1
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
2
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
3
|
Oluwatoba DS, Safoah HA, Do TD. The rise and fall of adenine clusters in the gas phase: a glimpse into crystal growth and nucleation. Anal Bioanal Chem 2024; 416:5037-5048. [PMID: 39031229 DOI: 10.1007/s00216-024-05442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.
Collapse
Affiliation(s)
| | - Happy Abena Safoah
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Sakakibara M, Nakamuro T, Nakamura E. Kinetic Exploration of Nanoscale Polymorphs through Interface Energy Adjustment. ACS NANO 2024; 18:22325-22333. [PMID: 39117583 DOI: 10.1021/acsnano.4c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Traditionally, the study of crystal polymorphism has relied on thermodynamics and measurements averaged over time and the crystal's constituents. This work introduces a kinetic approach to phase identification─millisecond cinematographic electron microscopic imaging of the dynamics of phase transitions of crystals of a few nm in diameter. We demonstrate a remarkable impact of the interface energy on the relative stability of the nanocrystal's polymorphs, enabling in situ manipulation of phase transitions through size increase or decrease. Starting with the B1 NaI polymorph at 298 K, we identified the previously unknown B2 polymorph of a 1 s lifetime upon sublimation of the crystal. From the CsCl liquid phase, we produced the B1 phase, previously described only at 749 K.
Collapse
Affiliation(s)
- Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Cheng AC, Pin C, Sunaba Y, Sugiyama T, Sasaki K. Nanoscale Helical Optical Force for Determining Crystal Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312174. [PMID: 38586919 DOI: 10.1002/smll.202312174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.
Collapse
Affiliation(s)
- An-Chieh Cheng
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Christophe Pin
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuji Sunaba
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu, 300093, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
6
|
Liu D, Fu J, Elishav O, Sakakibara M, Yamanouchi K, Hirshberg B, Nakamuro T, Nakamura E. Melting entropy of crystals determined by electron-beam-induced configurational disordering. Science 2024; 384:1212-1219. [PMID: 38815089 DOI: 10.1126/science.adk3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Upon melting, the molecules in a crystal explore numerous configurations, reflecting an increase in disorder. The molar entropy of disorder can be defined by Boltzmann's formula ΔSd = Rln(Wd), where Wd is the increase in the number of microscopic states, so far inaccessible experimentally. We found that the Arrhenius frequency factor A of the electron diffraction signal decay provides Wd through an experimental equation A = AINTWd, where AINT is an inelastic scattering cross section. The method connects Clausius and Boltzmann experimentally and supplements the Clausius approach, being applicable to a femtogram quantity of thermally unstable and biomolecular crystals. The data also showed that crystal disordering and crystallization of melt are reciprocal, both governed by the entropy change but manifesting in opposite directions.
Collapse
Affiliation(s)
- Dongxin Liu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jiarui Fu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Oren Elishav
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaoru Yamanouchi
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Watanabe S, Ono K, Nakayama R, Tajiri K, Inouchi S, Matsuo T, Kunitake M, Hayashi S. Phase Diagrams of Anthracene Derivatives in Pyridinium Ionic Liquids. Chemphyschem 2024; 25:e202300867. [PMID: 38514906 DOI: 10.1002/cphc.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
Crystal engineering for single crystallization of π-conjugated molecules has attracted much attention because of their electronic, photonic, and mechanical properties. However, reproducibility is a problem in conventional printing techniques because control of solvent evaporation is difficult. We investigated the phase diagrams of two anthracene derivatives in synthesized ionic liquids for non-volatile crystal engineering to determine the critical points for nucleation and crystal growth. Anthracene and 9,10-dibromoanthracene were used as representative π-conjugated molecules that form crystal structures with different packing types. Ionic liquids with an alkylpyridinium cation and bis(fluorosulfonyl)amide were good solvents for the anthracene derivatives from ca. 0 °C to 200 °C. The solubilities (critical points for crystal growth) of the anthracene derivatives in the ionic liquids reached the 100 mM level, which is similar to those in organic solvents. Ionic liquids with phenyl and octyl groups tended to show high-temperature dependence (a high dissolution entropy) with 9,10-dibromoanthracene. The precipitation temperature (critical point for crystal nucleation) at each 9,10-dibromoanthracene concentration was lower than the dissolution temperature. The differences between the dissolution and precipitation temperatures (supersaturated region) in the ionic liquids were greater than those in an organic solvent.
Collapse
Grants
- 21H01239 Ministry of Education, Culture, Sports, Science, and Technology
- 22H01814 Ministry of Education, Culture, Sports, Science, and Technology
- 22K14671 Ministry of Education, Culture, Sports, Science, and Technology
- JPNP18016 New Energy and Industrial Technology Development Organization
- JPNP20004 New Energy and Industrial Technology Development Organization
- Toshiaki Ogasawara Memorial Foundation in Japan
- JPMJFR211W Japan Science and Technology Agency
Collapse
Affiliation(s)
- Satoshi Watanabe
- Division of Applied Chemistry and Biochemistry, Naitonal Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido, 059-1275, Japan
| | - Keigo Ono
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan
| | - Rinsuke Nakayama
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan
| | - Kaho Tajiri
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan
| | - Shun Inouchi
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan
| | - Takumi Matsuo
- Research Institute, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan
| | - Shotaro Hayashi
- Research Institute, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
8
|
Ibrahim KA, Naidu AS, Miljkovic H, Radenovic A, Yang W. Label-Free Techniques for Probing Biomolecular Condensates. ACS NANO 2024; 18:10738-10757. [PMID: 38609349 DOI: 10.1021/acsnano.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Biomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time. In particular, we review recent years' exciting development of label-free techniques and methodologies. We broadly organize the set of tools into 3 categories: (1) imaging-based techniques, such as transmitted-light microscopy (TLM) and Brillouin microscopy (BM), (2) force spectroscopy techniques, such as atomic force microscopy (AFM) and the optical tweezer (OT), and (3) microfluidic platforms and emerging technologies. We point out the tools' key opportunities, challenges, and future perspectives and analyze their correlative potential as well as compatibility with other techniques. Additionally, we review emerging techniques, namely, differential dynamic microscopy (DDM) and interferometric scattering microscopy (iSCAT), that have huge potential for future applications in studying biomolecular condensates. Finally, we highlight how some of these techniques can be translated for diagnostics and therapy purposes. We hope this Review serves as a useful guide for new researchers in this field and aids in advancing the development of new biophysical tools to study biomolecular condensates.
Collapse
|
9
|
Harano K, Nakamuro T, Nakamura E. Cinematographic study of stochastic chemical events at atomic resolution. Microscopy (Oxf) 2024; 73:101-116. [PMID: 37864546 DOI: 10.1093/jmicro/dfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
The advent of single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM) has created a new field of 'cinematic chemistry,' allowing for the cinematographic recording of dynamic behaviors of organic and inorganic molecules and their assembly. However, the limited electron dose per frame of video images presents a major challenge in SMART-EM. Recent advances in direct electron counting cameras and techniques to enhance image quality through the implementation of a denoising algorithm have enabled the tracking of stochastic molecular motions and chemical reactions with sub-millisecond temporal resolution and sub-angstrom localization precision. This review showcases the development of dynamic molecular imaging using the SMART-EM technique, highlighting insights into nanomechanical behavior during molecular shuttle motion, pathways of multistep chemical reactions, and elucidation of crystallization processes at the atomic level.
Collapse
Affiliation(s)
- Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Park J, Lee S, Jafter OF, Cheon J, Lungerich D. Electron beam-induced demetallation of Fe, Co, Ni, Cu, Zn, Pd, and Pt metalloporphyrins: insights in e-beam chemistry and metal cluster formations. Phys Chem Chem Phys 2024; 26:8051-8061. [PMID: 38314818 DOI: 10.1039/d3cp05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Electron beams are versatile tools for nanoscale fabrication processes, however, the underlying e-beam chemistry remains in its infancy. Through operando transmission electron microscopy investigations, we elucidate a redox-driven cargo release of individual metal atoms triggered by electron beams. The chosen organic delivery molecule, tetraphenylporphyrin (TPP), proves highly versatile, forming complexes with nearly all metals from the periodic table and being easily processed in solution. A comprehensive cinematographic analysis of the dynamics of single metal atoms confirms the nearly instantaneous ejection of complexed metal atoms under an 80 kV electron beam, underscoring the system's broad versatility. Providing mechanistic insights, we employ density functional theory to support the proposed reductive demetallation pathway facilitated by secondary electrons, contributing novel perspectives to electron beam-mediated chemical reaction mechanisms. Lastly, our findings demonstrate that all seven metals investigated form nanoclusters once ejected from TPP, highlighting the method's potential for studying and developing sustainable single-atom and nanocluster catalysts.
Collapse
Affiliation(s)
- Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sol Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Orein Francis Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Yakiyama Y, Li M, Zhou D, Abe T, Sato C, Sambe K, Akutagawa T, Matsumura T, Matubayasi N, Sakurai H. Biased Bowl-Direction of Monofluorosumanene in the Solid State. J Am Chem Soc 2024; 146:5224-5231. [PMID: 38374577 PMCID: PMC10910505 DOI: 10.1021/jacs.3c11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
A new curved π-conjugated molecule 1-fluorosumanene (1) was designed and synthesized that possesses one fluorine atom on the benzylic carbon of sumanene. This compound can exhibit bowl inversion in solution, leading to the formation of two diastereomers, 1endo and 1exo, with different dipole moments. Experimental and theoretical investigation revealed an energetical relationship among 1exo, 1endo, and solvent to realize the various endo:exo ratios in the single crystals of 1 depending on the crystallization solvent. Significantly, the molecular dynamics (MD) simulations revealed that 1exo positively worked for the elongation of the stacking structure and the final endo:exo ratio was affected by the relative stability difference between 1endo and 1exo derived by solvation. Such an arrangeable endo:exo ratio of 1 realized the preparation of unique materials showing a different dielectric response from the same molecule 1 just by changing the crystallization solvent.
Collapse
Affiliation(s)
- Yumi Yakiyama
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Minghong Li
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dongyi Zhou
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Abe
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chisato Sato
- Graduate
School of Engineering, Tohoku University, 6-6 Aramakiazaaoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kohei Sambe
- Graduate
School of Engineering, Tohoku University, 6-6 Aramakiazaaoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate
School of Engineering, Tohoku University, 6-6 Aramakiazaaoba, Aoba-ku, Sendai 980-8579, Japan
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Teppei Matsumura
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hidehiro Sakurai
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Smith JG, Sawant KJ, Zeng Z, Eldred TB, Wu J, Greeley JP, Gao W. Disproportionation chemistry in K 2PtCl 4 visualized at atomic resolution using scanning transmission electron microscopy. SCIENCE ADVANCES 2024; 10:eadi0175. [PMID: 38335285 PMCID: PMC10857378 DOI: 10.1126/sciadv.adi0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The direct observation of a solid-state chemical reaction can reveal otherwise hidden mechanisms that control the reaction kinetics. However, probing the chemical bond breaking and formation at the molecular level remains challenging because of the insufficient spatial-temporal resolution and composition analysis of available characterization methods. Using atomic-resolution differential phase-contrast imaging in scanning transmission electron microscopy, we have visualized the decomposition chemistry of K2PtCl4 to identify its transient intermediate phases and their interfaces that characterize the chemical reduction process. The crystalline structure of K2PtCl4 is found to undergo a disproportionation reaction to form K2PtCl6, followed by gradual reduction to crystalline Pt metal and KCl. By directly imaging different Pt─Cl bond configurations and comparing them to models predicted via density functional theory calculations, a causal connection between the initial and final states of a chemical reaction is established, showcasing new opportunities to resolve reaction pathways through atomistic experimental visualization.
Collapse
Affiliation(s)
- Jacob G. Smith
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kaustubh J. Sawant
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tim B. Eldred
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jianbo Wu
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jeffrey P. Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenpei Gao
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
13
|
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024; 249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surfaces are able to control physical-chemical processes in multi-component solution systems and, as such, find application in a wide range of technological devices. Understanding the structure, dynamics and thermodynamics of non-ideal solutions at surfaces, however, is particularly challenging. Here, we use Constant Chemical Potential Molecular Dynamics (CμMD) simulations to gain insight into aqueous NaCl solutions in contact with graphite surfaces at high concentrations and under the effect of applied surface charges: conditions where mean-field theories describing interfaces cannot (typically) be reliably applied. We discover an asymmetric effect of surface charge on the electric double layer structure and resulting thermodynamic properties, which can be explained by considering the affinity of the surface for cations and anions and the cooperative adsorption of ions that occurs at higher concentrations. We characterise how the sign of the surface charge affects ion densities and water structure in the double layer and how the capacitance of the interface-a function of the electric potential drop across the double layer-is largely insensitive to the bulk solution concentration. Notably, we find that negatively charged graphite surfaces induce an increase in the size and concentration of extended liquid-like ion clusters confined to the double layer. Finally, we discuss how concentration and surface charge affect the activity coefficients of ions and water at the interface, demonstrating how electric fields in this region should be explicitly considered when characterising the thermodynamics of both solute and solvent at the solid/liquid interface.
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
14
|
Wang R, Mehdi S, Zou Z, Tiwary P. Is the Local Ion Density Sufficient to Drive NaCl Nucleation from the Melt and Aqueous Solution? J Phys Chem B 2024; 128:1012-1021. [PMID: 38262436 DOI: 10.1021/acs.jpcb.3c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Even though nucleation is ubiquitous in different science and engineering problems, investigating nucleation is extremely difficult due to the complicated ranges of time and length scales involved. In this work, we simulate NaCl nucleation in both molten and aqueous environments using enhanced sampling of all-atom molecular dynamics with deep-learning-based estimation of reaction coordinates. By incorporating various structural order parameters and learning the reaction coordinate as a function thereof, we achieve significantly improved sampling relative to traditional ad hoc descriptions of what drives nucleation, particularly in an aqueous medium. Our results reveal a one-step nucleation mechanism in both environments, with reaction coordinate analysis highlighting the importance of local ion density in distinguishing solid and liquid states. However, although fluctuations in the local ion density are necessary to drive nucleation, they are not sufficient. Our analysis shows that near the transition states, descriptors such as enthalpy and local structure become crucial. Our protocol proposed here enables robust nucleation analysis and phase sampling and could offer insights into nucleation mechanisms for generic small molecules in different environments.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Shams Mehdi
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Ziyue Zou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Kang J, Liu G, Hu Q, Huang Y, Liu LM, Dong L, Teobaldi G, Guo L. Parallel Nanosheet Arrays for Industrial Oxygen Production. J Am Chem Soc 2023; 145:25143-25149. [PMID: 37941374 DOI: 10.1021/jacs.3c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
According to the traditional nucleation theory, crystals in solution nucleate under thermal fluctuations with random crystal orientation. Thus, nanosheet arrays grown on a substrate always exhibit disordered arrangements, which impede mass transfer during catalysis. To overcome this limitation, here, we demonstrate stress-induced, oriented nucleation and growth of nanosheet arrays. A regularly self-growing parallel nanosheet array is realized on a curved growth substrate. During electrochemical oxygen production, the ordered array maintains a steady flow of liquids in the microchannels, suppressing the detrimental production of flow-blocking oxygen bubbles typical of randomly oriented nanosheet arrays. Controllable parallel arrays, fully covered fluffy-like ultrathin nanosheets, and amorphous disordered structures altogether enable full-scale design of hierarchical interfaces from the micro- to the atomic scale, significantly improving the otherwise sluggish kinetics of oxygen evolution toward industrial ultrafast production. Record-high ultrafast oxygen production of 135 L·min-1·m-2 with high working current of 4000 mA·cm-2 is steadily achieved at a competitively low cell voltage of 2.862 V. These results and related insights lay the basis for further developments in oriented nucleation and growth of crystals beyond classical nucleation approaches, with benefits for large-scale, industrial electrochemical processes as shown here for ultrafast oxygen production.
Collapse
Affiliation(s)
- Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Gui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Qi Hu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
- School of Physics, Beihang University, Beijing 100191, China
| | - Yezeng Huang
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Leiting Dong
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
16
|
Sakanaka Y, Hiraide S, Sugawara I, Uematsu H, Kawaguchi S, Miyahara MT, Watanabe S. Generalised analytical method unravels framework-dependent kinetics of adsorption-induced structural transition in flexible metal-organic frameworks. Nat Commun 2023; 14:6862. [PMID: 37938232 PMCID: PMC10632496 DOI: 10.1038/s41467-023-42448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Flexible metal-organic frameworks (MOFs) exhibiting adsorption-induced structural transition can revolutionise adsorption separation processes, including CO2 separation, which has become increasingly important in recent years. However, the kinetics of this structural transition remains poorly understood despite being crucial to process design. Here, the CO2-induced gate opening of ELM-11 ([Cu(BF4)2(4,4'-bipyridine)2]n) is investigated by time-resolved in situ X-ray powder diffraction, and a theoretical kinetic model of this process is developed to gain atomistic insight into the transition dynamics. The thus-developed model consists of the differential pressure from the gate opening (indicating the ease of structural transition) and reaction model terms (indicating the transition propagation within the crystal). The reaction model of ELM-11 is an autocatalytic reaction with two pathways for CO2 penetration of the framework. Moreover, gas adsorption analyses of two other flexible MOFs with different flexibilities indicate that the kinetics of the adsorption-induced structural transition is highly dependent on framework structure.
Collapse
Affiliation(s)
- Yuta Sakanaka
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan.
| | - Iori Sugawara
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Hajime Uematsu
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan.
| |
Collapse
|
17
|
Korede V, Veldhuis M, Penha FM, Nagalingam N, Cui P, Van der Heijden AE, Kramer HJ, Eral HB. Effect of Laser-Exposed Volume and Irradiation Position on Nonphotochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:8163-8172. [PMID: 37937191 PMCID: PMC10626568 DOI: 10.1021/acs.cgd.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Herein, we study the influences of the laser-exposed volume and the irradiation position on the nonphotochemical laser-induced nucleation (NPLIN) of supersaturated potassium chloride solutions in water. The effect of the exposed volume on the NPLIN probability was studied by exposing distinct milliliter-scale volumes of aqueous potassium chloride solutions stored in vials at two different supersaturations (1.034 and 1.050) and laser intensities (10 and 23 MW/cm2). Higher NPLIN probabilities were observed with increasing laser-exposed volume as well as with increasing supersaturation and laser intensity. The measured NPLIN probabilities at different exposed volumes are questioned in the context of the dielectric polarization mechanism and classical nucleation theory. No significant change in the NPLIN probability was observed when samples were irradiated at the bottom, top, or middle of the vial. However, a significant increase in the nucleation probability was observed upon irradiation through the solution meniscus. We discuss these results in terms of mechanisms proposed for NPLIN.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Mias Veldhuis
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114 28 Stockholm, Sweden
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | | | - Herman J.M. Kramer
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
18
|
Sironi L, Macetti G, Lo Presti L. Molecular dynamics investigation of benzoic acid in confined spaces. Phys Chem Chem Phys 2023; 25:28006-28019. [PMID: 37819704 DOI: 10.1039/d3cp02886k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Classical molecular dynamics simulations are carried out to investigate the aggregation of supercooled benzoic acid in confined spaces. Nanocavities, nanotubes and nanolayers are defined by restricting the periodicity of the simulation to zero, one or two dimensions, with boundaries set by adjustable, general, and computationally cheap van der Waals barriers. The effect of different confinement geometries is explored. It is found that the confinement impacts the liquid collective dynamics, strengthening the correlations that affect the motion of distant molecules. Overall, confinement determines up to a tenfold increase of the viscosity of the liquid and strongly slows down the rotational correlation times. Aggregation mediated by interactions with the walls and partial polarization of the liquid are observed. Additionally, transitions to high-density liquid states occur when stiffer barriers are used. In general, a reduced accessible amount of phase space fosters the struggle for a closer packing to relieve unfavorable atom-atom contacts, while maximizing the attractive ones. In benzoic acid, this implies that the hydrogen bond network is organized more efficiently in high density states.
Collapse
Affiliation(s)
- Luca Sironi
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
| | - Giovanni Macetti
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
| | - Leonardo Lo Presti
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Frascati, Italy
| |
Collapse
|
19
|
Ahlawat P. Crystallization of FAPbI3: Polytypes and stacking faults. J Chem Phys 2023; 159:151102. [PMID: 37846954 DOI: 10.1063/5.0165285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
Molecular dynamics simulations are performed to study the crystallization of formamidinium lead iodide. From all-atom simulations of the crystal growth process and the δ-α-phase transitions, we try to reveal the formation of various stack-faulted intermediate defected structures and report various polytypes of formamidinium lead iodide that are observed from simulations.
Collapse
Affiliation(s)
- Paramvir Ahlawat
- SNSF Post-doc Mobility Fellow, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom and Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Itatani M, Holló G, Zámbó D, Nakanishi H, Deák A, Lagzi I. Oppositely Charged Nanoparticles Precipitate Not Only at the Point of Overall Electroneutrality. J Phys Chem Lett 2023; 14:9003-9010. [PMID: 37782010 PMCID: PMC10577771 DOI: 10.1021/acs.jpclett.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Precipitation of oppositely charged entities is a common phenomenon in nature and laboratories. Precipitation and crystallization of oppositely charged ions are well-studied and understood processes in chemistry. However, much less is known about the precipitation properties of oppositely charged nanoparticles. Recently, it was demonstrated that oppositely charged gold nanoparticles (AuNPs), also called nanoions, decorated with positively or negatively charged thiol groups precipitate only at the point of electroneutrality of the sample (i.e., the charges on the particles are balanced). Here we demonstrate that the precipitation of oppositely AuNPs can occur not only at the point of electroneutrality. The width of the precipitation window depends on the size and concentration of the nanoparticles. This behavior can be explained by the aggregation of partially stabilized clusters reaching the critical size for their sedimentation in the gravitational field.
Collapse
Affiliation(s)
- Masaki Itatani
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Gábor Holló
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
- Department
of Fundamental Microbiology, University
of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Dániel Zámbó
- Centre
for Energy Research, Institute of Technical
Physics and Materials Science, Konkoly-Thege út 29-33, Budapest H-1120, Hungary
| | - Hideyuki Nakanishi
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - András Deák
- Centre
for Energy Research, Institute of Technical
Physics and Materials Science, Konkoly-Thege út 29-33, Budapest H-1120, Hungary
| | - István Lagzi
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
21
|
Hoelzel H, Lee S, Amsharov KY, Jux N, Harano K, Nakamura E, Lungerich D. Time-resolved imaging and analysis of the electron beam-induced formation of an open-cage metallo-azafullerene. Nat Chem 2023; 15:1444-1451. [PMID: 37386284 DOI: 10.1038/s41557-023-01261-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
The visualization of single-molecule reactions provides crucial insights into chemical processes, and the ability to do so has grown with the advances in high-resolution transmission electron microscopy. There is currently a limited mechanistic understanding of chemical reactions under the electron beam. However, such reactions may enable synthetic methodologies that cannot be accessed by traditional organic chemistry methods. Here we demonstrate the synthetic use of the electron beam, by in-depth single-molecule, atomic-resolution, time-resolved transmission electron microscopy studies, in inducing the formation of a doubly holed fullerene-porphyrin cage structure from a well-defined benzoporphyrin precursor deposited on graphene. Through real-time imaging, we analyse the hybrid's ability to host up to two Pb atoms, and subsequently probe the dynamics of the Pb-Pb binding motif in this exotic metallo-organic cage structure. Through simulation, we conclude that the secondary electrons, which accumulate in the periphery of the irradiated area, can also initiate chemical reactions. Consequently, designing advanced carbon nanostructures by electron-beam lithography will depend on the understanding and limitations of molecular radiation chemistry.
Collapse
Affiliation(s)
- Helen Hoelzel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sol Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seodaemun-gu, Seoul, South Korea
| | | | - Norbert Jux
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Dominik Lungerich
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Center for NanoMedicine, Institute for Basic Science (IBS), Seodaemun-gu, Seoul, South Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, South Korea.
| |
Collapse
|
22
|
Mihara N, Machida A, Takeda Y, Shiga T, Ishii A, Nihei M. Formation and Growth of Atomic Scale Seeds of Au Nanoparticle in the Nanospace of an Organic Cage Molecule. Chemistry 2023:e202302604. [PMID: 37743250 DOI: 10.1002/chem.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Seed-mediated growth has been widely used to synthesize noble metal nanoparticles with controlled size and shape. Although it is becoming possible to directly observe the nucleation process of metal atoms at the single atom level by using transmission electron microscopy (TEM), it is challenging to control the formation and growth of seeds with only a few metal atoms in homogeneous solution systems. This work reports site-selective formation and growth of atomic scale seeds of the Au nanoparticle in a nanospace of an organic cage molecule. We synthesized a cage molecule with amines and phenols, which were found to both capture and reduce Au(III) ions to spontaneously form the atomic scale seeds containing Au(0) in the nanospace. The growth reaction of the atomic scale seeds afforded Au nanoparticles with an average diameter of 2.0±0.2 nm, which is in good agreement with the inner diameter of the cage molecule.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ayaka Machida
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuko Takeda
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takuya Shiga
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ayumi Ishii
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555, Japan
| | - Masayuki Nihei
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
23
|
Liou F, Tsai HZ, Goodwin ZAH, Aikawa AS, Ha E, Hu M, Yang Y, Watanabe K, Taniguchi T, Zettl A, Lischner J, Crommie MF. Imaging Field-Driven Melting of a Molecular Solid at the Atomic Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300542. [PMID: 37317869 DOI: 10.1002/adma.202300542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Solid-liquid phase transitions are basic physical processes, but atomically resolved microscopy has yet to capture their full dynamics. A new technique is developed for controlling the melting and freezing of self-assembled molecular structures on a graphene field-effect transistor (FET) that allows phase-transition behavior to be imaged using atomically resolved scanning tunneling microscopy. This is achieved by applying electric fields to 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane-decorated FETs to induce reversible transitions between molecular solid and liquid phases at the FET surface. Nonequilibrium melting dynamics are visualized by rapidly heating the graphene substrate with an electrical current and imaging the resulting evolution toward new 2D equilibrium states. An analytical model is developed that explains observed mixed-state phases based on spectroscopic measurement of solid and liquid molecular energy levels. The observed nonequilibrium melting dynamics are consistent with Monte Carlo simulations.
Collapse
Affiliation(s)
- Franklin Liou
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hsin-Zon Tsai
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
- National Graphene Institute, University of Manchester, Booth St. E. Manchester M13 9PL, Manchester, UK
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew S Aikawa
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ethan Ha
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Michael Hu
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yiming Yang
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Johannes Lischner
- Department of Materials, Imperial College London, Prince Consort Rd, London, SW7 2BB, UK
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Lalge R, Kumar NSK, Suryanarayanan R. Understanding the Effect of Nucleation in Amorphous Solid Dispersions through Time-Temperature Transformation. Mol Pharm 2023; 20:4196-4209. [PMID: 37358932 DOI: 10.1021/acs.molpharmaceut.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In an earlier investigation, the critical cooling rate to prevent drug crystallization (CRcrit) during the preparation of nifedipine (NIF) amorphous solid dispersions (ASDs) was determined through a time-temperature transformation (TTT) diagram (Lalge et al. Mol. Pharmaceutics 2023, 20 (3), 1806-1817). The current study aims to use the TTT diagram to determine the critical cooling rate to prevent drug nucleation (CRcrit N) during the preparation of ASDs. ASDs were prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). The dispersions were first stored under conditions promoting nucleation and then heated to the temperature that favors crystallization. The crystallization onset time (tC) was determined by differential scanning calorimetry and synchrotron X-ray diffractometry. TTT diagrams for nucleation were generated, which provided the critical nucleation temperature (50 °C) and the critical cooling rate to avoid nucleation (CRcrit N). The strength of the drug-polymer interactions as well as the polymer concentration affected the CRcrit N, with PVP having a stronger interaction than HPMCAS. The CRcrit of amorphous NIF was ∼17.5 °C/min. The addition of a 20% w/w polymer resulted in CRcrit of ∼0.05 and 0.2 °C/min and CRcrit N of ∼4.1 and 8.1 °C/min for the dispersions prepared with PVP and HPMCAS, respectively.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - N S Krishna Kumar
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Korede V, Penha FM, de Munck V, Stam L, Dubbelman T, Nagalingam N, Gutta M, Cui P, Irimia D, van der Heijden AE, Kramer HJ, Eral HB. Design and Validation of a Droplet-based Microfluidic System To Study Non-Photochemical Laser-Induced Nucleation of Potassium Chloride Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:6067-6080. [PMID: 37547880 PMCID: PMC10401630 DOI: 10.1021/acs.cgd.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.
Collapse
Affiliation(s)
- Vikram Korede
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen 42, 114-28 Stockholm, Sweden
| | - Vincent de Munck
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Lotte Stam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thomas Dubbelman
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Maheswari Gutta
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - PingPing Cui
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
| | - Daniel Irimia
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | | - Herman J.M. Kramer
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Hüseyin Burak Eral
- Process
and Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
26
|
Savchenko M, Sebastian V, Lopez-Lopez MT, Rodriguez-Navarro A, Alvarez De Cienfuegos L, Jimenez-Lopez C, Gavira JA. Magnetite Mineralization inside Cross-Linked Protein Crystals. CRYSTAL GROWTH & DESIGN 2023; 23:4032-4040. [PMID: 37304398 PMCID: PMC10251750 DOI: 10.1021/acs.cgd.2c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Indexed: 06/13/2023]
Abstract
Crystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process.
Collapse
Affiliation(s)
- Mariia Savchenko
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Victor Sebastian
- Department
of Chemical Engineering and Environmental Technology, Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Alejandro Rodriguez-Navarro
- Departamento
de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Luis Alvarez De Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain
| | - José Antonio Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| |
Collapse
|
27
|
Cedeno R, Grossier R, Candoni N, Levernier N, Flood AE, Veesler S. CNT effective interfacial energy and pre-exponential kinetic factor from measured NaCl crystal nucleation time distributions in contracting microdroplets. J Chem Phys 2023; 158:2891367. [PMID: 37191406 DOI: 10.1063/5.0143704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Nucleation, the birth of a stable cluster from a disorder, is inherently stochastic. Yet up to date, there are no quantitative studies on NaCl nucleation that accounts for its stochastic nature. Here, we report the first stochastic treatment of NaCl-water nucleation kinetics. Using a recently developed microfluidic system and evaporation model, our measured interfacial energies extracted from a modified Poisson distribution of nucleation time show an excellent agreement with theoretical predictions. Furthermore, analysis of nucleation parameters in 0.5, 1.5, and 5.5 pl microdroplets reveals an interesting interplay between confinement effects and shifting of nucleation mechanisms. Overall, our findings highlight the need to treat nucleation stochastically rather than deterministically to bridge the gap between theory and experiment.
Collapse
Affiliation(s)
- Ruel Cedeno
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Romain Grossier
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| | - Nadine Candoni
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| | - Nicolas Levernier
- INMED, INSERM, Aix Marseille University, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France
| | - Adrian E Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Stéphane Veesler
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| |
Collapse
|
28
|
Gispen W, Coli GM, van Damme R, Royall CP, Dijkstra M. Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid. ACS NANO 2023; 17:8807-8814. [PMID: 37083204 PMCID: PMC10173683 DOI: 10.1021/acsnano.3c02182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase. We show using both simulations and experiments that in the metastable fluid phase, pentagonal bipyramids, clusters with fivefold symmetry known to be inhibitors of crystal nucleation, transform into a different cluster, Siamese dodecahedra. These clusters are closely similar to an fcc subunit, which explains the higher propensity to grow fcc than hcp in hard spheres. We show that our crystallization and polymorph selection mechanism is generic for crystal nucleation from a dense, strongly correlated fluid phase.
Collapse
Affiliation(s)
- Willem Gispen
- Soft Condensed Matter &and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Gabriele M Coli
- Soft Condensed Matter &and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Robin van Damme
- Soft Condensed Matter &and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Marjolein Dijkstra
- Soft Condensed Matter &and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| |
Collapse
|
29
|
Gao M, Park Y, Jin J, Chen PC, Devyldere H, Yang Y, Song C, Lin Z, Zhao Q, Siron M, Scott MC, Limmer DT, Yang P. Direct Observation of Transient Structural Dynamics of Atomically Thin Halide Perovskite Nanowires. J Am Chem Soc 2023; 145:4800-4807. [PMID: 36795997 DOI: 10.1021/jacs.2c13711] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Halide perovskite is a unique dynamical system, whose structural and chemical processes happening across different timescales have significant impact on its physical properties and device-level performance. However, due to its intrinsic instability, real-time investigation of the structure dynamics of halide perovskite is challenging, which hinders the systematic understanding of the chemical processes in the synthesis, phase transition, and degradation of halide perovskite. Here, we show that atomically thin carbon materials can stabilize ultrathin halide perovskite nanostructures against otherwise detrimental conditions. Moreover, the protective carbon shells enable atomic-level visualization of the vibrational, rotational, and translational movement of halide perovskite unit cells. Albeit atomically thin, protected halide perovskite nanostructures can maintain their structural integrity up to an electron dose rate of 10,000 e-/Å2·s while exhibiting unusual dynamical behaviors pertaining to the lattice anharmonicity and nanoscale confinement. Our work demonstrates an effective method to protect beam-sensitive materials during in situ observation, unlocking new solutions to study new modes of structure dynamics of nanomaterials.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yoonjae Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peng-Cheng Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Hannah Devyldere
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhenni Lin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Qiuchen Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Siron
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
31
|
Ye Z, Zhang L, Liu T, Xuan W, He X, Hou C, Han D, Yu B, Shi J, Kang J, Chen J. The effect of surface nucleation modulation on the mechanical and biocompatibility of metal-polymer biomaterials. Front Bioeng Biotechnol 2023; 11:1160351. [PMID: 37091349 PMCID: PMC10117951 DOI: 10.3389/fbioe.2023.1160351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The deployment of hernia repair patches in laparoscopic procedures is gradually increasing. In this technology, however, understanding the new phases of titanium from the parent phase on polymer substrates is essential to control the microstructural transition and material properties. It remains a challenging area of condensed matter physics to predict the kinetic and thermodynamic properties of metals on polymer substrates from the molecular scale due to the lack of understanding of the properties of the metal-polymer interface. However, this paper revealed the mechanism of nucleation on polymer substrates and proposed for the first record a time-dependent regulatory mechanism for the polymer-titanium interface. The interconnection between polymer surface chain entanglement, nucleation and growth patterns, crystal structure and surface roughness were effectively unified. The secondary regulation of mechanical properties was accomplished simultaneously to satisfy the requirement of biocompatibility. Titaniumized polypropylene patches prepared by time-dependent magnetron sputtering technology demonstrated excellent interfacial mechanical properties and biocompatibility. In addition, modulation by low-temperature plasma metal deposition opened a new pathway for biomaterials. This paper provides a solid theoretical basis for the research of titanium nanofilms on medical polypropylene substrates and the medical industry of implantable biomaterials, which will be of great value in the future.
Collapse
Affiliation(s)
- Zhenhong Ye
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai High Efficiency Cooling System Research Center, Shanghai, China
| | - Le Zhang
- State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weicheng Xuan
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong He
- Department of Engineering Mechanics and Innovation Center for Advanced Ship and Deep-Sea Exploration, School of Naval Architecture, Ocean and Civil Engineering Shanghai Jiao Tong University, Shanghai, China
| | - Changhao Hou
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donglin Han
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Yu
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junye Shi
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Kang
- Department of General Surgery, Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jie Kang, ; Jiangping Chen,
| | - Jiangping Chen
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai High Efficiency Cooling System Research Center, Shanghai, China
- *Correspondence: Jie Kang, ; Jiangping Chen,
| |
Collapse
|
32
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Sakakibara M, Nada H, Nakamuro T, Nakamura E. Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth. ACS CENTRAL SCIENCE 2022; 8:1704-1710. [PMID: 36589889 PMCID: PMC9801501 DOI: 10.1021/acscentsci.2c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Many chemical reactions go through a cascade of events in which a series of metastable intermediates appear, and crystal nucleation is no exception. Although the consensus on the energetics of nucleation suggests the formation of metastable states preceding the crystal growth, little experimental evidence has been reported for their dynamics at an atomistic level. Operando imaging of two-dimensional nucleation on a defect-free NaCl nanocrystal in carbon nanotubes using a millisecond angstrom-resolution transmission electron microscope revealed the formation of a metastable "floating island" (FI) that migrates thermally on the (100) facet of NaCl as the first intermediate of epitaxy. The speed of the migration at 298 K is estimated to be larger than 0.3 nm ms-1. When a crystal tumbles in a container, a space repeatedly forms between the crystal and the container wall that hosts the FI. Tumbling changes the surface energy repeatedly and promotes the conversion of the FI into a new epitaxial layer. We anticipate that this surface catalysis mechanism found on the nanoscale also operates in bulk heterogeneous nucleation where agitation and attrition accelerate crystallization.
Collapse
Affiliation(s)
- Masaya Sakakibara
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental
Management Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Takayuki Nakamuro
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department
of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
35
|
Schiele SA, Meinhardt R, Friedrich T, Briesen H. On how non-facetted crystals affect crystallization processes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Han X, Wu G, Ge Y, Yang S, Rao D, Guo Z, Zhang Y, Yan M, Zhang H, Gu L, Wu Y, Lin Y, Zhang H, Hong X. In situ Observation of Structural Evolution and Phase Engineering of Amorphous Materials during Crystal Nucleation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206994. [PMID: 36222376 DOI: 10.1002/adma.202206994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The nucleation pathway determines the structures and thus properties of formed nanomaterials, which is governed by the free energy of the intermediate phase during nucleation. The amorphous structure, as one of the intermediate phases during nucleation, plays an important role in modulating the nucleation pathway. However, the process and mechanism of crystal nucleation from amorphous structures still need to be fully investigated. Here, in situ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is employed to conduct real-time imaging of the nucleation of ultrathin amorphous nanosheets (NSs). The results indicate that their nucleation contains three distinct stages, i.e., aggregation of atoms, crystallization to form lattice-expanded nanocrystals, and relaxation of the lattice-expanded nanocrystals to form final nanocrystals. In particular, the crystallization processes of various amorphous materials are investigated systematically to form corresponding nanocrystals with unconventional crystalline phases, including face-centered-cubic (fcc) Ru, hexagonal-close-packed (hcp) Rh, and a new intermetallic IrCo alloy. In situ electron energy-loss spectroscopy (EELS) analysis unveils that the doped carbon in the original amorphous NSs can migrate to the surface during the nucleation process, stabilizing the obtained unconventional crystal phases transformed from the amorphous structures, which is also proven by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Zhiyan Guo
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yan Zhang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Muyu Yan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Haoran Zhang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yuen Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Lin
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
37
|
Chevalier OJGL, Nakamuro T, Sato W, Miyashita S, Chiba T, Kido J, Shang R, Nakamura E. Precision Synthesis and Atomistic Analysis of Deep-Blue Cubic Quantum Dots Made via Self-Organization. J Am Chem Soc 2022; 144:21146-21156. [DOI: 10.1021/jacs.2c08227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Sato
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Miyashita
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Chiba
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
38
|
Excited state modulation of C70 dimerization in a carbon nanotube under a variable electron acceleration voltage. Micron 2022; 160:103316. [DOI: 10.1016/j.micron.2022.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
|
39
|
Bian L, Ma J, Ai J, Wang Y, Wang N, Wang X, Guo G, Pu Q. NaCl Micro-Crystal as a Molecular Mold for Enhanced Synthesis of Planar Phenazines and Their Applications on Chemosensing and a Full-Color Fluorescent Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39441-39450. [PMID: 35993697 DOI: 10.1021/acsami.2c03602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
NaCl has been successfully used as a template for the synthesis of 2D nanomaterials, but it is seldom used for the construction of flat small organic molecules. Herein, a simple, low-cost, and highly efficient synthesis of phenazines with planar main frames, such as 5-phenyl-5,14-dihydro-5,7,12,14-tetraazapentacene, in the presence of NaCl micro-crystal as a kind of molecular mold is described. The reactants were mixed with NaCl powder and heated to 320 °C for 5 min. Yields >90% were readily achieved after a simple precipitation in water. The effectiveness of NaCl crystal as a mold with HCl was confirmed by comparison with common inorganic salts, SiO2, and γ-Al2O3 with HCl together with combinations including NaNO3 + HNO3, Na2SO4 + H2SO4, NaH2PO4 + H3PO4, and NaH2PO4 + polyphosphoric acid. The mechanism was deduced with the aid of computer simulation, which confirms the stabilization of 5,14-dihydro-5,7,12,14-tetraazapentacene by the NaCl surface. DMSO solution of a product, 1,3-dihydro-imidazo[4,5-b]phenazin-2-one, showed enhanced fluorescence in H2O, and it was used as a fluorescent probe for pH and Hg2+. A full-color material was prepared by mixing precursors of epoxy resin and phenazines, and its fluorescent color could be adjusted by the ratio of phenazines.
Collapse
Affiliation(s)
- Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Jiebing Ai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Naiyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
40
|
Cao Z, Hu Y, Zhao H, Cao B, Zhang P. Sulfate mineral scaling: From fundamental mechanisms to control strategies. WATER RESEARCH 2022; 222:118945. [PMID: 35963137 DOI: 10.1016/j.watres.2022.118945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Sulfate scaling, as insoluble inorganic sulfate deposits, can cause serious operational problems in various industries, such as blockage of membrane pores and subsurface media and impairment of equipment functionality. There is limited article to bridge sulfate formation mechanisms with field scaling control practice. This article reviews the molecular-level interfacial reactions and thermodynamic basis controlling homogeneous and heterogeneous sulfate mineral nucleation and growth through classical and non-classical pathways. Common sulfate scaling control strategies were also reviewed, including pretreatment, chemical inhibition and surface modification. Furthermore, efforts were made to link the fundamental theories with industrial scale control practices. Effects of common inhibitors on different steps of sulfate formation pathways (i.e., ion pair and cluster formation, nucleation, and growth) were thoroughly discussed. Surface modifications to industrial facilities and membrane units were clarified as controlling either the deposition of homogeneous precipitates or the heterogeneous nucleation. Future research directions in terms of optimizing sulfate chemical inhibitor design and improving surface modifications are also discussed. This article aims to keep the readers abreast of the latest development in mechanistic understanding and control strategies of sulfate scale formation and to bridge knowledge developed in interfacial chemistry with engineering practice.
Collapse
Affiliation(s)
- Zhiqian Cao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Cao
- KIT Professionals, Inc., Houston, TX, USA
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
41
|
Nakamuro T, Kamei K, Sun K, Bode JW, Harano K, Nakamura E. Time-Resolved Atomistic Imaging and Statistical Analysis of Daptomycin Oligomers with and without Calcium Ions. J Am Chem Soc 2022; 144:13612-13622. [PMID: 35857028 DOI: 10.1021/jacs.2c03949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daptomycin (DP) is effective against multiple drug-resistant Gram-positive pathogens because of its distinct mechanism of action. An accepted mechanism includes Ca2+-triggered aggregation of the DP molecule to form oligomers. DP and its oligomers have so far defied structural analysis at a molecular level. We studied the ability of DP molecule to aggregate by itself in water, the effects of Ca2+ ions to promote the aggregation, and the connectivity of the DP molecules in the oligomers by the combined use of dynamic light scattering in water and atomic-resolution cinematographic imaging of DP molecules captured on a carbon nanotube on which the DP molecule is installed as a fishhook. We found that the DP molecule aggregates weakly into dimers, trimers, and tetramers in water, and strongly in the presence of calcium ions, and that the tetramer is the largest oligomer in homogeneous aqueous solution. The dimer remains as the major species, and we propose a face-to-face stacked structure based on dynamic imaging using millisecond and angstrom resolution transmission electron microscopy. The tetramer in its cyclic form is the largest oligomer observed, while the trimer forms in its linear form. The study has shown that the DP molecule has an intrinsic property of forming tetramers in water, which is enhanced by the presence of calcium ions. Such experimental structural information will serve as a platform for future drug design. The data also illustrate the utility of cinematographic recording for the study of self-organization processes.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keyi Sun
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Lenart VM, de Lara LS, Gómez SL, Turchiello RF. Study of brine-halite phase separation through optical constringence and molecular dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:57. [PMID: 35781758 DOI: 10.1140/epje/s10189-022-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
This work presents a study of the reciprocal dispersive power, also known as constringence or Abbe number of an aqueous solution of NaCl in a wide range of concentrations. The constringence exhibited a distinct behavior in the region close to the phase transition between a phase containing exclusively brine and a phase containing brine+halite. Molecular dynamics simulations of this system indicated the existence of halite formation below the known saturation curve, which agreed with the experimental measurements, indicating a crystal growth in the unsaturated region.
Collapse
Affiliation(s)
- Vinícius M Lenart
- Physics Department, Federal University of Technology of Paran'a, Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil
| | - Lucas S de Lara
- Department of Physics, State University of Ponta Grossa, Carlos Cavalcanti, 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Sergio L Gómez
- Department of Physics, State University of Ponta Grossa, Carlos Cavalcanti, 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Rozane F Turchiello
- Physics Department, Federal University of Technology of Paran'a, Doutor Washington Subtil Chueire, 330, Ponta Grossa, PR, 84017-220, Brazil.
| |
Collapse
|
43
|
Shimizu T, Lungerich D, Harano K, Nakamura E. Time-Resolved Imaging of Stochastic Cascade Reactions over a Submillisecond to Second Time Range at the Angstrom Level. J Am Chem Soc 2022; 144:9797-9805. [PMID: 35609254 DOI: 10.1021/jacs.2c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many chemical reactions, such as multistep catalytic cycles, are cascade reactions in which a series of transient intermediates appear and disappear stochastically over an extended period. The mechanisms of such reactions are challenging to study, even in ultrafast pump-probe experiments. The dimerization of a van der Waals dimer of [60]fullerene producing a short carbon nanotube is a typical cascade reaction and is probably the most frequently studied in carbon materials chemistry. As many as 23 intermediates were predicted by theory, but only the first stable one has been verified experimentally. With the aid of fast electron microscopy, we obtained cinematographic recordings of individual molecules at a maximum frame rate of 1600 frames per second. Using Chambolle total variation algorithm processing and automated cross-correlation image matching analysis, we report on the identification of several metastable intermediates by their shape and size. Although the reaction events occurred stochastically, varying the lifetime of each intermediate accordingly, the average lifetime for each intermediate structure could be obtained from statistical analysis of many cinematographic images for the cascade reaction. Among the shortest-living intermediates, we detected one that lasted less than 3 ms in three independent cascade reactions. We anticipate that the rapid technological development of microscopy and image processing will soon initiate an era of cinematographic studies of chemical reactions and cinematic chemistry.
Collapse
Affiliation(s)
- Toshiki Shimizu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dominik Lungerich
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Center for Nanomedicine (CNM), Institute for Basic Science (IBS), IBS Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
45
|
Urquidi O, Brazard J, LeMessurier N, Simine L, Adachi TBM. In situ optical spectroscopy of crystallization: One crystal nucleation at a time. Proc Natl Acad Sci U S A 2022; 119:e2122990119. [PMID: 35394901 PMCID: PMC9169808 DOI: 10.1073/pnas.2122990119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
While crystallization is a ubiquitous and an important process, the microscopic picture of crystal nucleation is yet to be established. Recent studies suggest that the nucleation process can be more complex than the view offered by the classical nucleation theory. Here, we implement single crystal nucleation spectroscopy (SCNS) by combining Raman microspectroscopy and optical trapping induced crystallization to spectroscopically investigate one crystal nucleation at a time. Raman spectral evolution during a single glycine crystal nucleation from water, measured by SCNS and analyzed by a nonsupervised spectral decomposition technique, uncovered the Raman spectrum of prenucleation aggregates and their critical role as an intermediate species in the dynamics. The agreement between the spectral feature of prenucleation aggregates and our simulation suggests that their structural order emerges through the dynamic formation of linear hydrogen-bonded networks. The present work provides a strong impetus for accelerating the investigation of crystal nucleation by optical spectroscopy.
Collapse
Affiliation(s)
- Oscar Urquidi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | - Johanna Brazard
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | | | - Lena Simine
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Takuji B. M. Adachi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
46
|
Ionization and electron excitation of C 60 in a carbon nanotube: A variable temperature/voltage transmission electron microscopic study. Proc Natl Acad Sci U S A 2022; 119:e2200290119. [PMID: 35377799 PMCID: PMC9169795 DOI: 10.1073/pnas.2200290119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The destruction of specimen molecules by an electron beam (e-beam) is either beneficial, as in mass spectrometry capitalizing on ion formation, or deleterious, as in electron microscopy. In the latter application, the e-beam not only produces the specimen image, but also causes information loss upon prolonged irradiation. However, the atomistic mechanism of such loss has been unclear. Performing single-molecule kinetic analysis of C60 dimerization in a carbon nanotube (CNT) under variable-temperature/voltage conditions, we identified three reactive species—that is, radical cation, singlet, and triplet excited states—reacting competitively as the voltage and the properties of the CNT were changed. The key enabler was in situ continuous recording of the whole reaction process, suggesting an upcoming new era of “cinematic chemistry.” There is increasing attention to chemical applications of transmission electron microscopy, which is often plagued by radiation damage. The damage in organic matter predominantly occurs via radiolysis. Although radiolysis is highly important, previous studies on radiolysis have largely been descriptive and qualitative, lacking in such fundamental information as the product structure, the influence of the energy of the electrons, and the reaction kinetics. We need a chemically well-defined system to obtain such data and have chosen as a model a variable-temperature and variable-voltage (VT/VV) study of the [2 + 2] dimerization of a van der Waals dimer [60]fullerene (C60) to C120 in a carbon nanotube (CNT), as studied for several hundred individual reaction events at atomic resolution. We report here the identification of five reaction pathways that serve as mechanistic models of radiolysis damage. Two of them occur via a radical cation of the specimen generated by specimen ionization, and three involve singlet or triplet excited states of the specimen, as initiated by electron excitation of the CNT, followed by energy transfer to the specimen. The [2 + 2] product was identified by measuring the distance between the two C60 moieties, and the mechanisms were distinguished by the pre-exponential factor and the Arrhenius activation energy—the standard protocol of chemical kinetic studies. The results illustrate the importance of VT/VV kinetic analysis in the studies of radiation damage and show that chemical ionization and electron excitation are inseparable, but different, mechanisms of radiation damage, which has so far been classified loosely under the single term “ionization.”
Collapse
|
47
|
Atomic-number ( Z)-correlated atomic sizes for deciphering electron microscopic molecular images. Proc Natl Acad Sci U S A 2022; 119:e2114432119. [PMID: 35349339 PMCID: PMC9168473 DOI: 10.1073/pnas.2114432119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Atomic resolution transmission electron microscopy (TEM) has opened up a new era of molecular science by providing atomic video images of dynamic motions of single organic and inorganic molecules. However, the images often look different from the images of molecular models, because these models are designed to visualize the electronic properties of the molecule instead of nuclear electrostatic potentials that are felt by the e-beam in TEM imaging. Here, we propose a molecular model that reproduces TEM images using atomic radii correlated to atomic number (Z). The model serves to provide a priori a useful idea of how a single molecule, molecular assemblies, and thin crystals of organic or inorganic materials look in TEM. With the advent of atomic resolution transmission electron microscopy (AR-TEM) achieving sub-Ångstrom image resolution and submillisecond time resolution, an era of cinematic molecular science where chemists can visually study the time evolution of molecular motions and reactions at atomistic precision has arrived. However, the appearance of experimental TEM images often differs greatly from that of conventional molecular models, and the images are difficult to decipher unless we know in advance the structure of the specimen molecules. The difference arises from the fundamental design of the molecular models that represent atomic connectivity and/or the electronic properties of molecules rather than the nuclear charge of atoms and electrostatic potentials that are felt by the e-beam in TEM imaging. We found a good correlation between the atomic number (Z) and the atomic size seen in TEM images when we consider shot noise in digital images. We propose Z-correlated (ZC) atomic radii for modeling AR-TEM images of single molecules and ultrathin crystals with which we can develop a good estimate of the molecular structure from the TEM image much more easily than with conventional molecular models. Two parameter sets were developed for TEM images recorded under high-noise (ZCHN) and low-noise (ZCLN) conditions. The molecular models will stimulate the imaginations of chemists planning to use AR-TEM for their research.
Collapse
|
48
|
|
49
|
Zhao Y, Zhang Q, Li Y, Chen L, Yi R, Peng B, Nie D, Zhang L, Shi G, Zhang S, Zhang L. Graphitic-like Hexagonal Phase of Alkali Halides in Quasi-Two-Dimensional Confined Space under Ambient Conditions. ACS NANO 2022; 16:2046-2053. [PMID: 35137582 DOI: 10.1021/acsnano.1c07424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of specific matter phases with abnormal physical properties in low-dimensional systems and/or on particular substrates, such as the hexagonal phase of ice and two-dimensional (2D) CaCl with an abnormal valence state, continuously reveals more fundamental mechanisms of the nature. Alkali halides, represented by NaCl, are one of the most common compounds and usually thought to be well-understood. In the past decades, many theoretical studies suggested the existence of one particular phase, that is, the graphitic-like hexagonal phase of alkali halides at high pressure or in low-dimension states, with the expectation of improved properties of this matter phase but lacking experimental evidence due to severe technical challenges. Here, by optimized cryo-electron microscopy, we report the direct atomic-resolution observation and in situ characterization of the prevalent and stable graphitic-like alkali halide hexagonal phases, which were spontaneously formed by unsaturated NaCl and LiCl solution, respectively, in the quasi-2D confined space between reduced graphene oxide layers under ambient conditions. Combined with a control experiment, density functional theory calculations, and previous theoretical studies, we believe that a delicate balance among the cation-π interaction of the solute and substrate, electrostatic interactions of anions and cations, solute-solvent interactions, and thermodynamics under confinement synergistically results in the formation of such hexagonal crystalline phases. These findings highlight the effects of the substrate and the confined space on the formation of specific matter phases and provide a universal scheme for the preparation of special graphitic-like hexagonal phases of alkali halides.
Collapse
Affiliation(s)
- Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Quan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunzhang Li
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Ruobing Yi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Bingquan Peng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dexi Nie
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lihao Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
50
|
Bianco V, Conde MM, Lamas CP, Noya EG, Sanz E. Phase diagram of the NaCl–water system from computer simulations. J Chem Phys 2022; 156:064505. [DOI: 10.1063/5.0083371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- V. Bianco
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. M. Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - C. P. Lamas
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. G. Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. Sanz
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|