1
|
Cao X, Cui M, Fang K, Yan L, Gong H, Zhang Y, Zheng X, Yang R. Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium-oxygen batteries. J Colloid Interface Sci 2025; 679:234-242. [PMID: 39362148 DOI: 10.1016/j.jcis.2024.09.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS2) catalyst (designated as Ru/O-MoS2) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS2 substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS2 catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g-1), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.
Collapse
Affiliation(s)
- Xuecheng Cao
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
| | - Minghui Cui
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaiqi Fang
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyu Gong
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Zhang
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Jiang M, Xu J, Chen Y, Wang L, Munroe P, Xie ZH, Peng S. High-Efficiency Photo-Assisted Large Current-Density Water Splitting with Mott-Schottky Heterojunctions. Angew Chem Int Ed Engl 2025; 64:e202415492. [PMID: 39373244 DOI: 10.1002/anie.202415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
The development of bifunctional photogenerated carrier-assisted electrocatalytic (PCA-EC) electrodes that operate with stability at large current-density remains a significant challenge. Herein, we demonstrate a simple sputtering-deposition process to synthesize a novel MnWO4/FeCoNi Mott-Schottky heterojunction coating and deposit it on a pure Ti substrate to prepare high-performance PCA-EC electrodes, which exhibits enhanced light absorption range/intensity and rapidly separated photogenerated electron-hole pairs. This design allows photogenerated electrons to directly participate in the hydrogen evolution reaction (HER), while the strong oxidation of photogenerated holes significantly reduces the defect formation energy of active metals, thereby facilitating the rapid reconstruction of highly active Ni(FeCo)OOH/MnOOH species for the oxygen evolution reaction (OER). As expected, the as-prepared electrode demonstrates the overpotentials of 64 mV for the HER and 204 mV for the OER at 10 mA cm-2 under illumination. Benefiting from the stable interface with Fe/Co/Ni-O-Mn/W bonding units, the dual-electrode photoassisted electrolytic cell achieves long-term stability at current densities of 500 and 1000 mA cm-2. This work provides detailed insights into the enhancement mechanism of PCA-EC and contributes to the development of photo-assisted water splitting electrodes for large current-density applications.
Collapse
Affiliation(s)
- Minming Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
You XY, Lee PY, Wang SC, Kongvarhodom C, Saukani M, Yougbaré S, Chen HM, Ho KC, Wu YF, Lin LY. Investigating solvent effects on synthesizing novel cobalt hydroxide and fluoride complex from Co(BF 4) 2 as active materials of the battery supercapacitor hybrid. J Colloid Interface Sci 2025; 677:502-511. [PMID: 39106775 DOI: 10.1016/j.jcis.2024.07.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Metal-organic framework (MOF) derivatives with tunable pore structure and improved conductivity are intensively designed as electroactive materials. Incorporating structure directing agents (SDA) is beneficial for designing MOF derivatives with excellent electrochemical performances. Ammonium fluoroborate has been reported as an effective SDA, coupled with cobalt salt and 2-methylimidazole, to synthesize zeolitic imidazolate framework-67 (ZIF-67) derivatives for charge storage. However, the synthetic environment for growing cobalt-based active materials is relatively complex. In this study, cobalt tetrafluoroborate (Co(BF4)2) is proposed as a novel cobalt precursor, supplementing cobalt ions and acting as the SDA in a single chemical, to synthesize the cobalt-based electroactive material of energy storage electrodes. Interactions between solvent molecules and solutes play significant roles on the morphology, composition, and electrochemical performance of active materials. Deionized water, methanol and ethanol are used as precursor solvents to understand their effects on material and electrochemical properties. The optimal electrode presents a specific capacitance of 608.3 F/g at 20 mV/s, attributed to the highest electrochemical surface area and evident compositions of cobalt fluoride and hydroxide. A battery supercapacitor hybrid achieves the maximum energy density of 45 Wh/kg at 429 W/kg. The CF retention of 100% and Coulombic efficiency of 99% are achieved after 10,000 cycles.
Collapse
Affiliation(s)
- Xiang-Yu You
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Pin-Yan Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Su-Ching Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chutima Kongvarhodom
- Department of Chemical Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Muhammad Saukani
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Islam Kalimantan MAB, Jl. Adhyaksa No. 2, Banjarmasin 70124, Indonesia
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Hung-Ming Chen
- Gingen Technology Co., Ltd., Rm. 7, 10F., No.189, Sec. 2, Keelung Rd., Xinyi Dist., Taipei 11054, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yung-Fu Wu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
4
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
6
|
Cheng W, Fan P, Jin W. Visualizing the Structure and Dynamics of Transition Metal-Based Electrocatalysts Using Synchrotron X-Ray Absorption Spectroscopy. CHEMSUSCHEM 2024:e202401306. [PMID: 39343747 DOI: 10.1002/cssc.202401306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
As the global energy structure evolves and clean energy technologies advance, electrocatalysis has become a focal point as a critical conversion pathway in the new energy sector. Transitional metal electrocatalysts (TMEs) with their distinctive electronic structures and redox properties show great potential in electrocatalytic reactions. However, complex reaction mechanisms and kinetic limitations hinder the improvement of energy conversion efficiency, highlighting the necessity for comprehensive studies on structure and performance of electrocatalysts. X-ray Absorption Fine Structure (XAFS) spectra stand out as a robust tool for examining the electrocatalyst's structures and performance due to its atomic selectivity and sensitivity to local environments. This review delves into the application of XAFS technology in characterizing TMEs, providing in-depth analyses of X-ray Absorption Near-Edge Structure (XANES) spectra, and Extended XAFS (EXAFS) spectra in both R-space and k-space. These analyses reveal intrinsic structural information, electronic interactions, catalyst stability, and aggregation morphology. Furthermore, the paper examines advancements in in-situ XAFS techniques for real-time monitoring of active site changes, capturing critical intermediate and transitional states, and elucidating the evolution of active species during electrocatalytic reactions. These insights deepen our understanding on structure-activity relationship of electrocatalysts and offer valuable guidance for designing and developing highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Wen Cheng
- Center for Instrumental Analysis, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Peng Fan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
7
|
Liu X, Zhu YQ, Li J, Wang Y, Shi Q, Li AZ, Ji K, Wang X, Zhao X, Zheng J, Duan H. Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window. Nat Commun 2024; 15:7685. [PMID: 39227577 PMCID: PMC11372150 DOI: 10.1038/s41467-024-51951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Electrosynthesis of adipic acid (a precursor for nylon-66) from KA oil (a mixture of cyclohexanone and cyclohexanol) represents a sustainable strategy to replace conventional method that requires harsh conditions. However, its industrial possibility is greatly restricted by the low current density and competitive oxygen evolution reaction. Herein, we modify nickel layered double hydroxide with vanadium to promote current density and maintain high faradaic efficiency (>80%) within a wide potential window (1.5 ~ 1.9 V vs. reversible hydrogen electrode). Experimental and theoretical studies reveal two key roles of V modification, including accelerating catalyst reconstruction and strengthening cyclohexanone adsorption. As a proof-of-the-concept, we construct a membrane electrode assembly, producing adipic acid with high faradaic efficiency (82%) and productivity (1536 μmol cm-2 h-1) at industrially relevant current density (300 mA cm-2), while achieving >50 hours stability. This work demonstrates an efficient catalyst for adipic acid electrosynthesis with high productivity that shows industrial potential.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu-Quan Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, China
| | - Jing Li
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, China.
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Qiujin Shi
- Department of Chemistry, Tsinghua University, Beijing, China
| | - An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xi Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xikang Zhao
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing, China
| | - Jinyu Zheng
- Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Wang S, Yuan D, Sun S, Huang S, Wu Y, Zhang L, Dou SX, Liu HK, Dou Y, Xu J. Iron, Tungsten Dual-Doped Nickel Sulfide as Efficient Bifunctional Catalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311770. [PMID: 38794870 DOI: 10.1002/smll.202311770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.
Collapse
Affiliation(s)
- Sangni Wang
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China
| | - Ding Yuan
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihan Sun
- College of Artificial Intelligence and Software, Nanning University, Nanning, 530299, China
| | - Shuhan Huang
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China
| | - Yuheng Wu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China
| | - Lei Zhang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiantie Xu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Zhang X, Tong L, Shi X, Li Z, Xiao Z, Liu Y, Zhang T, Lin S. Tailoring atomically local electric field of NiFe layered double hydroxides with Ag dopants to boost oxygen evolution kinetics. J Colloid Interface Sci 2024; 668:502-511. [PMID: 38691960 DOI: 10.1016/j.jcis.2024.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
The demand for clean energy sources has driven focus towards advanced electrochemical systems. However, the sluggish kinetics of the oxygen evolution reaction (OER) constrain the energy conversion efficiency of relevant devices. Herein, a one-step method is reported to grow oxygen vacancies (Vo) rich NiFeAg layered double hydroxides nanoclusters on carbon cloth (Vo-NiFeAg-LDH/CC) for serving as the self-supporting electrode to catalyze OER. The OER performance of Vo-NiFeAg-LDH/CC has been remarkably enhanced through Ag and Vo co-modification compared with pristine NiFe-LDH, achieving a low Tafel slope of 49.7 mV dec-1 in 1 m KOH solution. Additionally, the current density of Vo-NiFeAg-LDH/CC is 3.23 times higher than that of the state-of-art IrO2 at 2 V under an alkaline flow electrolyzer setup. Theoretical calculations and experimental results collectively demonstrate that Ag dopant and Vo strengthen the O* adsorption with active sites, further promoting the deprotonation step from OH* to O* and accelerating the catalytic reaction. In a word, this work clarifies the structural correlation and synergistic mechanism of Ag dopant and Vo, providing valuable insights for the rational design of catalyst for renewable energy applications.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Li Tong
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Xiahui Shi
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Zhaosheng Li
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, PR China
| | - Zhaohui Xiao
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Yipu Liu
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Shiwei Lin
- School of Materials Science and Engineering, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
10
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Zhan G, Hu L, Li H, Dai J, Zhao L, Zheng Q, Zou X, Shi Y, Wang J, Hou W, Yao Y, Zhang L. Highly selective urea electrooxidation coupled with efficient hydrogen evolution. Nat Commun 2024; 15:5918. [PMID: 39004672 PMCID: PMC11247087 DOI: 10.1038/s41467-024-50343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.
Collapse
Affiliation(s)
- Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lufa Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
12
|
Shi L, Zhang Q, Yang S, Ren P, Wu Y, Liu S. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities. SMALL METHODS 2024; 8:e2301219. [PMID: 38180156 DOI: 10.1002/smtd.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Qihan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Peidong Ren
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| |
Collapse
|
13
|
Qiu Y, Zhang Y, Yu M, Li X, Wang Y, Ma Z, Liu S. Ni─Co─O─S Derived Catalysts on Hierarchical N-doped Carbon Supports with Strong Interfacial Interactions for Improved Hybrid Water Splitting Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310087. [PMID: 38530052 DOI: 10.1002/smll.202310087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Indexed: 03/27/2024]
Abstract
Simultaneously improving electrochemical activity and stability is a long-term goal for water splitting. Herein, hierarchical N-doped carbon nanotubes on carbon nanowires derived from PPy are grown on carbon cloth, serving as a support for NiCo oxides/sulfides. The hierarchical electrodes annealed in N2 or H2/N2 display improved intrinsic activity and stability for hydrogen evolution reaction (HER) and glucose oxidation reaction. Compared with Pt/C||Ir/C in alkaline media, the glucose electrolysis assembled with electrodes exhibits a cell voltage of 1.38 V at 10 mA cm-2, durability for >12 h at 50 mA cm-2, and resistance to glucose/gluconic acid poisoning. In addition, electrocatalysts can also be applied in ethanol oxidation reactions. Systematic characterizations reveal the strong interactions between NiCo and N-doped carbon support-induced partial charge transfer at the interface and regulate the local electronic structure of active sites. Density functional theory calculations demonstrate that the synergistic effect between N-doped carbon supports, metallic NiCo, and NiCo oxides/sulfides optimize the adsorption energy of H2O and the H* free energy for HER. The energy barrier of the dehydrogenation of glucose effectively decreased. This work will attract attention to the role of metal-support interactions in enhancing the intrinsic activity and stability of electrocatalysts.
Collapse
Affiliation(s)
- Yunfeng Qiu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Yongxia Zhang
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Miao Yu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Xinyi Li
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Yanxia Wang
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, 150001, China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin, 150080, China
| |
Collapse
|
14
|
Shi N, Ma R, Lin L, Xie W, Liu P, Li P, Fan H, Tang Y, Wang Y, Lin S, Huang X. In-Situ Derived Defective Ru Particles Anchored on Ru-Ni Layered Double Hydroxides for Enhanced Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311076. [PMID: 38279579 DOI: 10.1002/smll.202311076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Developing active, stable, and cost-efficient electrocatalysts to replace platinum for the alkaline hydrogen evolution reaction (HER) is highly desirable yet represents a great challenge. Here, it is reported on a facile one-pot synthesis of RuxNi layered double hydroxides (RuxNi-LDHs) that exhibit remarkable HER activity and stability after an in-situ activation treatment, surpassing most state-of-the-art Ru-based catalysts as well as commercial Ru/C and Pt/C catalysts. The structural and chemical changes triggered by in-situ activation are systematically investigated, and the results clearly show that the pristine, less-active RuxNi-LDHs are transformed into a highly active catalyst characterized by raft-like, defect-rich Ru° particles decorated on the surface of RuxNi-LDHs. Density functional theory (DFT) calculations reveal that the defective Ru sites can effectively optimize the reaction pathway and lower the free energies of the elemental steps involved, leading to enhanced intrinsic activity. This work highlights the importance of the currently understudied strategy of defect engineering in boosting the HER activity of Ru-based catalysts and offers an effective approach involving in-situ electrochemical activation for the development of high-performance alkaline HER catalysts.
Collapse
Affiliation(s)
- Ningning Shi
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Ruijie Ma
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wangjing Xie
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Panpan Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Peng Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hua Fan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yu Tang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanqing Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Sen Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xing Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
15
|
Zhang H, Chen HC, Feizpoor S, Li L, Zhang X, Xu X, Zhuang Z, Li Z, Hu W, Snyders R, Wang D, Wang C. Tailoring Oxygen Reduction Reaction Kinetics of Fe-N-C Catalyst via Spin Manipulation for Efficient Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400523. [PMID: 38594481 DOI: 10.1002/adma.202400523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The interaction between oxygen species and metal sites of various orbitals exhibits intimate correlation with the oxygen reduction reaction (ORR) kinetics. Herein, a new approach for boosting the inherent ORR activity of atomically dispersed Fe-N-C matrix is represented by implanting Fe atomic clusters nearby. The as-prepared catalyst delivers excellent ORR activity with half-wave potentials of 0.78 and 0.90 V in acidic and alkaline solutions, respectively. The decent ORR activity can also be validated from the high-performance rechargeable Zn-air battery. The experiments and density functional theory calculations reveal that the electron spin-state of monodispersed Fe active sites is transferred from the low spin (LS, t2g 6 eg 0) to the medium spin (MS, t2g 5 eg 1) due to the involvement of Fe atomic clusters, leading to the spin electron filling in σ∗ orbit, by which it favors OH- desorption and in turn boosts the reaction kinetics of the rate-determining step. This work paves a solid way for rational design of high-performance Fe-based single atom catalysts through spin manipulation.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Solmaz Feizpoor
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Wenyu Hu
- Department of Physics, Southern University of Science and Technology, ShenZhen, 518055, P. R. China
| | - Rony Snyders
- Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, 7000 Mons, Belgium; Materia Nova Research Center, Mons, B-7000, Belgium
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
16
|
Chu YC, Chen KH, Tung CW, Chen HC, Wang J, Kuo TR, Hsu CS, Lin KH, Tsai LD, Chen HM. Dynamic (Sub)surface-Oxygen Enables Highly Efficient Carbonyl-Coupling for Electrochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400640. [PMID: 38621196 DOI: 10.1002/adma.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.
Collapse
Affiliation(s)
- You-Chiuan Chu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Hsu Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Wei Tung
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei, 24301, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Tecnhologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuo-Hsin Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Li Duan Tsai
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| |
Collapse
|
17
|
Guo X, Li J, Meng F, Qin D, Wu X, Lv Y, Guo J. Ru nanoparticles modified Ni 3Se 4/Ni(OH) 2 heterostructure nanosheets: A fast kinetics boosted bifunctional overall water splitting electrocatalyst. J Colloid Interface Sci 2024; 663:847-855. [PMID: 38447399 DOI: 10.1016/j.jcis.2024.02.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Properly design and manufacture of bifunctional electrocatalysts with superb performance and endurance are crucial for overall water splitting. The interfacial engineering strategy is acknowledged as a promising approach to enhance catalytic performance of overall water splitting catalysts. Herein, the Ru nanoparticles modified Ni3Se4/Ni(OH)2 heterostructured nanosheets catalyst was constructed using a simple two-step hydrothermal process. The experimental results demonstrate that the abundant heterointerfaces between Ru and Ni3Se4/Ni(OH)2 can increase the number of active sites and effectively regulate the electronic structure, greatly accelerating the kinetics of the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER). As a result, the Ru/Ni3Se4/Ni(OH)2/NF catalyst exhibits the low overpotential of 102.8 mV and 334.5 mV at 100 mA cm-2 for HER and OER in alkaline medium, respectively. Furthermore, a two-electrode system composed of the Ru/Ni3Se4/Ni(OH)2/NF requires a battery voltage of just 1.51 V at 10 mA cm-2 and remains stable for 200 h at 500 mA cm-2. This work provides an effective strategy for constructing Ru-based heterostructured catalysts with excellent catalytic activity.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaxin Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fanze Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Dongdong Qin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
18
|
Ding S, Zheng B, Wang X, Zhou Y, Pan Z, Chen Y, Liu G, Lang L. Intercalated and Surface-Adsorbed Phosphate Anions in NiFe Layered Double-Hydroxide Catalysts Synergistically Enhancing Oxygen Evolution Reaction Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10384-10392. [PMID: 38698714 DOI: 10.1021/acs.langmuir.4c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The oxygen evolution reaction (OER), a crucial semireaction in water electrolysis and rechargeable metal-air batteries, is vital for carbon neutrality. Hindered by a slow proton-coupled electron transfer, an efficient catalyst activating the formation of an O-H bond is essential. Here, we proposed a straightforward one-step hydrothermal procedure for fabricating PO43--modified NiFe layered double-hydroxide (NiFe LDH) catalysts and investigated the role of PO43- anions in enhancing OER. Phosphate amounts can efficiently regulate LDH morphology, crystallinity, composition, and electronic configuration. The optimized sample showed a low overpotential of 267 mV at 10 mA cm-2. Density functional theory calculations revealed that intercalated and surface-adsorbed PO43- anions in NiFe LDH reduced the Gibbs free energy in the rate-determining step of *OOH formation, balancing oxygen-containing intermediate adsorption/dissociation and promoting the OER. Intercalated phosphate ions accelerated precatalyst dehydrogenation kinetics, leading to a rapid reconstruction into active NiFe oxyhydroxide species. Surface-adsorbed PO43- interacted favorably with adsorbed *OOH on the active Ni sites, stabilizing *OOH. Overall, the synergistic effects of intercalated and surface-adsorbed PO43- anions significantly contributed to enhanced OER activity. Achieving optimal catalytic activity requires a delicate equilibrium between thermodynamic and kinetic factors by meticulously regulating the quantity of introduced PO43- ions. This endeavor will facilitate a deeper comprehension of the influence of anions in electrocatalysis for OER.
Collapse
Affiliation(s)
- Shiqing Ding
- College of Traffic Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Bo Zheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yue Zhou
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhaorui Pan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Leiming Lang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
19
|
Gao Y, Xue Y, Wu H, Chen S, Zheng X, Xing C, Li Y. Self-Organized Gradually Single-Atom-Layer of Metal Osmium for an Unprecedented Hydrogen Production from Seawater. J Am Chem Soc 2024; 146:10573-10580. [PMID: 38567542 DOI: 10.1021/jacs.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Atomic thick two-dimensional (2D) materials with exciting physical, chemical, and electronic properties are gaining increasing attention in next-generation science and technology, showing great promise in catalysis and energy science. However, the precise design and synthesis of efficient catalytic systems based on such materials still face many difficulties, especially in how to control the preparation of structurally determined, highly active, atomic-scale distribution of material systems. Here, we report that a highly active zerovalent osmium single-atom-layer with a thickness of single atom size has been successfully and controllably self-organized on the surface of 2D graphdiyne (GDY) material. Detailed characterizations showed that the incomplete charge transfer effect between the Os atoms and GDY not only stabilized the catalytic system but also improved the intrinsic activity, making the Gibbs free energy reach the best and resulting in remarkable performance with a small overpotential of 49 mV at 500 mA cm-2, large specific j0 of 18.6 mA cm-2, and turnover frequency of 3.89 H2 s-1 at 50 mV. In addition, the formation of sp-C-Os bonds guarantees the high long-term stability of 800 h at a large current density of 500 mA cm-2 in alkaline simulated seawater.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Xing
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
21
|
Zhang T, Jiang J, Sun W, Gong S, Liu X, Tian Y, Wang D. Spatial configuration of Fe-Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction. Proc Natl Acad Sci U S A 2024; 121:e2317247121. [PMID: 38294936 PMCID: PMC10861885 DOI: 10.1073/pnas.2317247121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.
Collapse
Affiliation(s)
- Taiyan Zhang
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Jingjing Jiang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Wenming Sun
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Shuyan Gong
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Yang Tian
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| |
Collapse
|
22
|
Zhang X, Valencia A, Li W, Ao K, Shi J, Yue X, Zhang R, Daoud WA. Decoupling Activation and Transport by Electron-Regulated Atomic-Bi Harnessed Surface-to-Pore Interface for Vanadium Redox Flow Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305415. [PMID: 37607471 DOI: 10.1002/adma.202305415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Vanadium redox flow battery (VRFB) promises a route to low-cost and grid-scale electricity storage using renewable energy resources. However, the interplay of mass transport and activation processes of high-loading catalysts makes it challenging to drive high-performance density VRFB. Herein, a surface-to-pore interface design that unlocks the potential of atomic-Bi-exposed catalytic surface via decoupling activation and transport is reported. The functional interface accommodates electron-regulated atomic-Bi catalyst in an asymmetric Bi─O─Mn structure that expedites the V3+ /V2+ conversion, and a mesoporous Mn3 O4 sub-scaffold for rapid shuttling of redox-active species, whereby the site accessibility is maximized, contrary to conventional transport-limited catalysts. By in situ grafting this interface onto micron-porous carbon felt (Bi1 -sMn3 O4 -CF), a high-performance flow battery is achieved, yielding a record high energy efficiency of 76.72% even at a high current density of 400 mA cm-2 and a peak power density of 1.503 W cm-2 , outdoing the battery with sMn3 O4 -CF (62.60%, 0.978 W cm-2 ) without Bi catalyst. Moreover, this battery renders extraordinary durability of over 1500 cycles, bespeaking a crucial breakthrough toward sustainable redox flow batteries (RFBs).
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Weilu Li
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Kelong Ao
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Jihong Shi
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Xian Yue
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
23
|
Wei J, Tang H, Sheng L, Wang R, Fan M, Wan J, Wu Y, Zhang Z, Zhou S, Zeng J. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat Commun 2024; 15:559. [PMID: 38228626 PMCID: PMC10792023 DOI: 10.1038/s41467-024-44815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
The metal-support interactions (MSI) could greatly determine the electronic properties of single-atom catalysts, thus affecting the catalytic performance. However, the typical approach to regulating MSI usually suffers from interference of the variation of supports or sacrificing the stability of catalysts. Here, we effectively regulate the site-specific MSI of Ir single atoms anchored on Ni layered double hydroxide through an electrochemical deposition strategy. Cathodic deposition drives Ir atoms to locate at three-fold facial center cubic hollow sites with strong MSI, while anodic deposition drives Ir atoms to deposit onto oxygen vacancy sites with weak MSI. The mass activity and intrinsic activity of Ir single-atom catalysts with strong MSI towards oxygen evolution reaction are 19.5 and 5.2 times that with weak MSI, respectively. Mechanism study reveals that the strong MSI between Ir atoms and the support stimulates the activity of Ir sites by inducing the switch of active sites from Ni sites to Ir sites and optimizes the adsorption strength of intermediates, thereby enhancing the activity.
Collapse
Grants
- U19A2015, 22221003, 22250007 National Natural Science Foundation of China (National Science Foundation of China)
- 22302184 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2021YFA1500500 and 2019YFA0405600), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), Fundamental Research Funds for the Central Universities, K. C. Wong Education (GJTD-2020-15), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), the DNL Cooperation Fund, CAS (DNL202003), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC)
- the Anhui Natural Science Foundation for Young Scholars (2208085QB41), the Fellowship of China Postdoctoral Science Foundation (2021M693058)
Collapse
Affiliation(s)
- Jie Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hua Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Li Sheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jiale Wan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yuheng Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
- Institute of Advanced Technology, University of Science and Technology of China, 230031, Hefei, Anhui, P. R. China.
| |
Collapse
|
24
|
Yu H, Hu M, Chen C, Hu C, Li Q, Hu F, Peng S, Ma J. Ambient γ-Rays-Mediated Noble-Metal Deposition on Defect-Rich Manganese Oxide for Glycerol-Assisted H 2 Evolution at Industrial-Level Current Density. Angew Chem Int Ed Engl 2023; 62:e202314569. [PMID: 37942995 DOI: 10.1002/anie.202314569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Developing novel synthesis technologies is crucial to expanding bifunctional electrocatalysts for energy-saving hydrogen production. Herein, we report an ambient and controllable γ-ray radiation reduction to synthesize a series of noble metal nanoparticles anchored on defect-rich manganese oxides (M@MnO2-x , M=Ru, Pt, Pd, Ir) for glycerol-assisted H2 evolution. Benefiting from the strong penetrability of γ-rays, nanoparticles and defect supports are formed simultaneously and bridged by metal-oxygen bonds, guaranteeing structural stability and active site exposure. The special Ru-O-Mn bonds activate the Ru and Mn sites in Ru@MnO2-x through strong interfacial coordination, driving glycerol electrolysis at low overpotential. Furthermore, only a low cell voltage of 1.68 V is required to achieve 0.5 A cm-2 in a continuous-flow electrolyzer system along with excellent stability. In situ spectroscopic analysis reveals that the strong interfacial coordination in Ru@MnO2-x balances the competitive adsorption of glycerol and OH* on the catalyst surface. Theoretical calculations further demonstrate that the defect-rich MnO2 support promotes the dissociation of H2 O, while the defect-regulated Ru sites promote deprotonation and hydrogen desorption, synergistically enhancing glycerol-assisted hydrogen production.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Mengyu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Changjiang Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qiuhao Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
25
|
Kuo TR, Zher Yu Y, Wu CH, Lee PY, Kongvarhodom C, Chen HM, Husain S, Yougbaré S, Lin LY. Systematic designs of single metal compounds synthesized using ammonia fluoride-based complex as structure directing agents for energy storage. J Colloid Interface Sci 2023; 652:294-304. [PMID: 37597411 DOI: 10.1016/j.jcis.2023.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Tailoring morphology and composition of metal organic frameworks (MOF) can improve energy storage by establishing high surface area, large porosity and multiple redox states. Structure directing agents (SDA) is functional of designing surface properties of electroactive materials. Ammonium fluoride has functional abilities for designing MOF derivatives with excellent energy storage abilities. Systematic design of MOF derivatives using ammonia fluoride-based complex as SDA can essentially create efficient electroactive materials. Metal species can also play significant roles on redox reactions, which are the main energy storage mechanism for battery-type electrodes. In this work, 2-methylimidazole, two novel SDAs of NH4BF4 and NH4HF2, and six metal species of Al, Mn, Co, Ni, Cu and Zn are coupled to synthesize MOF derivatives for energy storage. Metal species-dependent compositions including hydroxides, oxides, and hydroxide nitrates are observed. The nickel-based derivative (Ni-HBF) shows the highest specific capacitance (CF) of 698.0F/g at 20 mV/s, due to multiple redox states and advanced flower-like surface properties. The diffusion and capacitive-control contributions of MOF derivatives are also analyzed. The battery supercapacitor hybrid with Ni-HBF electrode shows a maximum energy density of 27.9 Wh/kg at 325 W/kg. The CF retention of 170.9% and Coulombic efficiency of 93.2% are achieved after 10,000 cycles.
Collapse
Affiliation(s)
- Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - You Zher Yu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Hsien Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Pin-Yan Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chutima Kongvarhodom
- Department of Chemical Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand
| | - Hung-Ming Chen
- Gingen technology Co., LTD., Rm. 7, 10F., No.189, Sec. 2, Keelung Rd., Xinyi Dist., Taipei 11054, Taiwan
| | - Sadang Husain
- Department of Physics, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarmasin 70124, Indonesia
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
26
|
Luo YH, Fu HC, Chen XH, Wang BJ, Yang B, Li NB, Luo HQ. Modulating adsorption energy on nickel nitride-supported ruthenium nanoparticles through in-situ electrochemical activation for urea-assisted alkaline hydrogen production. J Colloid Interface Sci 2023; 652:1665-1672. [PMID: 37666198 DOI: 10.1016/j.jcis.2023.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The rational design of electrocatalysts with exceptional performance and durability for hydrogen production in alkaline medium is a formidable challenge. In this study, we have developed in-situ activated ruthenium nanoparticles dispersed on Ni3N nanosheets, forming a bifunctional electrocatalyst for hydrogen evolution and urea oxidation. The results of experimental analysis and theoretical calculations reveal that the enhanced hydrogen evolution reaction (HER) performance of O-Ru-Ni3N stems primarily from the optimized hydrogen adsorption and hydroxyl adsorption on Ru sites. The O-Ru-Ni3N on nickel foam (NF) electrode exhibits excellent HER performance, requiring only 29 mV to reach 10 mA cm-2 in an alkaline medium. Notably, when this O-Ru-Ni3N/NF catalyst is employed for both HER and urea oxidation reaction (UOR) to create an integrated H2 production system, a current density of 50 mA cm-2 can be generated at the cell voltage of 1.41 V. This report introduces an energy-efficient catalyst for hydrogen production and proposes a viable strategy for anodic activation in energy chemistry.
Collapse
Affiliation(s)
- Yuan Hao Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bing Jie Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bo Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
27
|
Gao B, Yang X, Fan X, Gui Z, Zhang W, Jia Y, Wang S, Zhang Y, Gao Q, Tang Y. Activating Commercial Nickel Foam to a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction through a Three-Step Surface Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044574 DOI: 10.1021/acsami.3c14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
It is highly desired to directly use commercial nickel foam (CNF) as an electrocatalyst for the oxygen evolution reaction (OER) via simple surface reconstruction. In our research, a simple three-step preactivation process was proposed to reconstruct CNF as an efficient OER catalyst, including calcination, high-voltage treatment, and immersing in electrolyte. The optimal CNF after three-step activation reaches an excellent OER performance of 228 and 267 mV at η10 and η100 in alkaline media and can tolerate long-term tests under a large current density of 500 mA·cm-2. The promotion of each step was explored. The calcination step leads to a reconstructive surficial morphology with an enlarged active surface, providing a prerequisite for the following construction steps. The high-voltage treatment changes the valence of surface Ni species, generating phases with higher catalytic activity, and the immersing process introduces Fe heteroatoms into the surface of CNF, boosting the catalytic performance of CNF through Ni-Fe interactions. This research provides a simple method of making high-performance catalysts with accessible nickel foam, a potential for large-scale application in practical industry, and new thinking for the manipulation of Ni-based catalysts.
Collapse
Affiliation(s)
- Boxu Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Xue Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Xueliang Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhuxin Gui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wenbiao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Sinong Wang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Tan HY, Lin SC, Wang J, Chen JH, Chang CJ, Hou CH, Shyue JJ, Kuo TR, Chen HM. Reversibly Adapting Configuration in Atomic Catalysts Enables Efficient Oxygen Electroreduction. J Am Chem Soc 2023. [PMID: 38040669 DOI: 10.1021/jacs.3c10707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Single-atom catalysts (SACs) featuring M-N-C moieties have garnered significant attention as efficient electrocatalysts for the oxygen reduction reaction (ORR). However, the role of the dynamic M-N configuration of SACs induced by the derived frameworks under applied ORR potentials remains poorly understood. Herein, we conduct a comprehensive investigation using multiple operando techniques to assess the dynamic configurations of Cu SACs under various microstructural interface (MSI) regulations by anchoring atomic Cu on g-C3N4 and zeolitic imidazolate framework (ZIF) substrates. Cu SACs supported on g-C3N4 exhibit symmetric Cu-N configurations characterized by a reversibly adaptive nature under operational conditions, which leads to their excellent ORR catalytic activity. In contrast, the Cu-N configuration in ZIF-derived Cu SACs undergoes irreversible structural changes during the ORR process, in which the elongated Cu-N pair is unstable and breaks during the ORR, acting as a competing reaction against the ORR and resulting in high overpotential requirements. Crucially, operando time-resolved X-ray absorption spectroscopy (TR-XAS) and Raman results unequivocally reveal the reversibly adapting properties of the local Cu-N configuration in atomic Cu-anchored g-C3N4, which have been overlooked in numerous literatures. All findings provide valuable insights into the potential-driven characteristics of atomic electrocatalysts during target reactions and offer a systematic approach to study atomic electrocatalysts and their corresponding catalytic behaviors.
Collapse
Affiliation(s)
- Hui-Ying Tan
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Chih Lin
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Jui-Hsien Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Jui Chang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
29
|
Zhang B, Qiu S, Xing Y, Zhao G, Liao W, Mu L, Zhao N. Introduction of Cationic Vacancies into NiFe LDH by In Situ Etching To Improve Overall Water Splitting Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38019648 DOI: 10.1021/acs.langmuir.3c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nickel-iron layered double hydroxide (NiFe LDH) is still one of the hot catalysts for electrochemical water decomposition applications, despite its drawbacks, such as intrinsic activity and poor stability. In this work, the NiFe LDH-D1 electrocatalyst with cationic vacancies is successfully prepared by alkaline etching of Zn ion-doped NiFe LDH. The tightly arranged flocculated nanosheet structure on its surface provided a large active area. The cationic vacancies formed by strong alkaline etching not only promote the conversion of active phases such as NiOOH but also strengthen the stability of the electrode and the binding ability with oxygen so that the material has excellent catalytic properties along with alkaline long-term stability. At a current density of 10 and 100 mA cm-2, NiFe LDH-D1 shows a small voltage of 1.56 and 1.94 V, and at a current density of 200 mA cm-2, it performs well in a 72 h electrochemical water decomposition stability test. The present work demonstrates a simple etching strategy for cation vacancy engineering and provides an example of the construction of efficient bifunctional electrocatalysts with long-term stability.
Collapse
Affiliation(s)
- Baojie Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Shipeng Qiu
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yupeng Xing
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Gang Zhao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410017, PR China
| | - Wenbo Liao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Lan Mu
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Ning Zhao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
30
|
Li R, Chen L, Zhang H, Humayun M, Duan J, Xu X, Fu Y, Bououdina M, Wang C. Exceptional green hydrogen production performance of a ruthenium-modulated nickel selenide. NANOSCALE 2023. [PMID: 38018426 DOI: 10.1039/d3nr04454h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Developing low-cost, high-efficiency and stable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is crucial but highly challenging. Density functional theory (DFT) calculations reveal that doping ruthenium (Ru) into catalysts can effectively optimize their electronic structure, hence leading to an optimal Gibbs free energy on the catalyst surface. Herein, an ultra-low Ru (about 2.34 wt%)-doped Ni3Se2 nanowire catalyst (i.e., Ru/Ni3Se2) supported on nickel foam has been fabricated by a hydrothermal reaction followed by a chemical etching process. The unique three-dimensional (3D) interconnected nanowires not only endow Ru and Ni3Se2 with uniform distribution and coupling, but also provide higher electrical conductivity, more active sites, an optimized electronic structure and favorable reaction kinetics. Therefore, the as-obtained Ru/Ni3Se2 catalyst exhibits excellent electrocatalytic performance, with low overpotentials of 24 and 211 mV to supply a current density value of 10 mA cm-2 towards the HER and OER in an alkaline environment, respectively. Notably, the as-fabricated Ru/Ni3Se2 catalyst only requires a low voltage of 1.476 V to derive a current density of 10 mA cm-2 in the constructed two-electrode alkaline electrolyzer and exhibits exceptionally high stability. This work will provide a novel strategy for the design and fabrication of low-cost and high-performance bifunctional electrocatalysts for hydrogen production by water electrolysis.
Collapse
Affiliation(s)
- Rong Li
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Huaming Zhang
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Muhammad Humayun
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Junhong Duan
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanjun Fu
- Jiangxi Province Key Laboratory of Optoelectronic Information Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China.
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
| |
Collapse
|
31
|
Xian J, Huang J, Bai R, Xue J, Fu Z, Ouyang H. Layer Growth Inhibiting Strategy for Superior-Loading Atomic Metal Sites on Ultrathin Layered Double Hydroxides as the Efficient Chemiluminescence Probes. Anal Chem 2023. [PMID: 38016786 DOI: 10.1021/acs.analchem.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Owing to the remarkable catalytic attributes, single-atom catalysts (SACs) have exhibited promising application prospects as the substitutes of natural enzymes. However, the low loading amount of atomic sites on typical SACs (no more than 5 wt %) significantly restricts their increased capability. Hereby, a layer growth inhibitor protocol was attempted to optimize anchoring isolated Co atoms efficiently on ultrathin monolayer layered double hydroxides (LDHs). Superior to the conventional multiple-layer LDHs, the synthesized monolayer LDHs (7.29 nm-thick) served as the emerging support for dispersing substantial active sites and featured a dramatic loading content of 32.5 wt %. Through X-ray absorption spectroscopy, the atomically dispersed active centers on Co SACs were verified as Co-N4 moieties. The results of radical scavenger experiments and electron paramagnetic resonance spectroscopy showed that Co SACs were favorable to the high yield of reactive oxygen species originating from the decomposition of H2O2. Therefore, Co SACs functioned as a sensitive enhancer to drastically boost the luminol-H2O2 chemiluminescence intensity by ∼4713-fold, which excelled drastically over these previously reported SACs. Furthermore, Co SACs were adopted as chemiluminescent probes for the quantitation of chlorothalonil, wherein a low detection limit of 49 pg mL-1 (3σ) was achieved. Additionally, the successful application in recovery trials demonstrated the favorable feasibility of Co SACs. The facile layer growth inhibitor protocol affords SACs with improved loading properties and even superior catalytic performances for sensitive luminescent bioassays.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ruining Bai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
32
|
Li J, Chen Y, He S, Yang Y, Zheng C, Wang Y, Guo L. In-situ synthesis of porous Na 3V 2(PO 4) 3 with stable VOC bridge bonding by hard template method. J Colloid Interface Sci 2023; 650:1476-1489. [PMID: 37481785 DOI: 10.1016/j.jcis.2023.07.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Low electronic conductivity and poor properties at high rate have hindered the application of Na3V2(PO4)3 (NVP). Herein, a facile synthesis of NVP with porous carbon skeleton is proposed. Specifically, Na2CO3 and glucose, acting as hard templates, are introduced to the precursors after initial firing stage, and Na2CO3 particles are removed by flushing after the final heatment. Due to the thermal conductivity of Na2CO3, the secondary addition of glucose can generate distinctive graphitized porous carbon skeleton, which bonds well with the amorphous carbon coating to construct stable and conductive network. The porous construction can alleviate the stress and strain caused by the current impact through deformation. Furthermore, ex-situ EIS reveals the highly conductive carbon skeleton can significantly reduce the surface resistance and result in an increase of effective voltage to promote the de-intercalation of Na+. Moreover, the ex-situ X-ray photoelectron spectroscopy (XPS) at different potentials confirms the stabilized existence of VOC bonds. Benefiting from the unique carbon skeleton, the PC-NVP releases capacity of 116.9 mAh g-1 at 0.1C. Even at 120C, PC-NVP still exhibits a high capacity of 84.7 mAh g-1, retaining a value of 41.3 mAh g-1 after 16,000 cycles, corresponding to a low decay rate of 0.0032% per cycle.
Collapse
Affiliation(s)
- Jiahao Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China
| | - Yanjun Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China.
| | - Shengnan He
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Yaxiong Yang
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Chao Zheng
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China
| | - Li Guo
- Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China.
| |
Collapse
|
33
|
Liu G, Nie T, Song Z, Sun X, Shen T, Bai S, Zheng L, Song YF. Pd Loaded NiCo Hydroxides for Biomass Electrooxidation: Understanding the Synergistic Effect of Proton Deintercalation and Adsorption Kinetics. Angew Chem Int Ed Engl 2023; 62:e202311696. [PMID: 37711060 DOI: 10.1002/anie.202311696] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The key issue in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) is to understand the synergistic mechanism involving the protons deintercalation of catalyst and the adsorption of the substrate. In this study, a Pd/NiCo catalyst was fabricated by modifying Pd clusters onto a Co-doped Ni(OH)2 support, in which the introduction of Co induced lattice distortion and optimized the energy band structure of Ni sites, while the Pd clusters with an average size of 1.96 nm exhibited electronic interactions with NiCo support, resulting in electron transfer from Pd to Ni sites. The resulting Pd/NiCo exhibited low onset potential of 1.32 V and achieved a current density of 50 mA/cm2 at only 1.38 V. Compared to unmodified Ni(OH)2 , the Pd/NiCo achieved an 8.3-fold increase in peak current density. DFT calculations and in situ XAFS revealed that the Co sites affected the conformation and band structure of neighboring Ni sites through CoO6 octahedral distortion, reducing the proton deintercalation potential of Pd/NiCo and promoting the production of Ni3+ -O active species accordingly. The involvement of Pd decreased the electronic transfer impedance, and thereby accelerated Ni3+ -O formation. Moreover, the Pd clusters enhanced the adsorption of HMF through orbital hybridization, kinetically promoting the contact and reaction of HMF with Ni3+ -O.
Collapse
Affiliation(s)
- Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Tianqi Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
34
|
Chen Y, Lin J, Pan Q, Liu X, Ma T, Wang X. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306469. [PMID: 37312248 DOI: 10.1002/anie.202306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Dual-atom catalysts (DACs) have been a new frontier in heterogeneous catalysis due to their unique intrinsic properties. The synergy between dual atoms provides flexible active sites, promising to enhance performance and even catalyze more complex reactions. However, precisely regulating active site structure and uncovering dual-atom metal interaction remain grand challenges. In this review, we clarify the significance of the inter-metal interaction of DACs based on the understanding of active center structures. Three diatomic configurations are elaborated, including isolated dual single-atom, N/O-bridged dual-atom, and direct dual-metal bonding interaction. Subsequently, the up-to-date progress in heterogeneous oxidation reactions, hydrogenation/dehydrogenation reactions, electrocatalytic reactions, and photocatalytic reactions are summarized. The structure-activity relationship between DACs and catalytic performance is then discussed at an atomic level. Finally, the challenges and future directions to engineer the structure of DACs are discussed. This review will offer new prospects for the rational design of efficient DACs toward heterogeneous catalysis.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qin Pan
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xu Liu
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3122, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
35
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Zhu Y, Fan K, Hsu CS, Chen G, Chen C, Liu T, Lin Z, She S, Li L, Zhou H, Zhu Y, Chen HM, Huang H. Supported Ruthenium Single-Atom and Clustered Catalysts Outperform Benchmark Pt for Alkaline Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301133. [PMID: 37029606 DOI: 10.1002/adma.202301133] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Guaranteeing satisfactory catalytic behavior while ensuring high metal utilization has become the problem that needs to be addressed when designing noble-metal-based catalysts for electrochemical reactions. Here, well-dispersed ruthenium (Ru) based clusters with adjacent Ru single atoms (SAs) on layered sodium cobalt oxide (Ru/NC) are demonstrated as a superb electrocatalyst for alkaline HER. The Ru/NC catalyst demonstrates an activity increase by a factor of two relative to the commercial Pt/C. Operando characterizations in conjunction with density functional theory (DFT) simulations uncover the origin of the superior activity and establish a structure-performance relationship, that is, under HER condition, the real active species are Ru SAs and metallic Ru clusters supported on the NC substrate. The excellent alkaline HER activity of the Ru/NC catalyst can be understood by a spatially decoupled water dissociation and hydrogen desorption mechanism, where the NC substrate accelerates the water dissociation rate, and the generated H intermediates would then migrate to the Ru SAs or clusters and recombine to have H2 evolution. More importantly, comparing the two forms of Ru sites, it is the Ru cluster that dominates the HER activity.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ke Fan
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chia-Shuo Hsu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Gao Chen
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Changsheng Chen
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Tiancheng Liu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zezhou Lin
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Sixuan She
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liuqing Li
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hanmo Zhou
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ye Zhu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Haitao Huang
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
37
|
Ji SJ, Cao LW, Zhang P, Wang GB, Lu YR, Suen NT, Hung SF, Chen HM. Dealloying-Induced Zeolite-like Metal Framework of AB 2 Laves Phase Intermetallic Electrocatalysts. J Am Chem Soc 2023; 145:17892-17901. [PMID: 37482661 DOI: 10.1021/jacs.3c05287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Exploring an efficient and robust electrocatalyst for hydrogen evolution reaction (HER) at high pH and temperature holds the key to the industrial application of alkaline water electrolysis (AWE). Herein, we design an open tunnel structure by dealloying a series of Laves phase intermetallics, i.e., MCo2 and MRu0.25Co1.75 (M = Sc and Zr). The dealloying process can induce a zeolite-like metal framework for ScCo2 and ScRu0.25Co1.75 by stripping Sc metal from the center of a tunnel structure. This structural engineering significantly lowers their overpotentials at a current density of 500 mA/cm2 (η500) ca. 80 mV in 1.0 M KOH. Through a simple process, ScRu0.25Co1.75 can be easily decorated on a carbon cloth substrate and only requires 132 mV to reach 500 mA/cm2. More importantly it can maintain activity over 1000 h in industrial conditions (6.0 M KOH at 333 K), showing its potential for practical industrial applications.
Collapse
Affiliation(s)
- Shen-Jing Ji
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li-Wen Cao
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guan-Bo Wang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
38
|
An Q, Zhang X, Yang C, Su H, Zhou W, Liu M, Zhang X, Sun X, Bo S, Yu F, Jiang J, Zheng K, Liu Q. Engineering Unsymmetrically Coordinated Fe Sites via Heteroatom Pairs Synergetic Contribution for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304303. [PMID: 37566779 DOI: 10.1002/smll.202304303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Single-atom Fe catalysts are considered as the promising catalysts for oxygen reduction reaction (ORR). However, the high electronegativity of the symmetrical coordination N atoms around Fe site generally results in too strong adsorption of *OOH intermediates on the active site, severely limiting the catalytic performance. Herein, a "heteroatom pair synergetic modulation" strategy is proposed to tailor the coordination environment and spin state of Fe sites, enabling breaking the shackles of unsuitable adsorption of intermediate products on the active centers toward a more efficient ORR pathway. The unsymmetrically Co and B heteroatomic coordinated Fe single sites supported on an N-doped carbon (Fe─B─Co/NC) catalyst perform excellent ORR activity with high half-wave potential (E1/2 ) of 0.891 V and a large kinetic current density (Jk ) of 60.6 mA cm-2 , which is several times better than those of commercial Pt/C catalysts. By virtue of in situ electrochemical impedance and synchrotron infrared spectroscopy, it is observed that the optimized Fe sites can effectively accelerate the evolution of O2 into the *O intermediate, overcoming the sluggish O─O bond cleavage of the *OOH intermediate, which is responsible for fast four-electron reaction kinetics.
Collapse
Affiliation(s)
- Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xu Zhang
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiuxiu Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xuan Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Feifan Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | - Jingjing Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Kun Zheng
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
39
|
Wang WB, Cao HJ, Li GL. In Situ Charge Modification within Prussian Blue Analogue Nanocubes by Plasma for Oxygen Evolution Catalysis. Inorg Chem 2023. [PMID: 37339011 DOI: 10.1021/acs.inorgchem.3c00999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
A targeted defect-induced strategy of metal sites in a porous framework is an efficient avenue to improve the performance of a catalyst. However, achieving such an activation without destroying the ordered framework is a major challenge. Herein, a dielectric barrier discharge plasma can etch the Fe(CN)6 group of the NiFe Prussian blue analogue framework in situ through reactive oxygen species generated in the air. Density functional theory calculations prove that the changed local electronic structure and coordination environment of Fe sites can significantly improve oxygen evolution reaction catalytic properties. The modified NiFe Prussian blue analogue is featured for only 316 mV at a high current density (100 mA cm-2), which is comparable to that of commercial alkaline catalysts. In a solar cell-driven alkaline electrolyzer, the overall electrolysis efficiency is up to 64% under real operation conditions. Over 80 h long-time continuous test under 100 mA cm-2 highlights superior durability. The density functional theory calculations confirm that the formation of OOH* is the rate-determining step over Fe sites, and Fe(CN)6 vacancy and extra oxygen atoms can introduce charge redistribution to the catalyst surface, which finally enhances the oxygen evolution reaction catalytic properties by reducing the overpotential by 0.10 V. Both experimental and theoretical results suggest that plasma treatment strategy is useful for modifying the skeletal material nondestructively at room temperature, which opens up a broad prospect in the field of catalyst production.
Collapse
Affiliation(s)
- Wen-Bin Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hai-Jie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guo-Ling Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
Wang Y, Zhu X, Yang M, Ma H, Li R, Zhang J, Zhao Q, Ren J, Wang X, Yu H, Gao J, Hu M, Yang J. Fe Powder Catalytically Synthesized C 3N 3 toward High-Performance Anode Materials of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22051-22064. [PMID: 37104816 DOI: 10.1021/acsami.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, carbon nitrides and their carbon-based derivatives have been widely studied as anode materials of lithium-ion batteries due to their graphite-like structure and abundant nitrogen active sites. In this paper, a layered carbon nitride material C3N3 consisting of triazine rings with an ultrahigh theoretical specific capacity was designed and synthesized by an innovative method based on Fe powder-catalyzed carbon-carbon coupling polymerization of cyanuric chloride at 260 °C, with reference to the Ullmann reaction. The structural characterizations indicated that the as-synthesized material had a C/N ratio close to 1:1 and a layered structure and only contained one type of nitrogen, suggesting the successful synthesis of C3N3. When used as a lithium-ion battery anode, the C3N3 material showed a high reversible specific capacity up to 842.39 mAh g-1 at 0.1 A g-1, good rate capability, and excellent cycling stability attributed to abundant pyridine nitrogen active sites, large specific surface area, and good structure stability. Ex situ XPS results indicated that Li+ storage relies on the reversible transformation of -C=N- and -C-N- groups as well as the formation of bridge-connected -C=C- bonds. To further optimize the performance, the reaction temperature was further increased to synthesize a series of C3N3 derivatives for the enhanced specific surface area and conductivity. The resulting derivative prepared at 550 °C showed the best electrochemical performance, with an initial specific capacity close to 900 mAh g-1 at 0.1 A g-1 and good cycling stability (94.3% capacity retention after 500 cycles at 1 A g-1). This work will undoubtedly inspire the further study of high-capacity carbon nitride-based electrode materials for energy storage.
Collapse
Affiliation(s)
- Yan Wang
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiaoran Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Huige Ma
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianze Zhang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China
| | - Qian Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jiayi Ren
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jun Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| |
Collapse
|
41
|
Cheng Z, Tan Z, Zhou L, Li L, Xu X, Yuen MF, Li L, Pang Y, Debecker DP, Ma R, Wang C. Engineering Amorphous/Crystalline Ru(OH) 3/CoFe-Layered Double Hydroxide for Hydrogen Evolution at 1000 mA cm -2. Inorg Chem 2023; 62:7424-7433. [PMID: 37141089 DOI: 10.1021/acs.inorgchem.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For large-scale industrial applications, it is highly desirable to create effective, economical electrocatalysts with long-term stability for the hydrogen evolution reaction (HER) at a large current density. Herein, we report a unique motif with crystalline CoFe-layered hydroxide (CoFe-LDH) nanosheets enclosed by amorphous ruthenium hydroxide (a-Ru(OH)3/CoFe-LDH) to realize the efficient hydrogen production at 1000 mA cm-2, with a low overpotential of 178 mV in alkaline media. During the continuous HER process for 40 h at such a large current density, the potential remains almost constant with only slight fluctuations, indicating good long-term stability. The remarkable HER performance can be attributed to the charge redistribution caused by abundant oxygen vacancies in a-Ru(OH)3/CoFe-LDH. The increased electron density of states lowers the charge-transfer resistance and promotes the formation and release of H2 molecules. The water-splitting electrolyzer with a-Ru(OH)3/CoFe-LDH as both an anode and a cathode in 1.0 M KOH demonstrates stable hydrogen production and a 100% faradic efficiency. The design strategy of interface engineering in this work will inspire the design of practical electrocatalysts for water splitting on an industrial scale.
Collapse
Affiliation(s)
- Zhuoer Cheng
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar 843300, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
| | - Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R. China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Damien P Debecker
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Louvain-La-Neuve 1348, Belgium
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
42
|
Liu S, Tang Y, Guo C, Liu Y, Tang Z. Heterostructure of NiFe@NiCr-LDH for Active and Durable Oxygen Evolution Reactions in Alkaline Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2968. [PMID: 37109805 PMCID: PMC10142980 DOI: 10.3390/ma16082968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Developing cost-effective, efficient, and durable catalysts for oxygen evolution reactions (OER) is the key for promoting large-scale H2 production through electrochemical water splitting. Herein, we report a facile method for fabricating an NiFe@NiCr-LDH catalyst toward alkaline OER. The electronic microscopy technique revealed that it has a well-defined heterostructure at the interface between the NiFe and NiCr phases. In 1.0 M KOH, the as-prepared NiFe@NiCr-LDH catalyst shows excellent catalytic performance, evidenced by an overpotential of 266 mV at the current density of 10 mA cm-2 and a small Tafel slope of 63 mV dec-1; both are comparable with the RuO2 benchmark catalyst. It also exhibits robust durability in long-term operation, manifested by a 10% current decay in 20 h, which is superior to that of the RuO2 catalyst. Such excellent performance is attributed to the interfacial electron transfer that occurs at the interfaces of the heterostructure, and the Fe(III) species facilitate the formation of Ni(III) species as active sites in NiFe@NiCr-LDH. This study offers a feasible strategy for preparing a transition metal-based LDH catalyst for OER toward H2 production and other electrochemical energy technologies.
Collapse
Affiliation(s)
- Sanchuan Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yujun Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Hou Z, Cui C, Yang Y, Zhang T. Electrochemical Oxidation Encapsulated Ru Clusters Enable Robust Durability for Efficient Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207170. [PMID: 37021723 DOI: 10.1002/smll.202207170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical oxidization and thermodynamic instability agglomeration are a primary challenge in triggering metal-support interactions (MSIs) by immobilizing metal atoms on a carrier to achieve efficient oxygen evolution reactions (OER). Herein, Ru clusters anchored to the VS2 surface and the VS2 nanosheets embedded vertically in carbon cloth (Ru-VS2 @CC) are deliberately designed to realize high reactivity and exceptional durability. In situ Raman spectroscopy reveals that the Ru clusters are preferentially electro-oxidized to form RuO2 chainmail, both affording sufficient catalytic sites and protecting the internal Ru core with VS2 substrates for consistent MSIs. Theoretical calculations elucidate that electrons across the Ru/VS2 interface aggregate toward the electro-oxidized Ru clusters, while the electronic coupling of Ru 3p and O 2p orbitals boosts a positive shift in the Fermi energy level of Ru, optimizing the adsorption capacity of the intermediates and diminishing the migration barriers of the rate-determining steps. Therefore, the Ru-VS2 @CC catalyst demonstrated ultra-low overpotentials of 245 mV at 50 mA cm-2 , while the zinc-air battery maintained a narrow gap (0.62 V) after 470 h of reversible operation. This work has transformed the corrupt into the miraculous and paved a new way for the development of efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Xu Z, Jiang Y, Chen JL, Lin RYY. Heterostructured Ultrathin Two-Dimensional Co-FeOOH Nanosheets@1D Ir-Co( OH)F Nanorods for Efficient Electrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16702-16713. [PMID: 36972398 DOI: 10.1021/acsami.2c22632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is highly desirable to develop high-performance and robust electrocatalysts for overall water splitting, as the existing electrocatalysts exhibit poor catalytic performance toward hydrogen and oxygen evolution reactions (HER and OER) in the same electrolytes, resulting in high cost, low energy conversion efficiency, and complicated operating procedures. Herein, a heterostructured electrocatalyst is realized by growing Co-ZIF-67-derived 2D Co-doped FeOOH on 1D Ir-doped Co(OH)F nanorods, denoted as Co-FeOOH@Ir-Co(OH)F. The Ir-doping couples with the synergy between Co-FeOOH and Ir-Co(OH)F effectively modulate the electronic structures and induce defect-enriched interfaces. This bestows Co-FeOOH@Ir-Co(OH)F with abundant exposed active sites, accelerated reaction kinetics, improved charge transfer abilities, and optimized adsorption energies of reaction intermediates, which ultimately boost the bifunctional catalytic activity. Consequently, Co-FeOOH@Ir-Co(OH)F exhibits low overpotentials of 192/231/251 and 38/83/111 mV at current densities of 10/100/250 mA cm-2 toward the OER and HER in a 1.0 M KOH electrolyte, respectively. When Co-FeOOH@Ir-Co(OH)F is used for overall water splitting, cell voltages of 1.48/1.60/1.67 V are required at current densities of 10/100/250 mA cm-2. Furthermore, it possesses outstanding long-term stability for OER, HER, and overall water splitting. Our study provides a promising way to prepare advanced heterostructured bifunctional electrocatalysts for overall alkaline water splitting.
Collapse
Affiliation(s)
- Zichen Xu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 Liaoning, China
| | - Yuanjuan Jiang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 Liaoning, China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Ryan Yeh-Yung Lin
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
45
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
46
|
Chang CJ, Lai YA, Chu YC, Peng CK, Tan HY, Pao CW, Lin YG, Hung SF, Chen HC, Chen HM. Lewis Acidic Support Boosts C-C Coupling in the Pulsed Electrochemical CO 2 Reaction. J Am Chem Soc 2023; 145:6953-6965. [PMID: 36921031 DOI: 10.1021/jacs.3c00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Copper-oxide electrocatalysts have been demonstrated to effectively perform the electrochemical CO2 reduction reaction (CO2RR) toward C2+ products, yet preserving the reactive high-valent CuOx has remained elusive. Herein, we demonstrate a model system of Lewis acidic supported Cu electrocatalyst with a pulsed electroreduction method to achieve enhanced performance for C2+ products, in which an optimized electrocatalyst could reach ∼76% Faradaic efficiency for C2+ products (FEC2+) at ∼-0.99 V versus reversible hydrogen electrode, and the corresponding mass activity can be enhanced by ∼2 times as compared to that of conventional CuOx. In situ time-resolved X-ray absorption spectroscopy investigating the dynamic chemical/physical nature of Cu during CO2RR discloses that an activation process induced by the KOH electrolyte during pulsed electroreduction greatly enriched the Cuδ+O/Znδ+O interfaces, which further reveals that the presence of Znδ+O species under the cathodic potential could effectively serve as a Lewis acidic support for preserving the Cuδ+O species to facilitate the formation of C2+ products, and the catalyst structure-property relationship of Cuδ+O/Znδ+O interfaces can be evidently realized. More importantly, we find a universality of stabilizing Cuδ+O species for various metal oxide supports and to provide a general concept of appropriate electrocatalyst-Lewis acidic support interaction for promoting C2+ products.
Collapse
Affiliation(s)
- Chia-Jui Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-An Lai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - You-Chiuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Kuo Peng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hui-Ying Tan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Sciences and Technologies, Center for Green Technology, Chang Gung University, Taoyuan 333, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
47
|
Tian W, Li L, Zhu G. Interface Engineering of Oxygen-Vacancy-Rich VO-NiFe2O4@Ni2P Heterostructure for Highly Efficient Oxygen Evolution Reaction. Catal Letters 2023. [DOI: 10.1007/s10562-023-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
48
|
Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Li B, Tian Z, Li L, Wang YH, Si Y, Wan H, Shi J, Huang GF, Hu W, Pan A, Huang WQ. Directional Charge Transfer Channels in a Monolithically Integrated Electrode for Photoassisted Overall Water Splitting. ACS NANO 2023; 17:3465-3482. [PMID: 36763083 DOI: 10.1021/acsnano.2c09659] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photoelectrocatalytic performance of a system is fundamentally determined by the full absorption of sunlight and high utilization of photoexcited carriers, but efficiency of the latter is largely limited by inefficient charge transfer from the absorber to reactive sites. Here, we propose to construct directional charge transfer channels in a monolithically integrated electrode, taking carbon dots/carbon nitride (CCN) nanotubes and FeOOH/FeCo layered double hydroxide (FFC) nanosheets as a representative, to boost the photoassisted overall water splitting performance. Detailed experimental investigations and DFT calculations demonstrate that the interfacial C-O-Fe bonds between CCN and FFC act as charge transfer channels, facilitating the directional migration of the photogenerated carriers between CCN and FFC surfaces. Moreover, the in situ oxidized Fe/Co species by photogenerated holes trigger lattice oxygen activation, realizing the construction of the Fe-Co dual-site as the catalytic center and efficiently lowering the barrier energy for water oxidation. As a result, the CCN@FFC electrode shows multiple functionalities in photoelectrocatalysis: only a low overpotential of 68 mV, 182 mV, and 1.435 V is required to deliver 10 mA cm-2 current densities for the photoassisted HER, OER, and overall water splitting, respectively. This directional charge transfer modulation strategy may facilitate the design of highly active and cost-effective multifunctional catalysts for energy conversion and storage.
Collapse
Affiliation(s)
- Bo Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Zhi Tian
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Lei Li
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Yu-Han Wang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Yuan Si
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Hui Wan
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Jinghui Shi
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Wangyu Hu
- School of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Anlian Pan
- School of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
50
|
Wu J, Qin X, Xia Y, Zhang Y, Zhang B, Du Y, Wang HL, Li S, Xu P. Surface oxidation protection strategy of CoS 2 by V 2O 5 for electrocatalytic hydrogen evolution reaction. NANOSCALE HORIZONS 2023; 8:338-345. [PMID: 36633326 DOI: 10.1039/d2nh00431c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal sulfides (TMSs) are promising electrocatalysts for hydrogen evolution reaction (HER), while TMSs usually suffer from inevitable surface oxidation in air, and the impact of the surface oxidation on their HER catalytic activity remains unclear. Herein, we demonstrate an effective strategy for reducing the surface oxidation degree of easily oxidized CoS2 by introducing glued vanadium pentoxide (V2O5) nanoclusters, taking advantage of the preferential adsorption and strong interaction between high-valence V and O2. Combining oxidation protection and elaborate oxidation control experiments reveal that reduced surface oxidation degree of CoS2 is conducive to affording promising HER catalytic performance, as the oxidized surface of CoS2 can hinder the dissociation of water and thus is harmful to the HER process. Direct evidence is provided that surface oxidation should be carefully considered for TMS-based HER catalysts. The present work not only develops a new strategy for protecting CoS2 from surface oxidation, but also provides deep insight into the impact of surface oxidation on the HER performance of transition metal compounds.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing 100871, China.
| | - Yu Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|