1
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Hiscock LK, Gogoulis AT, Diamantopoulos M, Patel VS, Dawe LN, Hudson ZM, Maly KE. Reversible Nucleophilic Ring-Opening of Tetraoxapentacene Derivatives: Accessing New Materials for Thermally Activated Delayed Fluorescence. J Org Chem 2024; 89:15598-15606. [PMID: 39441742 DOI: 10.1021/acs.joc.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the unexpected nucleophilic ring-opening reaction of electron deficient dioxins in the presence of carbazole under basic conditions. This nucleophilic ring-opening reaction is reversible under basic conditions in the absence of nucleophiles. Further, we demonstrate that this unexpected reactivity can be used to prepare novel donor-acceptor compounds that are emissive in solution and as thin films and exhibit thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Lana K Hiscock
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Athan T Gogoulis
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Madison Diamantopoulos
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Vishvam S Patel
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kenneth E Maly
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
3
|
Gao Y, Sun Y, Guo Z, Yu G, Wang Y, Wan Y, Han Y, Yang W, Zhao D, Ma X. Facilitating intrinsic delayed fluorescence of conjugated emitters by inter-chromophore interaction. Chem Sci 2024:d4sc05494f. [PMID: 39430944 PMCID: PMC11484929 DOI: 10.1039/d4sc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Delayed fluorescence (DF) is a unique emitting phenomenon of great interest for important applications in organic optoelectronics. In general, DF requires well-separated frontier orbitals, inherently corresponding to charge transfer (CT)-type emitters. However, facilitating intrinsic DF for local excited (LE)-type conjugated emitters remains very challenging. Aiming to overcome this obstacle, we demonstrate a new molecular design strategy with a DF-inactive B,N-multiple resonance (MR) emitter as a model system. Without the necessity of doping with heavy atoms, we synthesized a co-facial dimer in which an excimer-like state (Sexc) was expected to facilitate efficient reverse intersystem crossing (RISC, T1 → Sexc) and intrinsic DF. Benefiting from greatly enhanced SOC and reduced ΔE ST, the proof-of-concept emitter Np-2CzB exhibited k RISC up to 6.5 × 105 s-1 and intrinsic DF with >35% contribution (Φ DF/Φ F) in dilute solution. Further investigation indicated that Sexc state formation relies on an optimized co-facial distance (d = ∼4.7 Å), strong inter-chromophore interaction (J coul > 450 cm-1) and a rigid structure (Γ S1→S0 < 350 cm-1). Although our strategy was demonstrated with a B,N-MR emitter, it can be applicable to many LE-type conjugated emitters without intrinsic DF. By triggering potential DF emission, many classic emitters might play a more important role in optoelectronics.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
4
|
Sevilla-Pym A, Primrose WL, Luppi BT, Bergmann K, Hudson ZM. Organelle-Targeting Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Subcellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46133-46144. [PMID: 39166441 DOI: 10.1021/acsami.4c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Selective imaging of specific subcellular structures provides valuable information about the cellular microenvironment. Materials exhibiting thermally activated delayed fluorescence (TADF) are rapidly emerging as metal-free probes with long-lived emission for intracellular time-gated imaging applications. Polymers incorporating TADF emitters can self-assemble into luminescent nanoparticles, termed polymer dots (Pdots), and this strategy enables them to circumvent the limitations of commercial organelle trackers and small molecule TADF emitters. In this study, diblock copolymers comprised of a hydrophilic block containing organelle-targeting monomers and a hydrophobic TADF-active block were synthesized by ring-opening metathesis polymerization (ROMP). Oxanorbornene-based monomers incorporating morpholine and triphenylphosphonium groups for lysosome and mitochondria targeting, respectively, were also synthesized. ROMP by sequential addition yielded well-defined diblock copolymers with dispersities <1.28. To analyze the effect of tuning the hydrophilic corona on cellular viability and uptake, we prepared Pdots with poly(ethylene glycol) (PEG) and bis-guanidinium (BGN) coronas, resulting in limited and efficient cellular uptake, respectively. Red-emissive Pdots with BGN-based coronas and organelle-targeting functionality were obtained with quantum yields up to 12% in water under air. Colocalization analysis confirmed that lysosome and mitochondria labeling in live HeLa cells was accomplished within 2 h of incubation, affording Pearson's correlation coefficients of 0.37 and 0.70, respectively. The potential application of these Pdots for time-resolved imaging is highlighted by a proof of concept using time-gated spectroscopy, which effectively separates the delayed emission of the TADF Pdots from the background autofluorescence of biological serum.
Collapse
Affiliation(s)
- Angelica Sevilla-Pym
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Bruno T Luppi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
5
|
Hojo R, Bergmann K, Hudson ZM. Investigating Hydrogen Bonding in Quinoxaline-Based Thermally Activated Delayed Fluorescent Materials. J Phys Chem Lett 2024; 15:5600-5606. [PMID: 38758029 DOI: 10.1021/acs.jpclett.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, hydrogen bonding (H bonding) as an intramolecular locking strategy has been proposed to enhance photoluminescence, color purity, and photostability in thermally activated delayed fluorescence (TADF) materials. Rigidification as a design strategy is particularly relevant when using electron-deficient N-heterocycles as electron acceptors, because these materials often suffer from poor performance as orange to near-infrared emitters as a result of the energy gap law. To critically evaluate the presence of H bonding in such materials, two TADF-active donor-acceptor dyads, ACR-DQ and ACR-PQ, were synthesized. Despite their potential sites for intramolecular H bonding and emissions spanning yellow to deep red, computational analyses (including frequency, natural bond orbital, non-covalent interaction, and potential energy surface assessments) and crystal structure examinations collectively suggest the absence of H bonding in these materials. Our results indicate that invoking intramolecular H bonding should be done with caution in the design of rigidified TADF materials.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Sutthasupa S, Pankaew A, Thisan S, Wangngae S, Kumphune S. Approaching Tryptophan-Derived Polynorbornene Fluorescent Chemosensors: Synthesis, Characterization, and Sensing Ability for Biomedical Applications as Biomarkers for Detecting Fe 2+ Ions. Biomacromolecules 2024; 25:2875-2889. [PMID: 38554086 DOI: 10.1021/acs.biomac.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
We present a novel group of tryptophan (Trp)-based fluorescent polymeric probes synthesized via ring-opening metathesis polymerization (ROMP) of Trp-derived norbornene monomers. These probes, in mono- and disubstituted forms, incorporate amide and ester anchoring groups. The quantity of Trp substituents did not affect fluorescence selectivity but influenced quenching percentage. Poly-diamide-Trp, Poly-monoamide-Trp, Poly-diester-Trp, and Poly-monoester-Trp probes displayed selective detection of Fe2+ and Fe3+ ions with fluorescence on-off characteristics. Poly-diamide-Trp and Poly-monoamide-Trp exhibited a limit of detection (LOD) for Fe2+ and Fe3+ ions of 0.86-11.32 μM, while Poly-diester-Trp and Poly-monoester-Trp showed higher LODs (21.8-108.7 μM). These probes exhibited high selectivity over Fe2+, a crucial metal ion in the body known for its redox properties causing oxidative stress and cell damage. Cell cytotoxicity tests in various cell types confirmed biocompatibility. Additionally, Poly-diamide-Trp displayed excellent cell permeability and iron ion detection in EA.hy926 cells, suggesting potential for bioimaging and clinical applications.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Aphiwat Pankaew
- Mahidol University-Frontier Research Facility, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya 73170, Nakhon Pathom, Thailand
| | - Sukanya Thisan
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| | - Sirilak Wangngae
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| |
Collapse
|
7
|
Luppi BT, Primrose WL, Hudson ZM. Polymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging. Angew Chem Int Ed Engl 2024; 63:e202400712. [PMID: 38439710 DOI: 10.1002/anie.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
By combining bioimaging and photodynamic therapy (PDT), it is possible to treat cancer through a theranostic approach with targeted action for minimum invasiveness and side effects. Thermally activated delayed fluorescence (TADF) probes have gained recent interest in theranostics due to their ability to generate singlet oxygen (1O2) while providing delayed emission that can be used in time-gated imaging. However, it is still challenging to design systems that simultaneously show (1) high contrast for imaging, (2) low dark toxicity but high phototoxicity and (3) tunable biological uptake. Here, we circumvent shortcomings of TADF systems by designing block copolymers and their corresponding semiconducting polymer dots (Pdots) that encapsulate a TADF dye in the core and expose an additional boron-dipyrromethene (BODIPY) oxygen sensitizer in the corona. This architecture provides orange-red luminescent particles (ΦPL up to 18 %) that can efficiently promote PDT (1O2 QY=42 %) of HeLa cells with very low photosensitizer loading (IC50 ~0.05-0.13 μg/mL after 30 min). Additionally, we design Pdots with tunable cellular uptake but similar PDT efficiencies using either polyethylene glycol or guanidinium-based coronas. Finally, we demonstrate that these Pdots can be used for time-gated imaging to effectively filter out background fluorescence from biological samples and improve image contrast.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
8
|
Luo Z, Zhou Z, Pan Y, Zhu Z, Yuan H, Li Y, Feng S, Hong Y, Xu L. Cell-penetrating peptides noncovalently modified red phosphorescent nanoparticles for high-efficiency imaging. RSC Adv 2024; 14:11891-11899. [PMID: 38623284 PMCID: PMC11017195 DOI: 10.1039/d4ra01531b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The application of long-lived phosphorescence probes in time-resolved luminescence imaging is limited by their low quantum yield in aqueous solutions. However, sensitization of thermally activated delayed fluorescence (TADF) materials can compensate for this limitation while addressing the issue of insufficient proportion of their own long lifetime. In this study, we utilized the characteristics of phosphorescence and TADF materials simultaneously by doping the receptor iridium complex PMD-Ir into the donor TADF polymer PCzDP-20 through donor-receptor doping method, and successfully prepared highly efficient red phosphorescent nanoparticles. The quantum yield of the nanoparticles obtained by this method reaches up to 30%, and the luminescence lifetime can reach several thousand nanoseconds. Additionally, due to the low concentration doping of PMD-Ir, the risk of transition metal toxicity is greatly reduced. Furthermore, we used non-covalent modification with amphiphilic cell-penetrating peptides (CPPs) to increase the cell membrane permeability of the nanoparticles. The CPPs modified nanoparticles achieve in vivo confocal imaging of zebrafish and intracellular time-resolved imaging by its significantly improved bioimaging capabilities. The functional nanoparticles designing method fully utilizes the characteristics of PMD-Ir, PCzDP-20, and CPPs, solving the problems of low quantum yield and poor membrane permeability of Ir-complex nanoparticles. This will greatly promote the development of time-resolved luminescence imaging.
Collapse
Affiliation(s)
- Zihan Luo
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Zhuofan Zhou
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Yiwen Pan
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Zece Zhu
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 P. R. China
| | - Yutao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Shumin Feng
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Yi Hong
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Li Xu
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| |
Collapse
|
9
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
10
|
Nongthombam GS, Barman D, Iyer PK. Through-Space Charge-Transfer-Based Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence in Fused 2H-Chromene Coumarin Congener Generating ROS for Antiviral (SARS-CoV-2) Approach. ACS APPLIED BIO MATERIALS 2024; 7:1899-1909. [PMID: 38417048 DOI: 10.1021/acsabm.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Harvesting triplets in metal-free organic frameworks at ambient conditions and finding appropriate applications are a formidable challenge. Herein, we report a donor-acceptor-type system composed of carbazole and fused 2H-chromene coumarin derivative, exhibiting triplet harvesting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) behavior in solid and aggregated states, respectively. The presence of an sp3 linker and the introduction of a selected cyano/ester group in the acceptor result in twisted D-A architectures, further assisting in the suppression of nonradiative deactivation via through-space charge transfer and H-bonding interactions, fulfilling the stringent requirements for the simultaneous process of TADF and AIE, successively. Experimental and theoretical results revealed that the participation of the singlet/triplet charge transfer (1CT/3CT) and the higher lying hybrid triplet locally excited charge-transfer state (3LE + 3CT) leads to an efficient TADF. Both of the synthesized AIE-TADF congeners actively participated in the generation of reactive oxygen species (ROS) in nanoaggregate forms and were further explored computationally for antiviral prospects as inhibitors of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | - Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Santra S, Das S, Dey S, Sengupta A, Giri B, Molla MR. Degradable Polymer-Based Nanoassemblies for Precise Targeting and Drug Delivery to Breast Cancer Cells without Affecting Normal Healthy Cells. Biomacromolecules 2024; 25:1724-1737. [PMID: 38421316 DOI: 10.1021/acs.biomac.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Stimuli-responsive amphiphilic polymers are known to be precursors to forming promising nanoarchitectonics with tunable properties for application in biomedical sciences. Currently, self-immolative polymers are widely recognized as an emerging class of responsive materials with excellent degradability, which is one of the crucial criteria for designing a robust drug delivery vehicle. Here, we design an amphiphilic polyurethane endowed with a redox-responsive self-immolative linker and a pH-responsive tertiary amine on the backbone, which forms entropy-driven nanoscale supramolecular assemblies (average hydrodynamic diameter ∼110 nm) and is programmed to disassemble in a redox environment (GSH) due to the degradation of the polymer in a self-immolative fashion. The nanoassembly shows efficient drug sequestration and release in a controlled manner in response to glutathione (10 mM). The tertiary amine residing on the surface of the nanoassembly becomes protonated in the tumor microenvironment (pH ∼ 6.4-6.8) and generates positively charged nanoassembly (ζ-potential = +36 mV), which enhances the cancer cell-selective cellular uptake. The biological evaluation of the drug-loaded nanoassembly revealed triple-negative breast cancer (MDAMB-231) selective internalization and cell death while shielding normal cells (RBCs or PBMCs) from off-targeting toxicity. We envision that polyurethane with a redox-responsive self-immolative linker might open up new opportunities for a completely degradable polyurethane-based nanocarrier for drug delivery and diagnosis applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
12
|
Paydar S, Feizi F, Shamsipur M, Barati A, Mousavi F, Matt D. A novel ratiometric fluorescence probe based on calix[4]arene functionalized polymer dots for bisphenol A detection in real water samples. Talanta 2024; 269:125450. [PMID: 38042141 DOI: 10.1016/j.talanta.2023.125450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/04/2023]
Abstract
Bisphenol A (BPA) is one of key raw materials used in the production of epoxy resins and plastics, which has toxicological effects on humans by disrupting cell functions through a variety of cell signaling pathways. Therefore, it is of great significance to develop a simple, rapid, and accurate BPA detection method in real water samples. In this study, a ratiometric fluorescence method based on yellow-emitting surface-functionalized polymer dots (PFBT@L Pdots) and blue-emitting carbon dots (Cdots) was described for the detection of BPA. Pdots as the detecting part were synthesized by using highly fluorescent hydrophobic Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT) polymer and (R)-5,11,17,23-Tetra-tert-butyl-25,27-bis[(diphenylphosphinoyl)methoxy]-26-(3-oxabutyloxy)-28-[(1-phenylethyl)- carbamoylmethoxy]calix [4]arene (L) functionalizing ligand, and Cdots as internal reference were prepared by hydrothermal treatment of citric acid and urea. In the presence of BPA, chemical binding of the phosphorus atoms of nearby PFBT@L Pdots with BPA hydroxyl functional groups led to the aggregation of the PFBT@L Pdots aggregation and quenching their yellow emission, but the blue emission of Cdots, on the other hand, remained stable. The proposed PFBT@L Pdots probe was successfully applied for the detection of BPA in real water samples, and the results were in good agreement with those obtained by HPLC-FLD. To the best of our knowledge, this is the first report that the calixarene has been utilized to modify Pdots.
Collapse
Affiliation(s)
- Sardar Paydar
- Department of Chemistry, Razi University, Kermanshah, Iran
| | - Foroozan Feizi
- Department of Chemistry, Razi University, Kermanshah, Iran.
| | | | - Ali Barati
- Department of Chemistry, Razi University, Kermanshah, Iran
| | | | - Dominique Matt
- Molecular Inorganic Chemistry Laboratory, Louis Pasteur University, France
| |
Collapse
|
13
|
Wang M, Kono M, Yamaguchi Y, Islam J, Shoji S, Kitagawa Y, Fushimi K, Watanabe S, Matsuba G, Yamamoto A, Tanaka M, Tsuda M, Tanaka S, Hasegawa Y. Structure-changeable luminescent Eu(III) complex as a human cancer grade probing system for brain tumor diagnosis. Sci Rep 2024; 14:778. [PMID: 38253656 PMCID: PMC10803341 DOI: 10.1038/s41598-023-50138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Accurate determination of human tumor malignancy is important for choosing efficient and safe therapies. Bioimaging technologies based on luminescent molecules are widely used to localize and distinguish active tumor cells. Here, we report a human cancer grade probing system (GPS) using a water-soluble and structure-changeable Eu(III) complex for the continuous detection of early human brain tumors of different malignancy grades. Time-dependent emission spectra of the Eu(III) complexes in various types of tumor cells were recorded. The radiative rate constants (kr), which depend on the geometry of the Eu(III) complex, were calculated from the emission spectra. The tendency of the kr values to vary depended on the tumor cells at different malignancy grades. Between T = 0 and T = 3 h of invasion, the kr values exhibited an increase of 4% in NHA/TS (benign grade II gliomas), 7% in NHA/TSR (malignant grade III gliomas), and 27% in NHA/TSRA (malignant grade IV gliomas). Tumor cells with high-grade malignancy exhibited a rapid upward trend in kr values. The cancer GPS employs Eu(III) emissions to provide a new diagnostic method for determining human brain tumor malignancy.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| | - Masaya Kono
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yusaku Yamaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Jahidul Islam
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Sunao Shoji
- Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Sora Watanabe
- Graduate School of Organic Material Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Masumi Tsuda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
14
|
Ye K, Li G, Li F, Shi C, Jiang Z, Zhang F, Li Q, Su J, Song D, Yuan A. B-embedded disulfide-bridged π-conjugated compounds: structures and optical tuning. Phys Chem Chem Phys 2024; 26:2395-2401. [PMID: 38168797 DOI: 10.1039/d3cp05304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two novel B-embedded disulfide-bridged π-conjugated compounds (BS-CZ and BS-N) bearing different electron donor groups (phenyl carbazole and triphenylamine) have been prepared and show different optical mechanisms. The compound BS-CZ exhibits significant multiple resonance thermal activation delayed fluorescence (MR-TADF) properties with a small singlet-triplet energy gap (ΔEST = 0.16 eV) and a narrow half-peak full width (FWHM = 33 nm), while the compound BS-N shows traditional fluorescence luminescence (FL) characteristics with a larger ΔEST (0.28 eV) and FWHM (57 nm). Time-dependent density functional theory (TD-DFT) calculations show that the lowest excited singlet state (S1) of the compound BS-CZ exhibits local excited (LE) state characteristics, while the charge transfer (CT) state characteristics can be found in S1 of the compound BS-N. Considering good optical performance, the compound BS-CZ is used as an emitting layer of the organic light-emitting diode device and achieved saturated blue emission (473 nm) with a narrow FWHM (39 nm), and CIE color coordinates of (0.12, 0.21). This work provides an important strategy for the optical mechanism regulation and photoelectric applications of B-embedded disulfide-bridged π-conjugated molecules.
Collapse
Affiliation(s)
- Kaishun Ye
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Gang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
- CSMC Technologies Fab2 Co., Ltd, Wuxi, 214028, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Zhen Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Fuzheng Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Jie Su
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China.
- Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
15
|
Caine JR, Choi H, Hojo R, Hudson ZM. Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles. Chemistry 2024; 30:e202302861. [PMID: 38015005 DOI: 10.1002/chem.202302861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 11/29/2023]
Abstract
Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.
Collapse
Affiliation(s)
- Jana R Caine
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| |
Collapse
|
16
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
17
|
Gupta R, Wang Y, Darwish GH, Poisson J, Szwarczewski A, Kim S, Traaseth C, Hudson ZM, Algar WR. Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization, and Cellular Immunolabeling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55456-55465. [PMID: 37983537 DOI: 10.1021/acsami.3c13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Semiconducting polymer dots (Pdots) are brightly fluorescent nanoparticles of growing interest for bioanalysis and imaging. A recurring challenge with these materials is obtaining robust physical and colloidal stability and low nonspecific binding. Here, we prepared and characterized Pdots with bovine serum albumin (BSA) as the stabilizing agent (BSA-Pdots) instead of a more conventionally used amphiphilic polymer, both without and with cross-linking of the protein using glutaraldehyde (BSA(GA)-Pdots) or disuccinimidyl glutarate. Characterization included fluorescence properties; colloidal stability as a function of pH, ionic strength, and solvent perturbation; shape retention and hardness; and nonspecific binding with common assay substrates, fixed cells, and live cells. These properties were contrasted with the same properties for amphiphilic polymer-stabilized Pdots and silica-coated Pdots. On balance, the BSA-stabilized Pdots were similar or more favorable in their properties, with BSA(GA)-Pdots being especially advantageous. Bioconjugation of the BSA-stabilized Pdots was possible using amine-reactive active-ester chemistry, including biotinylation and bioorthogonal functionalization for immunoconjugation via tetrazine-strained-alkene click chemistry. These approaches were used for selective fluorescent labeling of cells based on ligand-receptor and antibody-antigen binding, respectively. Overall, direct BSA stabilization is a very promising strategy for preparing Pdots with improved physical and colloidal stability, reduced nonspecific interactions, and utility for in vitro diagnostics and other bioanalyses and imaging.
Collapse
Affiliation(s)
- Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jade Poisson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Agnes Szwarczewski
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Subin Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
18
|
Yuan C, Xu YT, Huang YT, Zhou H, Jiang XW, Ju P, Zhu YC, Zhang L, Lin P, Chen G, Zhao WW. Polymer Dot-Gated Accumulation-Type Organic Photoelectrochemical Transistor for Urea Biosensing. ACS Sens 2023; 8:1835-1840. [PMID: 37011305 DOI: 10.1021/acssensors.3c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) biosensing represents a new platform interfacing optoelectronics and biological systems with essential amplification, which, nevertheless, are concentrated on depletion-type operation to date. Here, a polymer dot (Pdot)-gated accumulation-type OPECT biosensor is devised and applied for sensitive urea detection. In such a device, the as-designed Pdot/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) is validated as a superior gating module against the diethylenetriamine (DETA) de-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, and the urea-dependent status of Pdots has been shown to be sensitively correlated with the device's response. High-performance urea detection is thus realized with a wide linear range of 1 μM-50 mM and a low detection limit of 195 nM. Given the diversity of the Pdot family and its immense interactions with other species, this work represents a generic platform for developing advanced accumulation-type OPECT and beyond.
Collapse
Affiliation(s)
- Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xing-Wu Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangxu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
19
|
Primrose WL, Mayder DM, Hojo R, Hudson ZM. Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep-Red Emission and Thermally Activated Delayed Fluorescence. J Org Chem 2023; 88:4224-4233. [PMID: 36920272 DOI: 10.1021/acs.joc.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.
Collapse
Affiliation(s)
- William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
20
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
21
|
Xu P, Hojo R, Hudson ZM. Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Materials with Imidazo-pyrazine-5,6-dicarbonitrile Acceptors. Chemistry 2023; 29:e202203585. [PMID: 36806222 DOI: 10.1002/chem.202203585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/23/2023]
Abstract
Three donor-acceptor compounds based on the imidazo-pyrazine-5,6-dicarbonitrile (IPDC) acceptor were synthesized. The IPDC emitters exhibit blue to near-infrared (NIR) emission with up to 54 % photoluminescent quantum yield. 9,9-Dimethyl-9,10-dihydroacridine (ACR), phenoxazine (POX), and phenothiazine (PTZ) served as electron donors. IPDC-POX displayed NIR emission in toluene solution, while showing room-temperature phosphorescence in the solid state. IPDC-ACR exhibited yellow thermally activated delayed fluorescence. Interestingly, dual-emissive behavior as well as excitation-dependent thermally activated delayed fluorescence (TADF) was found for IPDC-PTZ, arising from the two conformers of phenothiazine derivatives. Overall, this work describes a novel strong electron acceptor from the fusion of imidazole, pyrazine, and nitrile functional groups into one conjugated heterocycle for materials exhibiting NIR emission, TADF, and/or room-temperature phosphorescence (RTP).
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
22
|
Zhou C, Zhu X, Liu N, Dong X, Zhang X, Huang H, Tang Y, Liu S, Hu M, Wang M, Deng X, Li S, Zhang R, Huang Y, Lyu H, Xiao S, Luo S, Ali DW, Michalak M, Chen XZ, Wang Z, Tang J. B-lymphoid tyrosine kinase-mediated FAM83A phosphorylation elevates pancreatic tumorigenesis through interacting with β-catenin. Signal Transduct Target Ther 2023; 8:66. [PMID: 36797256 PMCID: PMC9935901 DOI: 10.1038/s41392-022-01268-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 02/18/2023] Open
Abstract
Abnormal activation of Wnt/β-catenin-mediated transcription is closely associated with the malignancy of pancreatic cancer. Family with sequence similarity 83 member A (FAM83A) was shown recently to have oncogenic effects in a variety of cancer types, but the biological roles and molecular mechanisms of FAM83A in pancreatic cancer need further investigation. Here, we newly discovered that FAM83A binds directly to β-catenin and inhibits the assembly of the cytoplasmic destruction complex thus inhibiting the subsequent phosphorylation and degradation. FAM83A is mainly phosphorylated by the SRC non-receptor kinase family member BLK (B-lymphoid tyrosine kinase) at tyrosine 138 residue within the DUF1669 domain that mediates the FAM83A-β-catenin interaction. Moreover, FAM83A tyrosine 138 phosphorylation enhances oncogenic Wnt/β-catenin-mediated transcription through promoting β-catenin-TCF4 interaction and showed an elevated nucleus translocation, which inhibits the recruitment of histone deacetylases by TCF4. We also showed that FAM83A is a direct downstream target of Wnt/β-catenin signaling and correlates with the levels of Wnt target genes in human clinical pancreatic cancer tissues. Notably, the inhibitory peptides that target the FAM83A-β-catenin interaction significantly suppressed pancreatic cancer growth and metastasis in vitro and in vivo. Our results revealed that blocking the FAM83A cascade signaling defines a therapeutic target in human pancreatic cancer.
Collapse
Affiliation(s)
- Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Xiaoting Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Nanxi Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xueying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Xuewen Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Huili Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, and Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200433, China
| | - Yu Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shicheng Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Sang Luo
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, 750001, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Zhentian Wang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, and Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200433, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
23
|
Riahin C, Mendis K, Busick B, Ptaszek M, Yang M, Stacey G, Parvate A, Evans JE, Traeger J, Hu D, Orr G, Rosenzweig Z. Near Infrared Emitting Semiconductor Polymer Dots for Bioimaging and Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:7218. [PMID: 36236328 PMCID: PMC9571013 DOI: 10.3390/s22197218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Semiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes. Building on our earlier work, we report the formation of secondary antibody-conjugated Pdots and provide Cryo-TEM evidence for their formation. We demonstrate the selective targeting of the antibody-conjugated Pdots to FLAG-tagged FLS2 membrane receptors in genetically engineered plant leaf cells. We also report the formation of a new class of luminescent Pdots with emission wavelengths of around 1000 nm. Finally, we demonstrate the formation and utility of oxygen sensing Pdots in aqueous media.
Collapse
Affiliation(s)
- Connor Riahin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Kushani Mendis
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Brandon Busick
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Mengran Yang
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Amar Parvate
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jeremiah Traeger
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
24
|
Mayder DM, Christopherson CJ, Primrose WL, Lin ASM, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022; 10:6496-6506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence imaging of living cells is key to better understanding cellular morphology and biological processes. Water-dispersible nanoparticles exhibiting thermally activated delayed fluorescence (TADF) have recently emerged as useful probes for time-resolved fluorescence imaging (TRFI), circumventing interference from biological autofluorescence. Many existing approaches, however, require TADF dyes with specific structural features, precluding many high-performance TADF materials from being used in this application. Here, we describe the synthesis of two TADF emitters based on the rigid and strongly electron-withdrawing dibenzo[a,c]dipyrido[3,2-h:2'-3'-j]phenazine-12-yl (BPPZ) motif, and demonstrate two parallel approaches for the encapsulation of these fluorophores to yield water-dispersible nanoparticles suitable for TRFI. First, fluorescent polymer dots (Pdots) were formed by dye encapsulation within cell-penetrating amphiphilic copolymers. Glassy organic nanoparticles (g-Odots) were also prepared, giving nanoparticles with higher photoluminescence quantum yields and improved colour purity. Both approaches yielded nanoparticles suitable for imaging, with reasonable uptake and cytotoxicity on the timescale of standard imaging experiments using human cervical (HeLa) and liver (HepG2) cancer cell lines. This work demonstrates two flexible strategies for preparing water-dispersible TADF nanoparticles for TRFI, both of which should be readily adaptable to nearly any existing hydrophobic TADF dye.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Angela S-M Lin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
25
|
Wan W, Li Z, Wang X, Tian F, Yang J. Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications. BIOSENSORS 2022; 12:bios12060419. [PMID: 35735566 PMCID: PMC9221440 DOI: 10.3390/bios12060419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 05/07/2023]
Abstract
Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.
Collapse
Affiliation(s)
- Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziqi Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
26
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
27
|
Liu Q, Yang M, Meng X, Han X, Nazare M, Xu Y, Hu HY, Zhang Q. Donor manipulation for constructing a pH sensing thermally activated delayed fluorescent probe to detect alkaliphiles. Talanta 2022; 246:123493. [PMID: 35489098 DOI: 10.1016/j.talanta.2022.123493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
pH homeostasis is essential for alkaliphiles, given their widespread use in biotechnological applications. However, quantitative monitoring of alkaline pH in alkaliphiles remains challenging. Here, we synthesized for the first time, a thermally activated delayed fluorescent (TADF) pH probe: NI-D-OH. Our probe exhibits a good linear relationship between fluorescence intensity and pH in the neutral to alkaline range (pH 7.0-8.6), as well as long-lived TADF emission. We further show that NI-D-OH can be used to monitor intracellular pH in living organisms, and evaluate the effect of Na+ on the pH homeostasis, demonstrating the potential for alkaline pH monitoring and time-resolved fluorescence imaging.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Miao Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Marc Nazare
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, 13125, Berlin, Germany
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
28
|
Wang S, Wang J, Huang Q, Zheng X, Yao Z, Xiang S, Ling Q, Lin Z. Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14703-14711. [PMID: 35290015 DOI: 10.1021/acsami.1c23584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, two maleimide derivatives substituted by Br (DBM) and I (DIM) with a two-dimensional (2D) layered structure are found to have highly efficient red room-temperature phosphorescence (RTP) at 660 nm in solid state, which is independent of their morphology (crystal, powder, and film). The red RTP of DBM and DIM is closely related to the synergism of nπ-ct-π* transitions and the 2D halogen-bonded network. Interestingly, the red RTP can be excited by visible light of 500 nm, which should be ascribed to the forbidden absorption from the ground state to the triplet state activated in the layered halogen-bonded framework. Due to the rich intermolecular interactions in the rigid layered structure, the red RTP of DBM is very stable under water or external force stimulation. Notably, Hg(II) and Cd(II) ions in a pure aqueous solution result in an opposite change in the RTP intensity of the DBM film. The detection limit of Hg(II) ion is as low as 2.5 × 10-5 nM, lesser than all reported values. The above results not only provide a new idea for the design of simple and efficient red RTP materials but also make it possible to develop solid-state phosphorescent probes for toxic heavy metal ions in environmental sewage with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jingwei Wang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xin Zheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zizhu Yao
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
29
|
Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials with extremely small singlet-triplet energy offsets have opened new horizons for the development of metal-free photosensitizers for photodynamic therapy (PDT) in recent years. However, the exploration of near-infrared (NIR) TADF emitters for efficient two-photon-excited (TPE) PDT is still a formidable challenge, thus it has not been reported yet. In this study, purely organic photosensitizers (PSs) based on the TADF nanoparticles (NIR-TADF NPs) are designed for efficient TPE-PDT, which show excellent singlet oxygen generation ability. Thanks to the intrinsic two-photon excitation and NIR emission characteristics, the NIR-TADF NPs demonstrate promising potential in both single-photon-excited (SPE) and TPE NIR imaging. More importantly, the anti-tumor efficiency and biosafety of TADF-based PSs at the small animal level are confirmed in A549 tumor xenograft models under TPE laser irradiance, which will facilitate the practical biomedical applications of TADF materials. This work not only provides a promising strategy to develop metal-free PSs, but also expands the applied scope of TADF-based nanotherapeutics and advances their possible clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yi Yuan
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jing Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yun Chi
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
30
|
Hsu KF, Su SP, Lu HF, Liu MH, Chang YJ, Lee YJ, Chiang HK, Hsu CP, Lu CW, Chan YH. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging. Chem Sci 2022; 13:10074-10081. [PMID: 36128252 PMCID: PMC9430315 DOI: 10.1039/d2sc03271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Intraoperative fluorescence imaging in the second near-infrared (NIR-II) region heralds a new era in image-guided surgery since the success in the first-in-human liver-tumor surgery guided by NIR-II fluorescence. Limited by the conventional small organic NIR dyes such as FDA-approved indocyanine green with suboptimal NIR-II fluorescence and non-targeting ability, the resulting shallow penetration depth and high false positive diagnostic values have been challenging. Described here is the design of NIR-II emissive semiconducting polymer dots (Pdots) incorporated with thermally activated delayed fluorescence (TADF) moieties to exhibit emission maxima of 1064–1100 nm and fluorescence quantum yields of 0.40–1.58% in aqueous solutions. To further understand how the TADF units affect the molecular packing and the resulting optical properties of Pdots, in-depth and thorough density-functional theory calculations were carried out to better understand the underlying mechanisms. We then applied these Pdots for in vivo 3D bone imaging in mice. This work provides a direction for future designs of NIR-II Pdots and holds promising applications for bone-related diseases. A series of NIR-II fluorescent TADF-incorporated polymer dots were successfully synthesized. The function of the TADF moiety was fully studied and the bio-applications of these polymer dots including bone imaging were also demonstrated.![]()
Collapse
Affiliation(s)
- Keng-Fang Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung City 40704, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan 11221
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30050
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan 80708
| |
Collapse
|
31
|
Du K, Xia Q, Sun J, Feng F. Visible Light and Glutathione Dually Responsive Delivery of a Polymer-Conjugated Temozolomide Intermediate for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55851-55861. [PMID: 34788006 DOI: 10.1021/acsami.1c16962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Polgar AM, Hudson ZM. Thermally activated delayed fluorescence materials as organic photosensitizers. Chem Commun (Camb) 2021; 57:10675-10688. [PMID: 34569578 DOI: 10.1039/d1cc04593h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photosensitizer molecules play a crucial role in materials and life sciences. Efforts to improve their performance and reduce the associated costs are therefore vital for advancing environmentally friendly light-driven technologies. In this Feature Article, we describe the use of photosensitizers that make use of thermally activated delayed fluorescence (TADF), their benefits compared to conventional fluorescent and phosphorescent sensitizers, and the efforts of our group and others to develop emitters with application-tailored properties. The key feature is the diversity of accessible excited state pathways, which may be tuned by molecular and supramolecular approaches to suit a particular problem. This unique property has allowed TADF emitters to become competitive for applications including TADF-sensitized fluorescence in light emitting diodes and chemical sensing, organic long persistent luminescence, photodynamic therapy, and non-coherent photon upconversion.
Collapse
Affiliation(s)
- Alexander M Polgar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|