1
|
Zhan W, Hu J, Chen X, Luo G, Song X. Atroposelective synthesis of axially chiral indolizinylpyrroles by catalytic asymmetric Paal-Knorr reaction. Chem Commun (Camb) 2024; 60:14984-14987. [PMID: 39589073 DOI: 10.1039/d4cc04678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We present herein a highly efficient atroposelective synthesis of five/five-membered N-indolizinylpyrrole through the chiral phosphoric acid (CPA) catalyzed Paal-Knorr reaction of 3-aminoindolizines and 1,4-diketones. The reaction features mild reaction conditions, broad substrate scope and excellent enantioselectivity. Moreover, this method provides a facile approach to a novel axially chiral indolizine-pyrrole framework.
Collapse
Affiliation(s)
- Wenyan Zhan
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoxiao Song
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| |
Collapse
|
2
|
Jiang S. Copper (II) complex supported on magnetic nanoparticles as a novel nanocatalyst for the synthesis of imidazo[1,2-a]pyridines. Mol Divers 2024; 28:3859-3877. [PMID: 38267750 DOI: 10.1007/s11030-023-10781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
Research on the synthesis of imidazo[1,2-a]pyridines has gained great importance among synthetic chemists because there have been numerous reports of their biological and medicinal activities. In this respect, we fabricated CuCl2 immobilized on Fe3O4 nanoparticles modified with 1,10-phenanthroline-5,6-diol [Fe3O4@Diol/Phen-CuCl2] and investigated its catalytic activity for the preparation of imidazo[1,2-a]pyridine derivatives through one-pot three-component reaction of 2-aminopyridines, aldehydes and terminal alkynes under ecofriendly conditions. FT-IR spectroscopy, EDX, SEM, TEM, XRD, TGA, VSM and ICP-OES techniques employed in order to identify the structure of the as-constructed Fe3O4@Diol/Phen-CuCl2 nanocatalyst. This catalytic system has a series of advantages such as the synthesis of imidazo[1,2-a]pyridine products with high yields in suitable time, performing the reactions in an environmentally friendly solvent (PEG), easy preparation of the catalyst with a simple method, and the recyclability of the Fe3O4@Diol/Phen-CuCl2 nanocatalyst.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang, 033000, Shanxi, People's Republic of China.
| |
Collapse
|
3
|
Zhang C, Dong L. Iridium-catalyzed tandem olefination/aza-Michael reaction: rapid access to N-N functionalized hydrazides. Org Biomol Chem 2024. [PMID: 39601785 DOI: 10.1039/d4ob01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An Ir-catalyzed tandem olefination/aza-Michael reaction of protected benzoylhydrazine derivatives with olefins under mild conditions has been developed. This method can be successfully applied to the construction of various structurally N-N-functionalized hydrazide derivatives bearing the α,β-unsaturated side chain in good to excellent yields. In particular, the deaminoprotected products can be used as potential precursors for the construction of N-N axially chiral compounds.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
5
|
Fajer AN, Al-Bahrani HA, Kadhum AAH, Kazemi M. Synthesis of pyrano-pyrimidines: recent advances in catalysis by magnetically recoverable nanocatalysts. Mol Divers 2024; 28:3523-3555. [PMID: 38066350 DOI: 10.1007/s11030-023-10751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2024]
Abstract
The widespread use of catalysts in chemistry in the current century, especially in multicomponent reactions, has led researchers to design catalysts with high catalytic power and which can be recycled. In recent years, most scientists and researchers of chemical science have become interested in magnetic nanocatalysts and used them to perform chemical reactions. Due to the magnetic property of this nanocatalyst, it can be separated and collected from the reaction mixture by a magnet after the reaction is complete and reused. Pyrano-pyrimidines are a group of heterocyclic compounds and important pharmaceutical compounds. Pyrano-pyrimidine derivatives are of great interest due to the wide role they play in biological activities. During the past years, various methods for the synthesis of pyrano-pyrimidines based on the use of magnetic nanocatalysts have been reported. In this review article, for the first time, we would like to focus on the reported non-magnetic materials as magnetically recoverable nanocatalysts for the synthesis of pyrano-pyrimidine derivatives. Considering the wonderful features of magnetic nanocatalysts such as simple separation and preparation, high catalytic activity and stability, we expect more articles on the synthesis of heterocycles using this type of catalyst to be published in the near future.
Collapse
Affiliation(s)
- Ali Noory Fajer
- Department Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Hussein Ali Al-Bahrani
- Department of Chemistry Collage of Education for Pure Science, University of Karbala, Karbala, Iraq
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Qu H, Huo C, Ge J, Xue X, Gu Z, Deng R. Symmetric Anion Mediated Dynamic Kinetic Asymmetric Knoevenagel Reaction for N-C and N-N Atropisomers Synthesis. Angew Chem Int Ed Engl 2024; 63:e202410012. [PMID: 38958836 DOI: 10.1002/anie.202410012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
A symmetric anion mediated dynamic kinetic asymmetric Knoevenagel reaction was established as a general and efficient method for accessing both N-C and N-N atropisomers. The resulting highly enantio-pure pyridine-2,6(1H,3H)-diones exhibit diverse structures and functional groups. The key to excellent regio- and remote enantiocontrol could be owed to the hydrogen bond between the enolate anion and triflamide block of the organocatalyst. This connected the enolate anion and iminium cation by a chiral backbone. The mechanism investigation via control experiments, correlation analysis, and density functional theory calculations further revealed how the stereochemical information was transferred from the catalyst into the axially chiral pyridine-2,6(1H,3H)-diones. The synthetic applications also demonstrated the reaction's potential.
Collapse
Affiliation(s)
- Hongyu Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chenyang Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jimeng Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoping Xue
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan, 450001, China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruixian Deng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Gao G, Liang PY, Jin N, Zhao ZB, Tian XC, Xie D, Tu CZ, Zhang HR, Zhou PP, Yang Z. Mechanism and origin of enantioselectivity for organocatalyzed asymmetric heteroannulation of alkynes in the construction of axially chiral C2-arylquinoline. Org Biomol Chem 2024; 22:7500-7517. [PMID: 39189805 DOI: 10.1039/d4ob01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Peng-Yu Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, 42 Qingyang Road, Lanzhou 730000, P. R. China
| | - Zi-Bo Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xiao-Cheng Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Chi-Zhou Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Hai-Rong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100050, P. R. China.
| |
Collapse
|
8
|
Zhang P, Yuan B, Li J, Li C, Guo J, Zhang B, Qu G, Su H, Turner NJ, Sun Z. Biocatalytic Desymmetrization for the Atroposelective Synthesis of Axially Chiral Biaryls Using an Engineered Imine Reductase. Angew Chem Int Ed Engl 2024:e202416569. [PMID: 39271458 DOI: 10.1002/anie.202416569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in the academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this study, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities (24 examples, up to 99 % ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily scaled up to allow isolation of the atropisomeric product in 99 % ee and 82 % yield. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivity and enzymatic activity. The current strategy expands the scope of the IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.
Collapse
Affiliation(s)
- Pengpeng Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Junkuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Jiaxin Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Bowen Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Hao Su
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, U. K
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| |
Collapse
|
9
|
Li TZ, Wu SF, Wang NY, Hong CS, Zhang YC, Shi F. Catalytic Atroposelective Synthesis of N-N Axially Chiral Indolylamides. J Org Chem 2024; 89:12559-12575. [PMID: 39189641 DOI: 10.1021/acs.joc.4c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic atroposelective synthesis of N-N axially chiral indolylamides was established via dynamic kinetic resolution, which makes use of chiral Lewis base-catalyzed asymmetric acylation of N-acylaminoindoles as a new type of platform molecule with anhydrides. By this strategy, a series of N-N axially chiral indolylamides were synthesized in overall good yields (up to 98%) with excellent enantioselectivities (up to 99% ee). Moreover, some of these N-N axially chiral indolylamides display some extent of anticancer activity, which demonstrates their potential application in medicinal chemistry. Therefore, this work has not only provided a new strategy for the synthesis of N-N axially chiral monoaryl indoles but also offered a new member of N-N axially chiral monoaryl indoles with configurational stability and promising application, thereby solving the challenges in atroposelective synthesis and application of N-N axially chiral monoaryl indoles.
Collapse
Affiliation(s)
- Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chen-Shengping Hong
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Lu YF, Liu C, Ma J, Piao HR, Zhang C, Jin X, Jin CH. Synthesis and biological evaluation of panaxadiol ester derivatives possessing pyrazole and pyrrole moiety as HIF-1α inibitors. Fitoterapia 2024; 177:106052. [PMID: 38848978 DOI: 10.1016/j.fitote.2024.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Hypoxia-inducing factor-1α (HIF-1α) is overexpressed in variety of tumor patients and plays an important role in the regulation of hypoxia response in tumor cells. Therefore, its inhibitors have become one of the targets for the treatment of a variety of cancers. Two series of panaxadiol (PD) ester derivatives containing pyrazole (18a-j) and pyrrole (19a-n) moiety were synthesized and their HIF-1α inhibitory activities were evaluated. Among all the target compouds, compounds 18c, 19d, and 19n (IC50 = 8.70-10.44 μM) showed better HIF-1α inhibitory activity than PD (IC50 = 13.35 μM). None of these compounds showed cytotoxicity above 100 μM and inhibited HIF-1α transcription in a dose-dependent manner. These compounds showed good antitumor activity and provide lead compounds for further design and activity study of PD ester derivatives.
Collapse
Affiliation(s)
- Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, China.
| |
Collapse
|
11
|
Ye Z, Xie W, Liu W, Zhou C, Yang X. Catalytic Enantioselective Synthesis of Axially Chiral Diaryl Ethers Via Asymmetric Povarov Reaction Enabled Desymmetrization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403125. [PMID: 39014550 PMCID: PMC11425261 DOI: 10.1002/advs.202403125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Indexed: 07/18/2024]
Abstract
Axially chiral diaryl ethers represent a distinct class of atropisomers, characterized by a unique dual C─O axes system, which have been found in a variety of natural products, pharmaceuticals, and ligands. However, the catalytic enantioselective synthesis of these atropoisomers poses significant challenges, due to the difficulty in controlling both chiral C─O axes, and their more flexible conformations. Herein, an efficient protocol for catalytic enantioselective synthesis of axially chiral diaryl ethers is presented using organocatalyzed asymmetric Povarov reaction-enabled desymmetrization, followed by aromatizations. This method yields a wide range of novel quinoline-based diaryl ether atropoisomers in good yields and high enantioselectivities. Notably, various aromatization protocols are developed, resulting in a diverse set of polysubstituted quinoline-containing diaryl ether atropisomers. Thermal racemization studies suggested excellent configurational stabilities for these novel diaryl ether atropisomers (with racemization barriers up to 38.1 kcal mol-1). Moreover, this research demonstrates for the first time that diaryl ether atropisomers lacking the bulky t-Bu group can still maintain a stable configuration, challenging the prior knowledge in the field. The fruitful derivatizations of the functional group-rich chiral products further underscore the value of this method.
Collapse
Affiliation(s)
- Zidan Ye
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Wansen Xie
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Changyu Zhou
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, Shanghai, 201210, China
| |
Collapse
|
12
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
13
|
Wang X, Wang SJ, Xin X, An H, Tu Z, Yang H, Wong MW, Lu S. Enantioconvergent and diastereoselective synthesis of atropisomeric hydrazides bearing a cyclic quaternary stereocenter through ternary catalysis. Chem Sci 2024; 15:13240-13249. [PMID: 39183900 PMCID: PMC11339960 DOI: 10.1039/d4sc03190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024] Open
Abstract
An efficient and highly enantioconvergent and diastereoselective ternary catalysis in a one-pot process is reported, which represents an integrated strategy for the synthesis of atropisomeric hydrazides with defined vicinal central and axial chirality from readily available racemic α-amino-ynones, azodicarboxylates, and Morita-Baylis-Hillman (MBH) carbonates. This method utilizes in situ-generated racemic pyrrolin-4-ones via hydroamination of racemic α-amino-ynones by AuCl catalysis as a novel and versatile C1 synthon, which engage commercially available azodicarboxylates to generate amination products in high yields and uniformly excellent enantioselectivities under the catalysis of a chiral phosphoric acid. Following amination, N-alkylation catalyzed by diastereoselective organocatalyst afforded axially chiral hydrazides with excellent diastereoselectivities (>98 : 2 dr). The synthetic utility of the amination products and axially chiral hydrazides was also demonstrated by their facile conversion to diverse molecules in high yields with excellent stereopurity. Density functional theory calculations were performed to understand the origin of diastereoselectivity.
Collapse
Affiliation(s)
- Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xiaolan Xin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Hui Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
14
|
Yao C, Li DR, Xiang HM, Li SJ, Lu Y, Wang Z, Yin T, Wang J, Feng K, Zhu C, Xu H. Copper-catalysed asymmetric annulation of yne-allylic esters with amines to access axially chiral arylpyrroles. Nat Commun 2024; 15:6848. [PMID: 39127693 DOI: 10.1038/s41467-024-50896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The construction of atropisomers with 1,2-diaxes, while maintaining high enantiocontrol, presents a significant challenge due to the dynamic nature of steric hindrance at ortho-aryl substituents. Although various catalytic asymmetric methods have been developed for accessing axially chiral arylpyrroles, the synthesis of axially chiral arylpyrroles with 1,2-diaxes in a catalytic asymmetric manner has remained rare. Herein, the authors report the synthesis of diverse axially chiral arylpyrroles with 1,2-diaxes, and C-C and C-N axes through copper-catalysed asymmetirc [4 + 1] annulation of yne-allylic esters with arylamines via a remote stereocontrol strategy. This approach provides facile access to a broad range of heterobiaryl atropisomers (67 examples) in excellent enantioselectivities, each bearing one or two C-C/C-N axes, demonstrating its versatility and efficiency. The utility of this methodology is further highlighted by the transformation of the product into chiral phosphine ligand, and chiral thioureas for the use in asymmetric catalysis.
Collapse
Affiliation(s)
- Chaochao Yao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dan-Ran Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hua-Ming Xiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Si-Jia Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuepeng Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zihao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tingrui Yin
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiaqiang Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Kongling Feng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
15
|
Ansari S, Knipe PC. Atropisomeric Foldamers. Chempluschem 2024; 89:e202400218. [PMID: 38683695 DOI: 10.1002/cplu.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
This concept article explores the emerging role of atropisomerism in foldamer chemistry, a field focussed on oligomers that adopt well-defined conformations through non-covalent interactions. Atropisomerism introduces a novel dimension to foldamer design by restricting rotational freedom around single bonds to dictate molecular shape with precision. Despite the prevalence of atropisomeric bonds in organic synthesis, their application within foldamers remains underexplored. Here, we discuss key developments in both backbone and sidechain atropisomerism, and suggest future directions for atropisomeric foldamers in the context of a recent surge in atropselective synthetic methods. We propose that judicious use of atropisomerism may serve as a transformative tool in the construction of shape-defined macromolecules.
Collapse
Affiliation(s)
- Saima Ansari
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
16
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
17
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Ge FB, Lu CJ, Chen X, Yao W, An M, Jiang YK, Xu LP, Liu RR. Enantioselective Nickel-Catalyzed Denitrogenative Transannulation En Route to N-N Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202400441. [PMID: 38587149 DOI: 10.1002/anie.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.
Collapse
Affiliation(s)
- Fang-Bei Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Xiao Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wang Yao
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Mei An
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Yu-Kun Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
19
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Li L, Zhou Y, Xi Z, Guo Z, Duan JC, Yu ZX, Gao H. Desulfurdioxidative N-N Coupling of N-Arylhydroxylamines and N-Sulfinylanilines: Reaction Development and Mechanism. Angew Chem Int Ed Engl 2024; 63:e202406478. [PMID: 38637953 DOI: 10.1002/anie.202406478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
A highly efficient and chemoselective approach for the divergent assembling of unsymmetrical hydrazines through an unprecedented intermolecular desulfurdioxidative N-N coupling is developed. This metal free protocol employs readily accessible N-arylhydroxylamines and N-sulfinylanilines to provide highly valuable hydrazine products with good reaction yields and excellent functional group tolerance under simple conditions. Computational studies suggest that the in situ generated O-sulfenylated arylhydroxylamine intermediate undergoes a retro-[2π+2σ] cycloaddition via a stepwise diradical mechanism to form the N-N bond and release SO2.
Collapse
Affiliation(s)
- Linwei Li
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenguo Xi
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Zhaoquan Guo
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Ji-Cheng Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
21
|
Ghawanmeh AA. Polymeric nanoparticles delivery circumvents bacterial resistance to ciprofloxacin. Daru 2024; 32:455-459. [PMID: 38097860 PMCID: PMC11087412 DOI: 10.1007/s40199-023-00498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The efficient inhibition of bacteria and their by-products from infected root canals is hampered by the limitations of traditional root canal disinfection strategies, bacterial resistance to antibiotic drugs, and regenerative endodontics. Polymeric nanoparticles nanocarrier for controlling antibiotic drug delivery were used to overcome the limitations encountered in endodontics treatment. BACKGROUND Several polymeric nanoparticles have been used for the delivery of ciprofloxacin drug. The application of poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles has highlighted the clean and safe delivery of ciprofloxacin (CIP) hydrophilic drug for endodontics treatment. PEG/PLGA was prepared using the solid/oil/water method and the CIP was loaded into polymeric nanoparticles via an ion pairing agent. RESULTS The CIP-loaded PEG-PLGA nanoparticles have a spherical shape with a 120 ± 0.43 nm size, the CIP encapsulating efficiency was 63.26 ± 9.24% with a loading content of 7.75 ± 1.13%, and sustained release was achieved over 168 h which followed Higuchi model with a non-Fickian mechanism. Moreover, CIP-loaded PEG-PLGA had low cytotoxicity to the stem cells of the apical papilla. CONCLUSION The results conclude invigorating future perspectives of polymeric nanoparticles for a wide range of drug delivery for various disease treatments. It's anticipated that these polymeric nanoparticles may divert new expectations in the future for topical antibiotic drug delivery with discrete intracellular medicament, and a safe and clean environment.
Collapse
Affiliation(s)
- Abdullah A Ghawanmeh
- Department of Pharmaceutical Technology and Cosmetics, Faculty of Pharmacy, Middle East University, Amman, Jordan.
| |
Collapse
|
22
|
Guo H, Ding Y, Fan J, Li Z, Cheng G. Lithium Bromide-Promoted Formal C(sp 3)-H Bond Insertion Reactions of β-Carbonyl Esters with Sulfoxonium Ylides to Synthesize 1,4-Dicarbonyl Compounds. J Org Chem 2024; 89:6974-6986. [PMID: 38703123 DOI: 10.1021/acs.joc.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
A LiBr-promoted formal C(sp3)-H bond insertion reaction between β-carbonyl esters and sulfoxonium ylides is established. This practical reaction has a wide range of substrate scope for both β-carbonyl esters and sulfoxonium ylides to give a variety of 1,4-dicarbonyl compounds with 43-94% yields. The reaction features transition-metal-free reaction conditions and exclusive C-alkylation chemselectivity. The use of bench-stable sulfoxonium ylides overcomes previous methods that require transition metal as catalysts and unstable diazo compounds or toxic haloketones as alkylation reagents.
Collapse
Affiliation(s)
- Hailin Guo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuhao Ding
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingwen Fan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhiyong Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
23
|
Wang J, Pan D, Wang F, Yu S, Huang G, Li X. Pd-catalyzed asymmetric Larock reaction for the atroposelective synthesis of N─N chiral indoles. SCIENCE ADVANCES 2024; 10:eado4489. [PMID: 38728391 PMCID: PMC11086601 DOI: 10.1126/sciadv.ado4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Atropisomeric indoles defined by a N─N axis are an important class of heterocycles in synthetic and medicinal chemistry and material sciences. However, they remain heavily underexplored due to limited synthetic methods and challenging stereocontrol over the short N─N bonds. Here, we report highly atroposelective access to N─N axially chiral indoles via the asymmetric Larock reaction. This protocol leveraged the powerful role of chiral phosphoramidite ligand to attenuate the common ligand dissociation in the original Larock reaction, forming N─N chiral indoles with excellent functional group tolerance and high enantioselectivity via palladium-catalyzed intermolecular annulation between readily available o-iodoaniline and alkynes. The multifunctionality in the prepared chiral indoles allowed diverse post-coupling synthetic transformations, affording a broad array of functionalized chiral indoles. Experimental and computational studies have been conducted to explore the reaction mechanism, elucidating the enantio-determining and rate-limiting steps.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
| | - Songjie Yu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, (China)
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, (China)
| |
Collapse
|
24
|
Thönnißen V, Westphäling J, Atodiresei IL, Patureau FW. Atroposelective Chan-Evans-Lam Amination. Chemistry 2024; 30:e202304378. [PMID: 38179829 DOI: 10.1002/chem.202304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The synthetic control of atropoisomerism along C-N bonds is a major challenge, and methods that allow C-N atroposelective bond formation are rare. This is a problem because each atropoisomer can feature starkly differentiated biological properties. Yet, among the three most practical and applicable classical amination methods available: 1) the Cu-catalyzed Ullmann-Goldberg reaction, 2) the Pd-catalyzed Buchwald-Hartwig reaction, and 3) the Cu-catalyzed Chan-Evans-Lam reaction, none has truly been rendered atroposelective at the newly formed C-N bond. The first ever Chan-Evans-Lam atroposelective amination is herein described with a simple copper catalyst and newly designed PyrOx chiral ligand. This method should find important applications in asymmetric synthesis, in particular for medicinal chemistry.
Collapse
Affiliation(s)
- Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Johannes Westphäling
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
25
|
Ahmad I, Al-Dolaimy F, Kzar MH, Kareem AT, Mizal TL, Omran AA, Alazbjee AAA, Obaidur Rab S, Eskandar M, Alawadi AH, Alsalamy A. Microfluidic-based nanoemulsion of Ocimum basilicum extract: Constituents, stability, characterization, and potential biomedical applications for improved antimicrobial and anticancer properties. Microsc Res Tech 2024; 87:411-423. [PMID: 37877737 DOI: 10.1002/jemt.24444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin Hadi Kzar
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, Hillah, Babil, Iraq
| | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Aisha A Omran
- Department of Medical Engineering, AL-Nisour University College, Baghdad, Iraq
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mamdoh Eskandar
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
26
|
Li Y, Li X. Theoretical insights into the enantiodivergence induced by chiral phosphoric acid catalysis with a Lewis acid for the synthesis of N-N axially chiral atropisomers. Org Biomol Chem 2024; 22:1654-1661. [PMID: 38295370 DOI: 10.1039/d3ob02011h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A detailed theoretical mechanistic investigation on chiral phosphoric acid (CPA)-catalyzed Paal-Knorr reactions, in the presence and absence of a Lewis acid, for the synthesis of N-N axially chiral atropisomers is described herein. Density functional theory (DFT) studies elucidate that in the absence of a Lewis acid, CPA catalyzes both the initial cyclization and the subsequent dehydroxylation processes, ambiguously identified as the rate-determining step in the reactions. Conversely, when a Lewis acid participates in the reaction, it facilitates the second dehydroxylation process with a significantly lower energy barrier, thereby reversing the rate-determining step to the initial cyclization step. It is noteworthy that in the case of N-aminoindoles, both the S-configurational transition state TS1 in the cyclization step and TS2 in the dehydroxylation process are favourable. In contrast, for the synthesis of a bispyrrole, the R-configurational TS1 and the S-configurational TS2 are dominant. Therefore, the enantiodivergence observed is essentially induced by the reversed rate-determining steps in the absence or presence of a Lewis acid in the case of a bispyrrole. Furthermore, the non-covalent interaction (NCI) and atoms-in-molecules (AIM) analysis of the TS structures reveal that the non-covalent interactions play a pivotal role in determining the enantiodivergence observed in these reactions.
Collapse
Affiliation(s)
- Yanze Li
- Department of Chemistry, College of Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
27
|
Zou S, Zhang Y, Wu Q, Zhao T, Li Y, Liu B, Ma X. Metal-Free, Hindered, Regioselective Access to Multifunctional Groups Diarylamines via S N Ar Substitution of P-Nitroso Aromatic Methyl Ether by Arylamines. Chemistry 2024; 30:e202303421. [PMID: 38010239 DOI: 10.1002/chem.202303421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multifunctional groups diarylamines, an innovative product, efficiently produced from arylamines and p-nitrosoanisole derivatives by intermolecular SN Ar under weak acid conditions. This SN Ar proceeds under mild reaction conditions, and more significantly, the substrates involved do not necessarily require strong electron-withdrawing groups. Moreover, this SN Ar is characterized by resistance to space crowding, tolerance to halogen and nitroso functional groups, and high regioselectivity. Mechanistic observations suggest that the SN Ar is the result of the transfer of the positive charge center of the protonated nitroso group to the p-methoxy group.
Collapse
Affiliation(s)
- Shuliang Zou
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Yazhou Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, PR China
| | - Qin Wu
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Tianming Zhao
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Yutao Li
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Bing Liu
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Xianguo Ma
- School of Chemical Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| |
Collapse
|
28
|
Wang SJ, Wang X, Xin X, Zhang S, Yang H, Wong MW, Lu S. Organocatalytic diastereo- and atroposelective construction of N-N axially chiral pyrroles and indoles. Nat Commun 2024; 15:518. [PMID: 38225235 PMCID: PMC10789812 DOI: 10.1038/s41467-024-44743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The construction of N-N axially chiral motifs is an important research topic, owing to their wide occurrence in natural products, pharmaceuticals and chiral ligands. One efficient method is the atroposelective dihydropyrimidin-4-one formation. We present herein a direct catalytic synthesis of N-N atropisomers with simultaneous creation of contiguous axial and central chirality by oxidative NHC (N-heterocyclic carbenes) catalyzed (3 + 3) cycloaddition. Using our method, we are able to synthesize structurally diverse N-N axially chiral pyrroles and indoles with vicinal central chirality or bearing a 2,3-dihydropyrimidin-4-one moiety in moderate to good yields and excellent enantioselectivities. Further synthetic transformations of the obtained axially chiral pyrroles and indoles derivative products are demonstrated. The reaction mechanism and the origin of enantioselectivity are understood through DFT calculations.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaolan Xin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Shulei Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
29
|
Yamanomoto K, Yamamoto K, Yoshida S, Sato S, Akiyama T. Enantioselective synthesis of 3-( N-indolyl)quinolines containing axial and central chiralities. Chem Commun (Camb) 2024; 60:582-585. [PMID: 38095093 DOI: 10.1039/d3cc05142k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Quinoline and indole are important core structures in biologically active compounds and materials. Atropisomeric biaryls consisting of quinoline and indole are a unique class of axially chiral molecules. We report herein enantioselective synthesis of 3-(N-indolyl)quinolines having both C-N axial chirality and carbon central chirality by a photoredox Minisci-type addition reaction catalyzed by a chiral lithium phosphate/Ir-photoredox complex. The catalytic system enabled access to a unique class of 3-(N-indolyl)quinolines with high chemo-, regio-, and stereoselectivities in good yields through the appropriate choice of an acid catalyst and a photocatalyst. This is the first example of the synthesis of 3-(N-indolyl)quinoline atropisomers in a highly enantioselective manner.
Collapse
Affiliation(s)
- Ken Yamanomoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Yamamoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
30
|
Feng J, Liu RR. Catalytic Asymmetric Synthesis of N-N Biaryl Atropisomers. Chemistry 2024; 30:e202303165. [PMID: 37850396 DOI: 10.1002/chem.202303165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|
31
|
Fang Y, Chen S, Chang LY. Construction and characterization of a magnetic nanoparticle-supported Cu complex: a stable and active nanocatalyst for synthesis of heteroaryl-aryl and di-heteroaryl sulfides. RSC Adv 2024; 14:812-830. [PMID: 38174265 PMCID: PMC10758930 DOI: 10.1039/d3ra07791h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Diaryl and di-heteroaryl sulfides exist in the structure of many drugs and important biological compounds, also these compounds are well-known in medicinal chemistry due to important biological and pharmaceutical activities. Therefore, the development of novel, ecofriendly and efficient catalytic systems for the preparation of diaryl and di-heteroaryl sulfides is a very attractive and important challenge in organic synthesis. In this attractive methodology, we wish to introduce Fe3O4-supported 3-amino-4-mercaptobenzoic acid copper complex (Fe3O4@AMBA-CuI) nanomaterials as a novel and efficient magnetically recoverable catalyst for the preparation of heteroaryl-aryl and di-heteroaryl sulfides with high yields through reaction of heteroaryl halides with aryl or heteroaryl boronic acids and S8 as the sulfur source under ecofriendly conditions. This catalytic system was very efficient and practical for a diverse range of heteroaryl substrates including benzothiazole, benzoxazole, benzimidazole, oxadiazole, benzofuran, and imidazo[1,2-a]pyridine, because the desired diaryl and di-heteroaryl sulfides were prepared with high yields. The reusability-experiments revealed that the Fe3O4@AMBA-CuI nanocatalyst can be magnetically separated and reused at least six times without a significant decrease in its catalytic activity. VSM and ICP-OES analyses confirmed that despite using the Fe3O4@AMBA-CuI nanocatalyst 6 times, the magnetic properties and stability of the catalyst were still maintained. Although all the obtained heteroaryl-aryl and di-heteroaryl sulfide products are known and previously reported, the synthesis of this number of heteroaryl-aryl and di-heteroaryl sulfides has never been reported by any previouse methods.
Collapse
Affiliation(s)
- Yutong Fang
- Sinopec Research Institute of Petroleum Processing Beijing 100089 China
| | - Songlin Chen
- Department of Basics, Naval University of Engineering Wuhan 430030 Hubei China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology Wuhan 430070 Hubei China
| | - Li-Yuan Chang
- Institute of Chemical and Nanotechnology Research Shanghai China
| |
Collapse
|
32
|
Yin S, Liu J, Weeks KN, Aponick A. Catalytic Enantioselective Synthesis of Axially Chiral Imidazoles by Cation-Directed Desymmetrization. J Am Chem Soc 2023; 145:28176-28183. [PMID: 38096490 DOI: 10.1021/jacs.3c10746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Axially chiral five-membered heterobiaryls synthesized by enantioselective catalysis typically feature large ortho-substituents or a heteroatom in the chiral axis to maintain a stable configuration. Herein we report a cation-directed catalytic enantioselective desymmetrization method that enables rapid access to axially chiral imidazoles with the basic nitrogen at the ortho position and efficiently integrates π-stacking moieties to ensure a stable axial configuration for further applications. The process is operationally simple, is highly enantioselective, and can be performed on the gram scale. The majority of the products are obtained in >90% ee, but interestingly even those with only moderate ee can readily be enriched to near optical purity by selective racemate crystallization. Together with a mild phosphine oxide reduction method, axially chiral imidazoles such as StackPhos and its derivatives are readily prepared in high yield and excellent enantioselectivity on the gram scale. The method also enables the preparation of new chiral non-phosphine-bearing imidazoles.
Collapse
Affiliation(s)
- Shengkang Yin
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ji Liu
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kendall N Weeks
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
33
|
Ayaz M, Alam A, Zainab, Assad M, Javed A, Islam MS, Rafiq H, Ali M, Ahmad W, Khan A, Latif A, Al-Harrasi A, Ahmad M. Biooriented Synthesis of Ibuprofen-Clubbed Novel Bis-Schiff Base Derivatives as Potential Hits for Malignant Glioma: In Vitro Anticancer Activity and In Silico Approach. ACS OMEGA 2023; 8:49228-49243. [PMID: 38173864 PMCID: PMC10764114 DOI: 10.1021/acsomega.3c07216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
This research work is based on the synthesis of bis-Schiff base derivatives of the commercially available ibuprofen drug in outstanding yields through multistep reactions. Structures of the synthesized compounds were confirmed by the help of modern spectroscopic techniques including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H NMR, and 13C NMR. The synthesized compounds were evaluated for their anticancer activity using a normal human embryonic kidney HEK293 cell and U87-malignant glioma (ATCC-HTB-14) as a cancer cell line. All of the synthesized compounds among the series exhibited excellent to less antiproliferative activity having IC50 values ranging from 5.75 ± 0.43 to 150.45 ± 0.20 μM. Among them, compound 5e (IC50 = 5.75 ± 0.43 μM) was found as the most potent antiprolifarative agent, while 5f, 5b, 5a, 5n, 5r, 5s, 5g, 5q, 5i, and 5j exhibited good activity with IC50 values from 24.17 ± 0.46 to 43.71 ± 0.07 μM. These findings suggest that these cells (HEK293) are less cytotoxic to the activities of compounds and increase the cancer cell death in brain, while the lower cytotoxicity of the potent compounds in noncancerous cells suggests that these derivatives will provide promising treatment for patients suffering from brain cancer. The results of the docking study exposed a promising affinity of the active compounds toward casein kinase-2 enzyme, which shows green signal for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Aftab Alam
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Zainab
- College
of Chemistry and Materials Science, Hebei
Normal University, Shijiazhuang 050024, China
| | - Mohammad Assad
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Khyber
Pakhtunkhwa 23200, Pakistan
| | - Aneela Javed
- Molecular
Immunology Laboratory, Department of Healthcare Biotechnology Atta-Ur-Rahman
School of Applied Biosciences, National
University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan
| | - Mohammad Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huma Rafiq
- Molecular
Immunology Laboratory, Department of Healthcare Biotechnology Atta-Ur-Rahman
School of Applied Biosciences, National
University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Waqar Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Ajmal Khan
- Natural and
Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, PC 616 Nizwa, Sultanate of Oman
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| | - Ahmed Al-Harrasi
- Natural and
Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, PC 616 Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa 18800, Pakistan
| |
Collapse
|
34
|
Azzouz-Rached A, Bendjemai M, Husain M, Bentouaf A, Rekab-Djabri H, Tirth V, Algahtani A, Al-Mughanam T, Alghtani AH, Alrobei H, Elhadi M, Rahman N. Numerical simulation studies of the new quaternary MAX phase as future engineering applications: The case study of the Nb 2ScAC 2 (A = Al, Si) compounds. Sci Rep 2023; 13:22953. [PMID: 38135692 PMCID: PMC10746722 DOI: 10.1038/s41598-023-49172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, MAX phases have attained considerable technological interest owing to their two inherent properties metallic and ceramic properties. This study extensively examined Nb2ScAC2 MAX phases using DFT, to assess the structural, mechanical, electronic, and Thermal characteristics. Firstly, the stability of these two compounds was confirmed through the formation energy, elastic constants (Cij), and phonon band structure, which confirmed their thermodynamic, mechanical, and dynamical stability. The optimized lattice parameters of these compounds were examined and then utilized to calculate the physical properties of the Nb2ScAC2 compound. Our compounds are brittle due to their Pugh's ratio of less than 1.75. The covalent bonding of the structure revealed by the Poisson ratio is less than 0.25 for the two compounds. The Nb2ScAC2 material is anisotropic, and Nb2ScAlC2 is harder than Nb2ScSiC2.The metallic character of the materials was affirmed by the electronic band structure analysis. Calculated thermal properties such as Debye temperature and minimum and lattice thermal conductivity reveal that both compounds have the potential to enhance their deployment in thermal barrier coating materials. On the other hand, the high melting temperatures indicate that our compounds could potentially be utilized in demanding or severe conditions. Finally, the thermodynamic characteristics, comprising the isochoric heat capacity (Cv) and Debye temperature (ϴD) were analyzed subjected to high temperatures and pressures. The optical constants such as real and imaginary parts of the dielectric function, refractive index and reflectivity, are investigated. The current study recognizes these two compounds as promising candidates for utilization in modern technologies and diverse industries.
Collapse
Affiliation(s)
- Ahmed Azzouz-Rached
- Magnetic Materials Laboratory, Faculty of Exact Sciences, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria.
| | - Mohammed Bendjemai
- Physical Engineering Laboratory, University of Tiaret, 14000, Tiaret, Algeria
| | - Mudasser Husain
- Department of Physics, University of Lakki Marwat, Lakki Marwat, Khyber Pukhtunkhwa, 28420, Pakistan.
| | - Ali Bentouaf
- Faculty of Technology, Dr. Moulay, Tahar University of Saida, 20000, Saida, Algeria
| | - Hamza Rekab-Djabri
- Faculty of Nature and Life Sciences and Earth Sciences, AkliMohand-Oulhadj University, 10000, Bouira, Algeria
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, 61413, Abha, Asir, Kingdom of Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, 61413, Abha, Asir, Kingdom of Saudi Arabia
| | - Tawfiq Al-Mughanam
- Department of Mechanical Engineering, College of Engineering, King Faisal University, P. O. Box 380, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Abdulaziz H Alghtani
- Department of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Hussein Alrobei
- Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Shaqra University, P. O. Box 1040, Ad-Dawadimi, 11911, Kingdom of Saudi Arabia
| | - Nasir Rahman
- Department of Physics, University of Lakki Marwat, Lakki Marwat, Khyber Pukhtunkhwa, 28420, Pakistan.
| |
Collapse
|
35
|
Wei Y, Sun F, Li G, Xu S, Zhang M, Hong L. Enantioselective Synthesis of N-N Amide-Pyrrole Atropisomers via Paal-Knorr Reaction. Org Lett 2023. [PMID: 38109522 DOI: 10.1021/acs.orglett.3c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The catalytic asymmetric construction of monoheteroaryl N-N axially chiral compounds and chiral five-membered aryl-based scaffolds remains challenging. Herein, we present a highly efficient enantioselective synthesis of monoheteroaryl N-N atropisomers via an asymmetric Paal-Knorr reaction, affording a diverse array of N-N amide-pyrrole atropisomers with excellent enantioselectivities. Gram-scale synthesis and post-transformations of the product demonstrated the synthesis utility of this method. Racemization experiments confirmed the configurational stability of these N-N axially chiral products. This study not only provides the first de novo cyclization example for accessing an asymmetric monoheteroaryl N-N scaffold but also offers a new member of the N-N atropisomer family with potential synthetic and medicinal applications.
Collapse
Affiliation(s)
- Yuanlin Wei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fan Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - ShiYu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
36
|
Wang CS, Xiong Q, Xu H, Yang HR, Dang Y, Dong XQ, Wang CJ. Organocatalytic atroposelective synthesis of axially chiral N, N'-pyrrolylindoles via de novo indole formation. Chem Sci 2023; 14:12091-12097. [PMID: 37969599 PMCID: PMC10631393 DOI: 10.1039/d3sc03686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
The first organocatalytic atroposelective synthesis of axially chiral N,N'-pyrrolylindoles based on o-alkynylanilines was successfully established via de novo indole formation catalyzed by chiral phosphoric acid (CPA). This new synthetic strategy introduced CPA-catalyzed asymmetric 5-endo-dig cyclization of new well-designed o-alkynylanilines containing a pyrrolyl unit, resulting in a wide range of axially chiral N,N'-pyrrolylindoles in high yields with exclusive regioselectivity and excellent enantioselectivity (up to 99% yield, >20 : 1 rr, 95 : 5 er). Considering the potential biological significance of N-N atropisomers, preliminary biological activity studies were performed and revealed that these structurally important N,N'-pyrrolylindoles had a low IC50 value with promising impressive cytotoxicity against several kinds of cancer cell lines. DFT studies reveal that the N-nucleophilic cyclization mediated by CPA is the rate- and stereo-determining step, in which ligand-substrate dispersion interactions facilitate the axial chirality of the target products.
Collapse
Affiliation(s)
- Cong-Shuai Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Qi Xiong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
37
|
Han TJ, Guan CY, Li N, Dong R, Xu LP, Xiao X, Wang MC, Mei GJ. Catalytic atroposelective synthesis of heterobiaryls with vicinal C-C and N-N diaxes via dynamic kinetic resolution. iScience 2023; 26:107978. [PMID: 37822512 PMCID: PMC10562788 DOI: 10.1016/j.isci.2023.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Reported herein is a highly efficient dynamic kinetic resolution protocol for the atroposelective synthesis of heterobiaryls with vicinal C-C and N-N diaxes. Atropisomers bearing vicinal diaxes mainly exist in o-triaryls, while that of biaryls is highly challenging in terms of the concerted rotation and deplanarization effects. The combination of C-C biaryl with N-N nonbiaryl delivers a novel class of vicinal-diaxis heterobiaryls. For their atroposelective synthesis, the dynamic kinetic resolution enabled by either quinine-catalyzed allylation or isothiourea-catalyzed acylation has been developed, allowing the preparation of a wide range of vicinal-axis heterobiaryls in good yields with excellent enantioselectivities. Atropisomerization experiments revealed that the C-C bond rotation led to diastereomers, and the N-N bond rotation offered enantiomers. Besides, this protocol could be extended to kinetic resolution by employing substrates with a more hindered axis.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Chun-Yan Guan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Rui Dong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People’s Republic China
| | - Min-Can Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
Al-Qargholi B, Al-Dolaimy F, Altalbawy FMA, Kadhim AJ, Alsaalamy AH, Suliman M, Abbas AHR. Surface modification of a screen-printed electrode with a flower-like nanostructure to fabricate a guanine DNA-based electrochemical biosensor to determine the anticancer drug pemigatinib. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5146-5156. [PMID: 37753580 DOI: 10.1039/d3ay01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:β-MnO2 nanostructures (3D CF-L Eu3+:β-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 μM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:β-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:β-MnO2 NSs/SPE for analyzing pemigatinib in real samples.
Collapse
Affiliation(s)
- Basim Al-Qargholi
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001 Hilla, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abed J Kadhim
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hussien R Abbas
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Iraq
| |
Collapse
|
40
|
Albaqami FF, Sahib AS, Alharthy KM, Altharawi A, Alshahrani MY, Jawad MA, Suliman M, Ahmad I. Antibacterial activity and DNA interaction of triazine iron and ruthenium complexes: spectroscopic, voltammetric and theoretical studies. RSC Adv 2023; 13:29594-29606. [PMID: 37822666 PMCID: PMC10562978 DOI: 10.1039/d3ra04152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023] Open
Abstract
The 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), [Ru(μ-tptz)2]Cl2 and [Fe(μ-tptz)2]Cl2, complexes containing Ru (1) and Fe (2) are created. Using electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, viscosity measurement and electrochemistry, as well as two complexes with Fish Salmon DNA (FS-DNA), the binding interactions of these complexes were investigated. According to binding assays, complexes bind to DNA through a mild intercalation mechanism, most likely via the DNA helix's base pairs being intercalated by the tptz ligand. Additionally, complex (2) is more capable of binding than complex (1). The electrochemical method offers a quick and easy way to determine the binding constant (Kb). The antibacterial performance of these complexes versus Gram-positive and Gram-negative bacteria was examined using the zone of inhibition test, MIC, and MBC method, and the results revealed that complex (2) exhibits strong antibacterial activity against these bacteria. The outcomes of this investigation will help in understanding DNA interaction mechanisms as well as the creation of a prospective one. Additionally, the density functional theory (DFT) computation included probes of DNA structure and conformation as well as potential pharmacological regulators for particular disorders to fully explain the experimental results.
Collapse
Affiliation(s)
- Faisal F Albaqami
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University AlKharj 11942 Saudi Arabia
| | - Ameer S Sahib
- Department of Pharmacy, Al-Mustaqbal University College 51001 Hilla Iraq
| | - Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University AlKharj 11942 Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| |
Collapse
|
41
|
Zhou X, Huang Q, Guo J, Dai L, Lu Y. Molecular Editing of Pyrroles via a Skeletal Recasting Strategy. ACS CENTRAL SCIENCE 2023; 9:1758-1767. [PMID: 37780359 PMCID: PMC10540293 DOI: 10.1021/acscentsci.3c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/03/2023]
Abstract
Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.
Collapse
Affiliation(s)
- Xueting Zhou
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qingqin Huang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiami Guo
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lei Dai
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yixin Lu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
42
|
Feng J, Lu CJ, Liu RR. Catalytic Asymmetric Synthesis of Atropisomers Featuring an Aza Axis. Acc Chem Res 2023; 56:2537-2554. [PMID: 37694726 DOI: 10.1021/acs.accounts.3c00419] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
ConspectusAtropisomers bearing a rotation-restricted axis are common structural units in natural products, chiral ligands, and drugs; thus, the prevalence of asymmetric synthesis has increased in recent decades. Research into atropisomers featuring an N-containing axis (N-X atropisomers) remains in its infancy compared with the well-developed C-C atropisomer analogue. Notably, N-X atropisomers could offer divergent scaffolds, which are extremely important in bioactive molecules. The asymmetric synthesis of N-X atropisomers is recognized as both appealing and challenging. Recently, we devoted our efforts to the catalytic asymmetric synthesis of N-X atropisomers, benzimidazole-aryl N-C atropisomers, indole-aryl N-C atropisomers, hydrogen-bond-assisted N-C atropisomers, pyrrole-pyrrole N-N atropisomers, pyrrole-indole N-N atropisomers, and indole-indole N-N atropisomers. To obtain the N-C atropisomers, an asymmetric Buchwald-Hartwig reaction of amidines or enamines was employed. Using a Pd(OAc)2/(S)-BINAP or Pd(OAc)2/(S)-Xyl-BINAP catalyst system, benzimidazole-aryl N-C atropisomers and indole-aryl N-C atropisomers were readily obtained. To address the issue of the reduced stability of the diarylamine axis, a six-membered intramolecular N-H-O hydrogen bond was introduced into the N-C atropisomer scaffold. A tandem N-arylation/oxidation process was used for the chiral phosphoric acid (CPA)-catalyzed asymmetric synthesis of N-aryl quinone atropisomers. For N-N atropisomers, a copper-mediated asymmetric Friedel-Crafts alkylation/arylation reaction was developed. The desymmetrization process was completed successfully via a Cu(OTf)2/chiral bisoxazoline or (CuOTf)·Tol/bis(phosphine) dioxide system, thereby achieving the first catalytic asymmetric synthesis of N/N bipyrrole atropisomers. Asymmetric Buchwald-Hartwig amination of enamines was utilized to provide N-N bisindole atropisomers with excellent stereogenic control. This was the first asymmetric synthesis of N-N atropisomers featuring a bisindole structural scaffold using the de novo indole construction strategy. The asymmetric N-N heterobiaryl atropisomer synthesis was substantially facilitated using palladium-catalyzed transient directing group (TDG)-mediated C-H functionalization. Atropisomeric alkenylation, allylation, or alkynylation was accomplished using the Pd(OAc)2/l-tert-leucine system. Herein, we summarize our work on the palladium-, copper-, and CPA-catalyzed asymmetric syntheses of N-C and N-N atropisomers. Furthermore, the application of our work in the synthesis of bioactive molecule analogues and axially chiral ligands is demonstrated. Subsequently, the stability of the chiral N-containing axis is briefly discussed in terms of single crystals and obtained rotational barriers. Finally, an outlook on the asymmetric N-X atropisomer synthesis is provided.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
43
|
Yin SY, Zhou Q, Liu CX, Gu Q, You SL. Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates. Angew Chem Int Ed Engl 2023; 62:e202305067. [PMID: 37140049 DOI: 10.1002/anie.202305067] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
Enantioselective synthesis of N-N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N-N biaryl atropisomers is in great demand. Herein, the construction of N-N biaryl atropisomers through iridium-catalyzed asymmetric C-H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N-N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.
Collapse
Affiliation(s)
- Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiansujia Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
44
|
Li T, Shi L, Wang X, Yang C, Yang D, Song MP, Niu JL. Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks. Nat Commun 2023; 14:5271. [PMID: 37644016 PMCID: PMC10465517 DOI: 10.1038/s41467-023-40978-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The N-N atropisomer, as an important and intriguing chiral system, was widely present in natural products, pharmaceutical lead compounds, and advanced material skeletons. The anisotropic structural characteristics caused by its special axial rotation have always been one of the challenges that chemists strive to overcome. Herein, we report an efficient method for the enantioselective synthesis of N-N axially chiral frameworks via a cobalt-catalyzed atroposelective C-H activation/annulation process. The reaction proceeds under mild conditions by using Co(OAc)2·4H2O as the catalyst with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant, affording a variety of N-N axially chiral products with high yields and enantioselectivities. This protocol provides an efficient approach for the facile construction of N-N atropisomers and further expands the range of of N-N axially chiral derivatives. Additionally, under the conditions of electrocatalysis, the desired N-N axially chiral products were also successfully achieved with good to excellent efficiencies and enantioselectivities.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chen Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
45
|
Zhu X, Wu H, Wang Y, Huang G, Wang F, Li X. Rhodium-catalyzed annulative approach to N-N axially chiral biaryls via C-H activation and dynamic kinetic transformation. Chem Sci 2023; 14:8564-8569. [PMID: 37592987 PMCID: PMC10430736 DOI: 10.1039/d3sc02800c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
N-N axially chiral biaryls represent a rarely explored class of atropisomeric compounds. We hereby report rhodium-catalyzed enantioselective [4 + 2] oxidative annulation of internal alkynes with benzamides bearing two classes of N-N directing groups. The coupling occurs under mild conditions via NH and CH annulation through the dynamic kinetic transformation of the directing group and is highly enantioselective with good functional tolerance. Computational studies of a coupling system at the DFT level has been conducted, and the alkyne insertion was identified as the enantio-determining as well as the turnover-limiting step.
Collapse
Affiliation(s)
- Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Yishou Wang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University Tianjin 300072 China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 China
| |
Collapse
|
46
|
Wang Y, Zhu X, Pan D, Jing J, Wang F, Mi R, Huang G, Li X. Rhodium-catalyzed enantioselective and diastereodivergent access to diaxially chiral heterocycles. Nat Commun 2023; 14:4661. [PMID: 37537163 PMCID: PMC10400608 DOI: 10.1038/s41467-023-39968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
N-N axially chiral biaryls represent a rarely explored class of atropisomers. Reported herein is construction of diverse classes of diaxially chiral biaryls containing N-N and C-N/C-C diaxes in distal positions in excellent enantioselectivity and diastereoselectivity. The N-N chiral axis in the products provides a handle toward solvent-driven diastereodivergence, as has been realized in the coupling of a large scope of benzamides and sterically hindered alkynes, affording diaxes in complementary diastereoselectivity. The diastereodivergence has been elucidated by computational studies which revealed that the hexafluoroisopropanol (HFIP) solvent molecule participated in an unusual manner as a solvent as well as a ligand and switched the sequence of two competing elementary steps, resulting in switch of the stereoselectivity of the alkyne insertion and inversion of the configuration of the C-C axis. Further cleavage of the N-directing group in the diaxial chiral products transforms the diastereodivergence to enantiodivergence.
Collapse
Affiliation(s)
- Yishou Wang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China.
| | - Xingwei Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| |
Collapse
|
47
|
Wang C, Sun J. Atroposelective Synthesis of N-N Axially Chiral Bipyrroles via Rhodium-Catalyzed C-H Insertion Reaction. Org Lett 2023. [PMID: 37366557 DOI: 10.1021/acs.orglett.3c01509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
An atroposelective synthesis of bipyrroles with an axially chiral N-N bond has been established via a rhodium-catalyzed C-H bond insertion reaction to provide the desired atropisomers in good yields (up to 97% yield) with good to excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Changkai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
48
|
Bao H, Chen Y, Yang X. Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202300481. [PMID: 36760025 DOI: 10.1002/anie.202300481] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.
Collapse
Affiliation(s)
- Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
49
|
Wang LY, Miao J, Zhao Y, Yang BM. Chiral Acid-Catalyzed Atroposelective Indolization Enables Access to 1,1'-Indole-Pyrroles and Bisindoles Bearing a Chiral N-N Axis. Org Lett 2023; 25:1553-1557. [PMID: 36857743 DOI: 10.1021/acs.orglett.3c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present herein a highly atroposelective indolization for the efficient synthesis of 1,1'-biheteroaryls bearing a chiral N-N axis. Under the cooperative catalysis of chiral phosphoric acid and InBr3, the reactions between 2,3-diketoesters and 1,3-dione-derived enamines resulted in a highly enantioselective construction of 1,1'-pyrrole-indoles with up to 92% yield, 94% enantiomeric excess (ee), or bisindoles in up to 92% ee. Derivatizations of these compounds to diverse functionalized N-N linked axially chiral biheteroaryls have also been demonstrated.
Collapse
Affiliation(s)
- Luo-Yu Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jiapei Miao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
50
|
De Angelis L, Pei C, Narro AL, Wherritt D, Koenigs RM, Doyle MP. Polyfunctionalization of vicinal carbon centers and synthesis of unsymmetric 1,2,3,4-tetracarbonyl compounds. Nat Commun 2023; 14:1109. [PMID: 36849502 PMCID: PMC9971237 DOI: 10.1038/s41467-023-36757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
The synthesis and characterization of organic compounds with unusual atom or functional group connectivity is one of the main driving forces in the discovery of new synthetic methods that has raised the interest of chemists for many years. Polycarbonyl compounds are such compounds wherein multiple carbonyl groups are directly juxtaposed and influence each other's chemical reactivity. While 1,2-dicarbonyl or 1,2,3-tricarbonyl compounds are well-known in organic chemistry, the 1,2,3,4-tetracarbonyl motif remains barely explored. Herein, we report on the synthesis of such 1,2,3,4-tetracarbonyl compounds employing a synthetic strategy that involves C-nitrosation of enoldiazoacetates, while the diazo functional group remains untouched. This strategy not only leverages the synthesis of 1,2,3,4-tetracarbonyl compounds to an unprecedented level, it also accomplishes the synthesis of 1,2,3,4-tetracarbonyl compounds, wherein each carbonyl group is orthogonally masked. Combined experimental and theoretical studies provide an understanding of the reaction mechanism and rationalize the formation of such 1,2,3,4-tetracarbonyl compounds.
Collapse
Affiliation(s)
- Luca De Angelis
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Chao Pei
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany
| | - Ana L. Narro
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Daniel Wherritt
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| | - Rene M. Koenigs
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany
| | - Michael P. Doyle
- grid.215352.20000000121845633Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX USA
| |
Collapse
|