrate modulation and release can likely inspire future reaction development.
Collapse
Affiliation(s)
- Qingyun Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Shuquan Wu
- Center for Industrial Catalysis and Cleaning Process Development, School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Juan Zou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
19
|
He Q, Shaw J, Firdaus Y, Hu X, Ding B, Marsh AV, Dumon AS, Han Y, Fei Z, Anthopoulos TD, McNeill CR, Heeney M. p-Type Conjugated Polymers Containing Electron-Deficient Pentacyclic Azepinedione. Macromolecules 2023; 56:5825-5834. [PMID: 37576475 PMCID: PMC10413964 DOI: 10.1021/acs.macromol.3c00843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Bisthienoazepinedione (BTA) has been reported for constructing high-performing p-type conjugated polymers in organic electronics, but the ring extended version of BTA is not well explored. In this work, we report a new synthesis of a key building block to the ring expanded electron-deficient pentacyclic azepinedione (BTTA). Three copolymers of BTAA with benzodithiophene substituted by different side chains are prepared. These polymers exhibit similar energy levels and optical absorption in solution and solid state, while significant differences are revealed in their film morphologies and behavior in transistor and photovoltaic devices. The best-performing polymers in transistor devices contained alkylthienyl side chains on the BDT unit (pBDT-BTTA-2 and pBDT-BTTA-3) and demonstrated maximum saturation hole mobilities of 0.027 and 0.017 cm2 V-1 s-1. Blends of these polymers with PC71BM exhibited a best photovoltaic efficiency of 6.78% for pBDT-BTTA-3-based devices. Changing to a low band gap non-fullerene acceptor (BTP-eC9) resulted in improved efficiency of up to 13.5%. Our results are among the best device performances for BTA and BTTA-based p-type polymers and highlight the versatile applications of this electron-deficient BTTA unit.
Collapse
Affiliation(s)
- Qiao He
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Jessica Shaw
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Yuliar Firdaus
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Research
Center for Electronics, National Research
and Innovation Agency (BRIN), Komplek BRIN Jl. Sangkuriang Cisitu, Bandung 40135, Indonesia
| | - Xiantao Hu
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Bowen Ding
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Adam V. Marsh
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre S. Dumon
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Yang Han
- School
of Materials Science & Engineering, Tianjin Key Laboratory of
Molecular Optoelectronic Sciences, Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhuping Fei
- Institute
of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory
of Molecular Optoelectronic Science, Tianjin
University, Tianjin 300072, China
| | - Thomas D. Anthopoulos
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christopher R. McNeill
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| | - Martin Heeney
- KAUST
Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
20
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Dong J, Li L, Qiu P, Pan Y, Niu Y, Sun L, Pan Z, Liu Y, Tan L, Xu X, Xu C, Luo G, Wang Q, Wang H. Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211487. [PMID: 36894169 DOI: 10.1002/adma.202211487] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Indexed: 05/19/2023]
Abstract
High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH2 -POSS) with the chain ends of polyimide (PI). Experimental studies and density functional theory (DFT) calculations demonstrate that the terminal group NH2 -POSS with a wide-bandgap of Eg ≈ 6.6 eV increases the band energy levels of the PI and induces the formation of local deep traps in the hybrid films, which significantly restrains carrier transport. At 200 °C, the hybrid film exhibits concurrently an ultrahigh discharged energy density of 3.45 J cm-3 and a high gravimetric energy density of 2.74 J g-1 , with the charge-discharge efficiency >90%, far exceeding those achieved in the dielectric polymers and nearly all other polymer nanocomposites. Moreover, the NH2 -POSS terminated PI film exhibits excellent charge-discharge cyclability (>50000) and power density (0.39 MW cm-3 ) at 200 °C, making it a promising candidate for high-temperature high-energy-density capacitors. This work represents a novel strategy to scalable polymer dielectrics with superior capacitive performance operating in harsh environments.
Collapse
Affiliation(s)
- Jiufeng Dong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Li Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peiqi Qiu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yupeng Pan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yujuan Niu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zizhao Pan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuqi Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Li Tan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinwei Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices & Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
22
|
Song Y, Dai X, Zou Y, Li C, Di CA, Zhang D, Zhu D. Boosting the Thermoelectric Performance of the Doped DPP-EDOT Conjugated Polymer by Incorporating an Ionic Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300231. [PMID: 37026675 DOI: 10.1002/smll.202300231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The thermoelectric (TE) performance of organic materials is limited by the coupling of Seebeck coefficient and electrical conductivity. Herein a new strategy is reported to boost the Seebeck coefficient of conjugated polymer without significantly reducing the electrical conductivity by incorporation of an ionic additive DPPNMe3 Br. The doped polymer PDPP-EDOT thin film exhibits high electrical conductivity up to 1377 ± 109 S cm-1 but low Seebeck coefficient below 30 µV K-1 and a maximum power factor of 59 ± 10 µW m-1 K-2 . Interestingly, incorporation of small amount (at a molar ratio of 1:30) of DPPNMe3 Br into PDPP-EDOT results in the significant enhancement of Seebeck coefficient along with the slight decrease of electrical conductivity after doping. Consequently, the power factor (PF) is boosted to 571 ± 38 µW m-1 K-2 and ZT reaches 0.28 ± 0.02 at 130 °C, which is among the highest for the reported organic TE materials. Based on the theoretical calculation, it is assumed that the enhancement of TE performance for the doped PDPP-EDOT by DPPNMe3 Br is mainly attributed to the increase of energetic disorder for PDPP-EDOT.
Collapse
Affiliation(s)
- Yilin Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Chang Y, Wu YS, Tung SH, Chen WC, Chueh CC, Liu CL. N-Type Doping of Naphthalenediimide-Based Random Donor-Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15745-15757. [PMID: 36920493 DOI: 10.1021/acsami.2c23067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (μe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Qu D, Li L, Qin Y, Liu Y, Li G, Qi T, Liu Y. Synthesis and Derivatization of an Isomerized Bithiophene Imide (iBTI) Acceptor with a Controllably Twisted Backbone. Org Lett 2023; 25:938-943. [PMID: 36739543 DOI: 10.1021/acs.orglett.2c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A heptagonal isomerized bithiophene imide (iBTI) acceptor has been effectively synthesized on a gram scale. Its series of β-, α',β-, α,α'-, α,α',β-, and α,α',β,β'-substituted derivatives can be obtained by controlling brominated sites. Single-crystal analyses indicate that the torsion angle of the imide backbone depends on the number and rigidity of β-substituted groups. Furthermore, the helical chirality of tetrasubstituted and [7]helicene-like derivatives based on iBTI shows great promise for the construction of chiral semiconductor materials.
Collapse
Affiliation(s)
- Dunshuai Qu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Linkuo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanyuan Qin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Qi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Frisch S, Neiß C, Lindenthal S, Zorn NF, Rominger F, Görling A, Zaumseil J, Kivala M. Tetra(peri-naphthylene)anthracene: A Near-IR Fluorophore with Four-Stage Amphoteric Redox Properties. Chemistry 2023; 29:e202203101. [PMID: 36287191 PMCID: PMC10107686 DOI: 10.1002/chem.202203101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 11/06/2022]
Abstract
A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.
Collapse
Affiliation(s)
- Sabine Frisch
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christian Neiß
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Sebastian Lindenthal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Nicolas F Zorn
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Jana Zaumseil
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Ma L, Zhang S, Ren J, Wang G, Li J, Chen Z, Yao H, Hou J. Design of a Fully Non-Fused Bulk Heterojunction toward Efficient and Low-Cost Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202214088. [PMID: 36448216 DOI: 10.1002/anie.202214088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanlin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Ma S, Wang J, Feng K, Zhang H, Wu Z, Wang Y, Liu B, Li Y, An M, Gonzalez-Nuñez R, Ponce Ortiz R, Woo HY, Guo X. n-Type Polymer Semiconductors Based on Dithienylpyrazinediimide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1639-1651. [PMID: 36571844 DOI: 10.1021/acsami.2c17969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of n-type organic semiconductors critically relies on the design and synthesis of highly electron-deficient building blocks with good solubility and small steric hindrance. We report here a strongly electron-deficient dithienylpyrazinediimide (TPDI) and its n-type semiconducting polymers. The pyrazine substitution leads to the resulting polymers with much lower-lying lowest unoccupied molecular orbital (LUMO) levels and improved backbone planarity compared to the reported dithienylbenzodiimide (TBDI)- and fluorinated dithienylbenzodiimide (TFBDI)-based polymer analogues, thus yielding n-type transport character with an electron mobility up to 0.44 cm2 V-1 s-1 in organic thin-film transistors. These results demonstrate that dithienylpyrazinediimide is a highly promising electron-deficient building block for constructing high-performance n-type polymers and the incorporation of pyrazine into imide-functionalized (hetero)arenes is an effective strategy to develop n-type polymers with deep-lying frontier molecular orbital (FMO) levels for organic optoelectronic devices.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Hao Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul 136-713, South Korea
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Mingwei An
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Raúl Gonzalez-Nuñez
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, Málaga 29071, Spain
| | - Rocío Ponce Ortiz
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, Málaga 29071, Spain
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| |
Collapse
|
31
|
He X, Ye F, Guo JC, Chang W, Ma B, Ding R, Wang S, Liang Y, Hu D, Guo ZH, Ma Y. An N-oxide containing conjugated semiconducting polymer with enhanced electron mobility via direct (hetero)arylation polymerization. Polym Chem 2023. [DOI: 10.1039/d3py00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The N-oxide containing conjugated semiconducting polymer is synthesized by direct (hetero)arylation polymerization and exhibit enhanced electron mobility compared to its non-oxide analogous polymer.
Collapse
|
32
|
The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
34
|
Tao Y, Liu H, Kong H, Wang T, Sun H, Li YJ, Ding X, Sun L, Han B. Electrochemical Preparation of Porous Organic Polymer Films for High‐Performance Memristors. Angew Chem Int Ed Engl 2022; 61:e202205796. [DOI: 10.1002/anie.202205796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui‐Yuan Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huijuan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Jun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- The GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lianfeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Bao‐Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Dong CS, Meng B, Liu J, Wang LX. Acceptor-acceptor-type Organoboron Conjugated Polymers: Effect of Backbone Configuration on Thermoelectric Performance. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Wang X, Li J, Dong C, Zhang L, Hu J, Liu J, Liu Y. n-Type thermoelectric properties of a doped organoboron polymer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure–Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022; 61:e202205315. [DOI: 10.1002/anie.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/07/2022]
|
38
|
Tao Y, Liu H, Kong H, Wang T, Sun H, Li YJ, Ding X, Sun L, Han B. Electrochemical Preparation of Porous Organic Polymer Films for High‐Performance Memristors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui‐Yuan Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tian‐Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huijuan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Jun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- The GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lianfeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Bao‐Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Chen Z, Li J, Wang J, Yang K, Zhang J, Wang Y, Feng K, Li B, Wei Z, Guo X. Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure‐Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhicai Chen
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianfeng Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Junwei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kun Yang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Yimei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kui Feng
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Bolin Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Zhixiang Wei
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Xugang Guo
- Southern University of Science and Technology Materials Science and Engineering No 1088, Xueyuan Rd. Xili, Nanshan 518055 Shenzhen CHINA
| |
Collapse
|
40
|
Zhang C, Tan WL, Liu Z, He Q, Li Y, Ma J, Chesman ASR, Han Y, McNeill CR, Heeney M, Fei Z. High-Performance Unipolar n-Type Conjugated Polymers Enabled by Highly Electron-Deficient Building Blocks Containing F and CN Groups. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chan Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhongwei Liu
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Qiao He
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Yanru Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jianeng Ma
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | | | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Zhuping Fei
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
41
|
Feng K, Shan W, Wang J, Lee JW, Yang W, Wu W, Wang Y, Kim BJ, Guo X, Guo H. Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201340. [PMID: 35429014 DOI: 10.1002/adma.202201340] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
n-Type organic mixed ionic-electronic conductors (OMIECs) with high electron mobility are scarce and highly challenging to develop. As a result, the figure-of-merit (µC*) of n-type organic electrochemical transistors (OECTs) lags far behind the p-type analogs, restraining the development of OECT-based low-power complementary circuits and biosensors. Here, two n-type donor-acceptor (D-A) polymers based on fused bithiophene imide dimer f-BTI2 as the acceptor unit and thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. The cyanation of TVT enables polymer f-BTI2g-TVTCN with simultaneously enhanced ion-uptake ability, film structural order, and charge-transport property. As a result, it is able to obtain a high volumetric capacitance (C*) of 170 ± 22 F cm-3 and a record OECT electron mobility (μe,OECT ) of 0.24 cm2 V-1 s-1 for f-BTI2g-TVTCN, subsequently achieving a state-of-the-art µC* of 41.3 F cm-1 V-1 s-1 and geometry-normalized transconductance (gm,norm ) of 12.8 S cm-1 in n-type accumulation-mode OECTs. In contrast, only a moderate µC* of 1.50 F cm-1 V-1 s-1 is measured for the non-cyanated polymer f-BTI2g-TVT. These remarkable results demonstrate the great power of cyano functionalization of polymer semiconductors in developing n-type OMIECs with substantial electron mobility in aqueous environment for high-performance n-type OECTs.
Collapse
Affiliation(s)
- Kui Feng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wentao Shan
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
42
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
43
|
Zhang Y, Zhang C, Su Y, Dong W, Li Y, Liu Z, Yao X, Han Y, Fei Z. Chlorinated conjugated polymer based on chlorine‐ and cyano‐substituted (
E
)‐1,2‐di(thiophen‐2‐yl)ethane for ambipolar and n‐type Organic thin‐film transistors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulong Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chan Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yunran Su
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Weijia Dong
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Yanru Li
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Zhongwei Liu
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Xiang Yao
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yang Han
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Zhuping Fei
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
44
|
Wang S, Zuo G, Kim J, Sirringhaus H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Jiang H, Zhu S, Cui Z, Li Z, Liang Y, Zhu J, Hu P, Zhang HL, Hu W. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem Soc Rev 2022; 51:3071-3122. [PMID: 35319036 DOI: 10.1039/d1cs01136g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organic molecular semiconductors have been paid great attention due to their advantages of low-temperature processability, low fabrication cost, good flexibility, and excellent electronic properties. As a typical example of five-ring-fused organic semiconductors, a single crystal of pentacene shows a high mobility of up to 40 cm2 V-1 s-1, indicating its potential application in organic electronics. However, the photo- and optical instabilities of pentacene make it unsuitable for commercial applications. But, molecular engineering, for both the five-ring-fused building block and side chains, has been performed to improve the stability of materials as well as maintain high mobility. Here, several groups (thiophenes, pyrroles, furans, etc.) are introduced to design and replace one or more benzene rings of pentacene and construct novel five-ring-fused organic semiconductors. In this review article, ∼500 five-ring-fused organic prototype molecules and their derivatives are summarized to provide a general understanding of this catalogue material for application in organic field-effect transistors. The results indicate that many five-ring-fused organic semiconductors can achieve high mobilities of more than 1 cm2 V-1 s-1, and a hole mobility of up to 18.9 cm2 V-1 s-1 can be obtained, while an electron mobility of 27.8 cm2 V-1 s-1 can be achieved in five-ring-fused organic semiconductors. The HOMO-LUMO levels, the synthesis process, the molecular packing, and the side-chain engineering of five-ring-fused organic semiconductors are analyzed. The current problems, conclusions, and perspectives are also provided.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Jiamin Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Hao-Li Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
46
|
Lei T, Wan D, Lan J, Yang Y. Catalytic Oxidative C–H Annulation of Arylthiol Derivatives with 1,3-Diynes toward 3,3′-Bibenzothiophenes. Org Lett 2022; 24:1929-1934. [DOI: 10.1021/acs.orglett.2c00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tao Lei
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Danyang Wan
- Xi’an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
47
|
Wang J, Liu L, Wu F, Liu Z, Fan Z, Chen L, Chen Y. Recent Developments of n-Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. CHEMSUSCHEM 2022; 15:e202102420. [PMID: 34964275 DOI: 10.1002/cssc.202102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Organic semiconductor (OSCs) thermoelectric materials have been studied widely due to their low thermal conductivity and solution processing characteristics. Currently, the high conductivity (up to 1000 s cm-1 ) has boosted the performance of p-type organic thermoelectric materials substantially. In contrast, the development of n-type organic thermoelectric materials is still limited by their low mobility, inferior air stability, and poor doping efficiency, which is relevant to the molecule structure and dopant dispersion. Herein, the recent development of n-type organic thermoelectric materials was reviewed with an emphasis on molecule structure modification and solution processing. Methods for optimizing conjugate structure were summarized from the effects of conjugated backbone modification and side chains diversification on molecular stacking. The primary n-type dopants were also summarized briefly. Especially, the role of solution aggregation controlling on film preparation and properties was given special attention. Additionally, the emergence of organic diradicals with low lowest unoccupied molecular orbital energy level and no doping was introduced, which shows great potential in n-type organic thermoelectric materials. All these endeavors have led to the development of n-type OSCs materials. This Review is aimed at illustrating the state-of-the-art progress and providing some guideline for the design of organic thermoelectric materials in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Liang Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zhiping Fan
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Institute of Advanced Scientific Research (IASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
48
|
Shanwu L, Chenyujie Z, Yinhao L, Yaru Z, Hanming T, Zongrui W, Yonggang Z. Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Han J, Chiu A, Ganley C, McGuiggan P, Thon SM, Clancy P, Katz HE. 3,4,5-Trimethoxy Substitution on an N-DMBI Dopant with New N-Type Polymers: Polymer-Dopant Matching for Improved Conductivity-Seebeck Coefficient Relationship. Angew Chem Int Ed Engl 2021; 60:27212-27219. [PMID: 34695285 DOI: 10.1002/anie.202110505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Achieving high electrical conductivity and thermoelectric power factor simultaneously for n-type organic thermoelectrics is still challenging. By constructing two new acceptor-acceptor n-type conjugated polymers with different backbones and introducing the 3,4,5-trimethoxyphenyl group to form the new n-type dopant 1,3-dimethyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (TP-DMBI), high electrical conductivity of 11 S cm-1 and power factor of 32 μW m-1 K-2 are achieved. Calculations using Density Functional Theory show that TP-DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of -1.94 eV than that of the common dopant 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine (N-DMBI) (-2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n-type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N-DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP-DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V-1 s-1 than films with N-DMBI doping, demonstrating the potential of TP-DMBI, and 3,4,5-trialkoxy DMBIs more broadly, for high performance n-type organic thermoelectrics.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Arlene Chiu
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Connor Ganley
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Patty McGuiggan
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Susanna M Thon
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218, USA
| |
Collapse
|
50
|
Han J, Chiu A, Ganley C, McGuiggan P, Thon SM, Clancy P, Katz HE. 3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinfeng Han
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Arlene Chiu
- Department of Electrical and Computer Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Connor Ganley
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland 21218 USA
| | - Patty McGuiggan
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Susanna M. Thon
- Department of Electrical and Computer Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland 21218 USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University 3400 North Charles Street Baltimore Maryland 21218 USA
| |
Collapse
|